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Abstract 

Philosophers and historians of biology have argued that genes are conceptualized 

differently in different fields of biology and that these differences influence both the 

conduct of research and the interpretation of research by audiences outside the field in 

which the research was conducted. In this paper we report the results of a questionnaire 

study of how genes are conceptualized by biological scientists at the University of 

Sydney, Australia. The results provide tentative support for some hypotheses about 

conceptual differences between different fields of biological

                                                
1 To appear in Studies in History and Philosophy of  Biological and Biomedical Sciences. 
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How Biologists Conceptualize Genes: An empirical study 

1. Introduction 

The philosophy of biology is concerned with those biological debates in which 

conceptual and empirical issues are so entangled that progress demands both scientific 

knowledge and the tools of philosophical analysis (Sterelny and Griffiths 1999: 5-7). The 

contested and multi-faceted concept of the gene is at the heart of many of these debates. 

The study of the gene concept, however, poses a challenge to the traditional philosophical 

practice of conceptual analysis. Traditionally, philosophers have relied on their individual 

linguistic competence with the corresponding words. When analyzing a concept, the 

philosopher treats him or herself as a sociolinguistic 'sample of one'. This approach can 

be extended to technical concepts, since any philosopher of biology should be in a 

position to consult his or her intuitions as a biologically literate sample of one (Neander 

1991). But much of the philosophical literature emphasizes the diversity of 

conceptualizations of the gene, either over time or between different fields. A sample of 

one is manifestly not going to reveal the ways in which biologist’s ideas about the gene 

differ on the basis of differences in theory, training, experience or research focus.  

 

The philosophical perspective that informs the design of this study is one in which 

scientific categories are conceived as ongoing - and possibly ramifying - projects of 

deriving empirical generalizations of increasing scope and reliability by adjusting both 

the extension of those categories, so as to encompass sets of instances with as much in 

common as possible, and the intension of those categories, so that statements involving 

the category change their modal status in a way that reflects the centrality of those 

statements to current theory (Griffiths 1999). In addition, conceptual change is driven by 

pragmatic and normative projects that employ the same categories (Hacking 1991; 

Griffiths In Press, 2004). This philosophical perspective is congruent with the so-called 

‘theory view of concepts’ in contemporary psychology, according to which a concept is a 

node in a network of beliefs about the cognitive domain in which its object lies (Medin 

1989). The perspective also resonates with Hans-Jörg Rheinberger’s discussion of the 
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gene as an ‘epistemic objects’ in molecular biology – an entity whose name is introduced 

as a target of research rather than to designate something with which researchers are 

acquainted (Rheinberger 1997, 2000)i.  A scientist’s grasp of an epistemic object is 

constituted by the set of experimental practices through which they seek to establish facts 

about it. Hence differences in the experimental practices used by particular scientists will 

be reflected in differences in how they apply the concept and in their modal intuitions 

about the epistemic object. 

 

From this perspective, the conceptual analyst has no alternative but to examine what 

different biologists say and do. There are a number of ways to achieve this. One is via the 

history of science, an approach which is extremely valuable and which forms part of the 

background to this study. Another is by comparing published work from several different 

scientific fields. Authors in contemporary philosophy of genetics do this, as well as 

talking to biologists with whom they collaborate. Current debate in the philosophy of 

genetics is thus biologically well-informed and a fertile source of hypotheses and 

suggestive arguments about the gene concept, its varieties and their uses. However, no 

individual can be equally well acquainted with the whole spectrum of contemporary 

biological research. It is also plausible that the biologists who choose to collaborate with 

philosophers or to participate in philosophical debates are unrepresentative on the 

biological community as a whole. Our aim in this study was to evaluate some of the 

competing accounts of the gene concept in a more rigorous and systematic way. We 

hoped to avoid the inevitable biases that come from having worked in one particular 

biological field before becoming a philosopher, from collaborating with some particular 

research group or simply from having a particular interest in one or more fields of 

research. Although this can only be regarded as a preliminary study, it suggests that a 

more systematic and quantitative approach to this and other conceptual issues in the 

philosophy of biology is both feasible and rewarding. 
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2. Recent Work on the Concept of the Gene  

The founders of classical Mendelian genetics were divided as to whether the gene was 

primarily a postulated explanatory entity or an instrumental device by which to express 

regularities in the transmission of phenotypic characters (Falk 1986). Rafael Falk argues 

that this led to a productive dialectic in which discoveries about the chemical nature of 

the gene alternated with new functional definitions of the gene at progressively deeper 

levels of chemical analysis. The initial Mendelian postulate of a close correspondence 

between gene and trait was replaced by a postulated one-to-one correspondence between 

gene and enzyme. This in turn was replaced by a one-to-one correspondence between 

genes and elements of proteins. The 'classical molecular gene concept'ii, which emerged 

in the 1950s and retains considerable currency today, identifies a gene with a stretch of 

DNA that codes for one of the polypeptide chains that goes to make up a functional 

protein. This dialectical development of the gene concept can be interpreted as reflecting 

a desire to keep the structural and functional definitions of the gene focused on a single 

entity. When the best structural definition turns out to create units with indeterminate 

function, structure and function can be brought back into step by using a more proximal 

description of function: rather than a gene having an indeterminate effect on the 

phenotype, it has a determinate effect on one of the structural elements that contributes to 

the phenotype ((Griffiths and Neumann-Held 1999), see also (Kitcher 1982)). 

 

The classical molecular gene concept, however, was only a temporary resting point. An 

initial difficulty with the classical molecular conception is that the actual activity of the 

gene, and hence its developmental effect, depends on elements outside the transcription 

unit. This has led to definitions of the gene, which include the promoter and regulatory 

sequences that affect whether the gene will be transcribed.  In a case like the famous lac 

operon in E. coli, these sites are immediately upstream of the site at which transcription is 

initiated and it is easy to regard them as parts of the gene. In eukaryotes, however, 

regulatory regions can be distant from the rest of the gene and can be involved in the 

regulation of more than one gene. It is perhaps unproblematic to regard regulatory 

regions that are not transcribed into RNA as neither genes themselves nor parts of any 
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other specific gene, although this is certainly a departure from the classical Mendelian 

conception of a gene as a segment of chromosome, different allelic forms of which can be 

tracked via their differing effects on the phenotype. It is less easy to treat actual coding 

sequences in this way. The one-to-one correspondence between stretches of coding DNA 

and genes is challenged by the existence of overlapping genes, which share some of the 

same sequence. Here we see the very same DNA treated as (part of) two different genes 

because those genes produce different gene products. But there must be additional 

reasons why these cases are treated in this way, since the ubiquitous existence of introns 

in eukaryote genes allows several gene products to be made from a single gene by cutting 

and splicing the primary mRNA transcript in alternative ways. One response to introns is 

to use the abovementioned strategy of retaining a unitary function for each gene by 

moving the function closer to the DNA itself. If a gene is defined as the stretch of DNA 

coding for a single primary mRNA transcript, rather than a single polypeptide, then a 

gene can still be defined by a single gene product. Another alternative is to abstract away 

from the details of the various spliced transcripts to obtain a single feature to associate 

with gene from which they are all transcribed. For example, it has been pointed out that 

the whole family of transcripts preserves the linear order of codons, omitting different 

ones but never inserting reversing the order or inserting additional codons (Epp 1997). 

However, the phenomenon of mRNA editing, in which individual bases that do not 

correspond to bases in the DNA are inserted into the mRNA transcript, means that not all 

‘gene products’ have even this abstract relationship to the DNA from which they 

originate. Another class of problems for the classical molecular gene conception arises 

because of transplicing, the phenomenon in which mRNA transcripts from several 

different loci are brought together and spliced into a single mRNA before being 

translated into a single ‘gene product’. Cases involving transplicing can be treated as a 

single gene split between more than one loci, as a process for deriving a single product 

from more than one genes, or, where one transpliced element is somehow subordinate to 

the other, as an instance of a single gene with a distant, transcribed regulatory region 

(Fogle 2001). 
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One response to the variety of structural and functional units that can be usefully defined 

in contemporary molecular genetics is pluralism. Falk writes: "Today the gene is not the 

material unit or the instrumental unit of inheritance, but rather a unit, a segment that 

corresponds to a unit-function as defined by the individual experimentalist's needs" (Falk 

1986, 169) see also (Falk 2000, 2001). Such pluralism is not necessarily a criticism of the 

current state of affairs. Falk is unsure if the current ambiguities of the gene concept will 

prove as helpful as earlier ambiguities. Kenneth Waters takes a still more positive view. 

Focusing on the problem that many products can be derived from the same sequence, he 

sees different definitions of the gene as unified by a ‘fundamental gene concept’, namely, 

"a gene for a linear sequence in a product at some stage of genetic expression”(Waters 

1994, 178) see also (Waters 2000). Whether introns are part of a gene depends on which 

particular “linear sequence in a product at some stage of genetic expression” scientists are 

referring to (Waters 1994, 179). The ‘fundamental concept’ plus the scientist's research 

focus determines which DNA elements constitute the gene. Thomas Fogle is a less 

sanguine pluralist, arguing that current usage of the term ‘gene’ is driven by a 

historically-derived stereotype. This stereotype is based on facts about the structure and 

function of protein coding genes that take the form of a continuous series of DNA bases. 

More problematic DNA elements, with diverse functions and structures are called genes 

if they resemble the stereotype sufficiently. Sets of DNA elements that are discovered to 

underlie some function in the cell are divided into one or more genes and various 

auxiliary elements in order to facilitate seeing them via this stereotype (Fogle 2001).  

 

While Waters has looked for unity in the diversity of the gene concept, Lenny Moss has 

recently argued that one particular aspect of conceptual diversity is the key to 

understanding both the scientific utility of the gene concept and some of its pitfalls. 

According to Moss, both current and historic conceptualizations of the gene make use of 

two different ways of classifying DNA sequences, taxonomic schemes that he labels 

Gene-P and Gene-D: 

 



7 

 
 

"Gene-P is the expression of a kind of instrumental preformationism (…). When 

one speaks of a gene in the sense of Gene-P one simply speaks as if it causes the 

phenotype. A gene for blue eyes is a Gene-P. What makes it count as a gene for 

blue eyes is not any definite molecular sequence (after all it is the absence of a 

sequence based resource that matters here) nor any knowledge of the 

developmental pathway that leads to blue eyes (to which the "gene for blue eyes" 

makes a negligible contribution at most), but only the ability to track the 

transmission of this gene as a predictor of blue eyes. Thus far Gene-P sounds 

purely classical, that is, Mendelian as opposed to molecular. But a molecular 

entity can be treated as a Gene-P as well. BRCA1, the gene for breast cancer, is a 

Gene-P, as is the gene for cystic fibrosis, even though in both cases phenotypic 

probabilities based upon pedigrees have become supplanted by probabilities based 

upon molecular probes.   

… 

Quite unlike Gene-P, Gene-D is defined by its molecular sequence. A Gene-D is a 

developmental resource (…) which in itself is indeterminate with respect to 

phenotype (…). To be a gene for N-CAM, the so-called "neural cell adhesion 

molecule," for example, is to contain the specific nucleic acid sequences from 

which any of 100 potentially different isoforms of the N-CAM protein may 

ultimately be derived… N-CAM molecules are (despite the name) expressed at 

many tissues, at different developmental stages, and in many different forms. The 

phenotypes of which N-CAM molecules are co-constitutive are thus highly 

variable, contingent upon the larger context, and not germane to the status N-

CAM as a Gene-D. So where a Gene-P is defined strictly on the basis of its 

instrumental utility in predicting a phenotypic outcome and is most often based 

upon the absence of some normal sequence, a Gene-D is a specific developmental 

resource, defined by its specific molecular sequence and thereby functional 

template capacity and yet it is indeterminate with respect to ultimate phenotypic 

outcomes.” (Moss 2001, 87-88, his italics)  
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Moss's work falls into a 'developmentalist' tradition of criticism of overly simple 

conceptions of the role of genes in the construction of phenotypes (Oyama, Griffiths, and 

Gray 2001). Developmentalists have often directed their criticisms at 'implicit 

preformationism' — the idea that phenotypic outcomes are preformed in a genetic cause 

as ‘traitunculi’ (Schaffner 1998) rather than emerging epigenetically through the 

interaction of this and other causes. Moss clarifies this criticism by arguing that the 

'preformationism' embodied in the Gene-P conception is both a productive research 

strategy in its own epistemological sphere and the source of oversimplified and unhelpful 

ideas about the role of genes in development. It is a productive research strategy because 

genes really are statistical predictors of phenotypic outcomes. But sequences that are 

identified as Gene-Ps immediately become a legitimate focus of interest as Gene-Ds. If 

the presence of a sequence is correlated with an outcome it is sensible to ask how that 

sequence contributes to development. This double-life of the gene concept and of 

individual (token) DNA sequences makes it easy to misunderstand claims made about 

Gene-Ps and to hear them as if they were about Gene-Ds. Genes are conceptualized in 

terms of their contextual effects (Gene-P) and then treated as developmental causes under 

that conceptualization, rather than the Gene-D conceptualization appropriate for thinking 

about developmental questions. In this way, the effect that a Gene-D has on a phenotype 

in a particular developmental context comes to be treated as an intrinsic property of that 

Gene-D and as an inevitable consequence of its presence in an organism.  

 

The most popular notion of the gene in the wider community is undoubtedly the 

informational conception: a gene is a packet of developmental information, or an 

instruction for development. Like many other philosophers, we would argue that the 

notion of information deployed in this conception of the gene “is little more than a 

metaphor that masquerades as a theoretical concept and ...leads to a misleading picture of 

possible explanations in molecular biology” (Sarkar 1996, 187). Developmental 

information is not stored in the literal genetic code, because the formal coding relation 

between DNA and polypeptides specifies only the primary structure of proteins 

(Godfrey-Smith 1999; Griffiths 2001). The other informational and cybernetic locutions 
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used in molecular biology are equally applicable to genetic and non-genetic factors in 

development, and if taken seriously, require a recognition of the fact that the 

developmental significance of a causal factor is a function of its developmental context 

((Griffiths and Knight 1998; Griffiths 2001) but see (Maynard Smith 2000) for a contrary 

view). The loose notion of the gene as a unit of developmental information does little 

harm when the focus of research is actual molecular gene products and their interactions 

and when Gene-P notions are being applied to that level of gene expression. At that level 

of analysis there are tight connections between what genes do (Gene-P) and their intrinsic 

molecular nature (Gene-D). Furthermore, contextual factors affecting whether genes are 

transcribed, what products are derived from them and what those products go on to do are 

the actual focus of research and unlikely to be systematically overlooked. When the focus 

is on higher levels of biological organization, however, and particularly when results are 

reported to the wider community, loose information talk almost inevitable leads to the 

conflation of Gene-P and Gene-D and the resultant misinterpretation discussed above 

(Moss 2002; Griffiths In Press). 

 

For most purposes, evolutionary biologists work with something like the Gene-P 

conception. Their interest is in the relationship between changing gene frequencies in 

populations over time and changes in the phenotypes manifested by the individuals that 

make up those populations. The gene-P conception embodies the relevant kind of 

statistical relationships. The term 'evolutionary gene concept', however, is normally 

attached to a very different idea introduced by George C. Williams (Williams 1966) and 

elaborated by Richard Dawkins: “Any stretch of DNA, beginning and ending at 

arbitrarily chosen points on the chromosome, can be considered to be competing with 

allelomorphic stretches for the region of chromosome concerned” (Dawkins 1982, 87). 

The purpose of the evolutionary gene concept is to abstract away from the complexities 

of the gene-phenotype relationship. The inheritance of DNA sequences is assumed to 

underlie all heritable phenomena of interest to evolution. Change over time in the DNA 

sequence can be exhaustively described using the formalism of population genetics and 

the evolutionary gene concept. That takes care of the molecular level, leaving the 
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evolutionary biologist free to study the evolution of phenotypic characters using the 

formalism of population genetics without worrying about the relationship between 

molecular genes and these phenotypic characters. However, as many critics rapidly 

pointed out, the ability to describe changes in the composition of the genome after the 

fact is not the same as the ability to explain or predict those changes. Kim Sterelny and 

Griffiths conclude that in his responses to these critics Dawkins effectively abandoned 

the evolutionary gene concept (Sterelny and Griffiths 1999, 79-82). The definition of the 

gene with which he replaced it with is an amalgam of Gene-P and Gene-D and has no 

particular currency in the biological community in its own right, so we have not 

considered it in this study. Williams has also moved on from his 1966 definition and now 

supports a very radical version of the informational conception of the gene (Williams 

1992). 

 

On the basis of the literature reviewed above, we advanced three hypotheses: 

• Hypothesis One. We expected to see a strong divergence between molecular and 

evolutionary biologists, given the emphasis on the investigation of the intrinsic, 

structural nature of the gene in the former discipline and the emphasis on genes as 

markers of phenotypic effects in the latter discipline. In particular, we expected 

molecular biologists to be reluctant to identify a gene only by its contributions to 

relatively distant levels of gene expression. Conversely, we expected evolutionary 

biologists to be reluctant to treat two similar DNA sequences as the same gene 

when they lead to different outcomes for the larger system in which they are 

embedded. 

 

• Hypothesis Two. We also expected developmental biologists and evolutionary 

biologists to differ, with evolutionary biologists emphasizing the predictive 

relationship between genes and phenotypes and developmental biologists 

emphasizing the intrinsic nature of the gene as a molecular object and contextual 

effects on gene expression. Consequently, we also expected stronger support for 

the informational conception of the gene from evolutionists. 
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• Hypothesis Three. We expected developmental biologists to be less attracted to 

Moss’s Gene-P and to the informational conception of the gene than (other) 

molecular biologists. We expected developmental biologists to be attracted to 

conceptions that emphasize contingency and context dependency, such as Moss’s 

Gene-D and various developmentally-oriented conceptions of the gene canvassed 

in the literature on evolutionary developmental biology. 

 

In addition to these specific hypotheses, we saw this as an exploratory study and were 

interested in what the responses suggest about the general state of the gene concept in 

contemporary biology. We also examined the effects of age and gender. 

 

3. Methods 

3.1 Subject Recruitment 

Subjects were post-PhD biological scientists making use of molecular techniques, and 

hence of the gene concept, in their research. To find these subjects we accessed a newly 

installed network of genomics and bioinformatics researchers at the University of Sydney 

from a wide array of departments, research groups, and institutes. We supplemented this 

list by examining the websites of the academic units in which list members were located. 

This produced a list of 250 potential subjects from biology, biochemistry, agriculture, 

veterinary science, medicine, pharmacology and chemistry. These scientists were sent a 

questionnaire, along with a covering letter explaining in general terms the aim of the 

study. From this mail-out we received some 80 correctly completed responses, a 

reasonable response rate given that we had no prior contact with recipients. 

3.2. Questionnaire Design  

The questionnaire had three sections, the first part designed to determine the subject’s 

research field, the second asking them direct questions about the gene concept and the 

third asking them to apply the gene concept to specific cases. The first section of the 
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questionnaire (Section A) gathered personal data on the professional training, research 

experience and current research field of subjects, along with age and gender (Table 1). 

 

The five questions in Section B of the questionnaire (Table 2) contained direct questions 

about the definition of the gene, the function of the gene and the methodological value of 

the gene concept. The answer alternatives for each question were designed to capture the 

various conceptions of the gene discussed in the literature. We used a number of different 

formulations of each conception to avoid superficial effects, such as antipathy to 

particular words or phrases. The actual wordings of many of the answer alternatives were 

copied, or lightly adapted, from the literature and from genomics websites, so as to avoid 

that we have misrepresented the relevant ideas, or attempted to influence responses 

through biased formulationsiii. Each question had an ‘Other’ alternative in which subjects 

could supply their own answer, but no useful data was obtained by this means. 
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1. Current Disciplinary Location 
a. Medicine 

I. Molecular Medicine 
II. Oncology 
III. Biochemistry  
IV. Pharmacology 
V. Infectious Diseases 

b. Biochemistry 
I. Molecular 
II. Cell  
III. Protein 
IV. Metabolism 

c. Biological Sciences 
I. Genetics 
II. Development  
III. Evolution, Taxonomy 
IV. Ecology 
V. Microbiology 

d. Agriculture 
I. Agricultural Genetics  
II. Animal Genetics 
III. Animal Science 
IV. Plant Breeding 

e. Veterinary Science 
f. Pharmacology 
g. Other 

2. Area of Training 
a. Medicine 

I. Molecular Medicine 
II. Oncology 
III. Biochemistry  
IV. Pharmacology 
V. Infectious Diseases 

b. Biochemistry 
I. Molecular 
II. Cell 
III. Protein 
IV. Metabolism 

c. Biological Sciences 
I. Genetics 
II. Development  
III. Evolution, Taxonomy 
IV. Ecology 
V. Microbiology 

d. Agriculture 
I. Agricultural Genetics 
II. Animal Genetics 
III. Animal Science 
IV. Plant Breeding 

e. Veterinary Science 
f. Pharmacology 
g. Other 

3. Disciplines of Degree 
Undergraduate degree in 
Postgraduate degree other than PhD in 
PhD defended in 
 

 
4.a. Gender  b. Age 

1.  female  1.  20-34 
2.  male  2.  35-49 
   3.  50-70 
 

 
Table 1: Section A of the questionnaire. Used to group subjects by field, age and gender. Multiple 
selections were allowed. 
 

This section of the questionnaire contained both ‘free choice’ and ‘forced choice’ tasks. 

The former required subjects to indicate for each question all the answer alternatives to 

which they could agree. The latter required subjects to choose the single best answer 

amongst the alternatives offered. The free choice task was designed to recognize that 

individual subjects could conceptualize genes in more than one way. The forced choice 

task aimed at revealing some of the subjects’ preferences and helped to increase variance 

when the free choice responses failed to exhibit significant differences between the 

subject groups. 
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Section C of the questionnaire (Table 4) was based on the design of an informal study 

conducted by Rob C. Knight in New Zealand with 10 respondents. This section used 

‘indirect’ questions, asking subjects to apply their conception of the gene, rather than to 

answer questions about it. Subjects were given twenty-two examples of specific ways in 

which two DNA sequences could differ from one another and asked whether, in each 

case, these DNA sequences were two copies of the same gene.  

3.3. Defining Groups 

All three hypotheses assume the existence of more or less clearly identifiable groups of 

biologists that differ significantly in their views about genes. Using responses to Section 

A of the questionnaire (Table 1) we defined the three groups of biologists that appear in 

our hypotheses — ‘molecular’, ‘developmental’, and ‘evolutionary.’ A fourth group of 

'whole organism biologists' failed to show any significant differences and is not further 

discussed. Our operational definitions of molecular, developmental, and evolutionary 

biologists were Boolean combinations of answers to questions in Section A, based on our 

intuition about the kind of scientist one can expect to find in certain (sub-) disciplines, 

departments, and research fieldsiv.  Essentially, anyone who crossed ‘developmental 

biology’ either as area of training or PhD or disciplinary location/current research was 

classified as a member of the ‘developmental’ group, and the ‘molecular’ group had the 

majority of their training and work in biochemistry or molecular biology, while an 

‘evolutionist’ needed to tick evolution or taxonomy or ecology as either current location 

or training. Predictably, these definitions created overlapping groups. Because we were 

concerned to maintain an adequate number of subjects, those in the intersection of two 

groups were examined on an individual basis and assigned to a single group by a 

subjective assessment of their overall pattern of responses to Section A. This process was 

completed before examining Sections B and C of the questionnaire in order to keep group 

membership independent of subject’s views on the gene concept.  

3.4. Data Analysis 

The sample sizes of some of our groups (notably ‘evolutionary’) were small. This does 

not invalidate the results reported below, since the statistical measures utilized are 
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suitable for small sample sizes and unequal group sizes. This notwithstanding, results 

based on such small sample sizes must be taken as suggestive rather than definitive, and 

as a basis for further studies. 

 

For our analysis we used tests suitable for categorical data, which are all based on 

crosstabulation. We used the chi-square for determining the presence of an association 

between our independent variables (kinds of biologists) and dependent variables 

(different conceptions of the gene). Our measure of strength of association in many of 

our free choice cases (which can be represented by a two-way contingency table) was the 

phi coefficient. In such symmetric cases and a high enough sample size it mimics the 

correlation coefficient by having a maximum value of 1 (perfect correlation) and a 

minimum value of 0 (no association), and Phi can be interpreted as a symmetric version 

of percent difference.  

 

Many of our contingency tables, however, involved variables with more than two values, 

(e.g. the forced choice tasks), and small sample sizes. In these cases Phi can be infinitely 

larger than 1 (which does not lend itself to an easy interpretation of the test in terms of 

the strength of association), and we preferred another statistical test designed for groups 

of unequal size and small sample sizes, Cramer’s V, which gives good norming from 0 to 

1 regardless of table and sample size. It is worth noting that as symmetrical measures Phi 

as well as Cramer’s V tend to understate asymmetric relationships between the 

independent and dependent variable. Also, the more unequal the marginals, the more V 

will understate an association. 

 

With respect to the significance of the results we have followed convention by dividing 

our results into those significant at the 0.05 (5%) and those at the 0.1 (10%) level, and 

reported other associations as not significant (ns). Failure to achieve the desired level of 

significance (5%) may often reflect the lack of power in this study due to small sample 

sizes. For the same reason, the absence of an association in the results tables below does 

not provide good evidence that those variables are independent of one another.  
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4. Results 

4.1. The current state of the gene concept 

The responses suggest that the classical molecular gene concept continues to act as an 

important point of departure for biologists in conceptualizing the gene. When subjects 

were asked to indicate the biological function of a gene, the answer alternative 

corresponding to the classical molecular conceptualization was overwhelmingly the most 

popular: 2.3. Coding for the primary structure of a protein (free choice 92%, forced 

choice 63%) (Italicized phrases are drawn from the questionnaire. See Table 2 for a full 

list of questions and answers). Similarly, when subjects were asked to choose between a 

series of sentence-length definitions of the gene, the answer alternative corresponding to 

the classical molecular conceptualization was the second most popular: 5.2. A stretch of 

DNA sequence that codes for a particular protein and that has a particular function (free 

choice 89%, forced choice 24%). This is the definition offered by the (Australian) 

National Human Genome Research Institute website, so the high level of agreement is 

perhaps unsurprising. However, the most popular answer to this question was a very 

broad, Mendelian (or even pre-Mendelian!) definition: 5.1. The functional and physical 

unit of heredity passed from parent to offspring (free choice 89%, forced choice 43%). 

The significance of this finding is explained in the next section.  

 

Amongst a set of shorter phrases purporting to sum up what a gene is, an alternative in 

the spirit of the classical molecular gene concept was again the second most popular 

choice: 1.4. Nucleic acid sequence with a certain characteristic function (free choice 

79%, forced choice 35%). The most popular of these short phrases, however, was 1.5 

Carrier of heritable information (free choice 87%, forced choice 44%). So, at least as a 

shorthand, the informational conception of the gene has currency amongst working 

biologists.  

 

In response to the more demanding question, “What is the methodological value of the 

gene concept?” the most popular answer alternative was 4.3. Studying the biological role 
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of a particular gene, which involves locating it within the contexts in which it is 

biologically active, helps to elucidate the complex molecular pathways in which it is an 

interactant (free choice 77%, forced choice 36%). This suggests that the complexities of 

genetic causation are salient facts for working biologists. 

4.2. Age and Gender Results 

Subjects were divided into three age groups: 20-34, 35-49 and 50-70 and into male and 

female.  Several answers were correlated with gender, but all these associations 

disappeared when the association between age and gender was taken into account. 

Female subjects were on average much younger than male subjects. The 20-34 age group 

contained 33.3% of the female subjects, but only 14% of the male subjects; the 35-49 age 

group contained 54.2% of females and 40.4% of males; the 50-70 age group contained 

only 10.3% of females, but 45.6% of males.  

 

When asked about the methodological value of the gene concept, older subjects favored 

two strikingly pluralistic, deflationary statements: 4.5. ‘Gene’ functions to remind 

modern geneticists of what it is that make a region of nucleic acid ‘interesting’, or of 

what constitutes ‘meaningful structure’ in the genome and 4.7. A handy and versatile 

term whose meaning is determined by the context in which it is used. Older subjects were 

also more likely to accept a third statement that located the gene primarily in evolutionary 

biology (4.2. Central concept in evolution: allows i) shortcut definition of evolution as 

change in gene frequency and ii) a general conception of evolution as gene selection). In 

contrast, younger biologists overwhelmingly saw the gene as primarily an object of 

interest to molecular biology (answer 4.3., quoted above). Results are shown in Figure 1. 

 

We have already noted that when asked to choose between a series of sentence-length 

definitions of the gene subjects predominantly favored either the classical molecular gene 

concept in a formulation obtained from Australia’s National Human Genome Research 

Institute (5.2) or a very vague, Mendelian (or even pre-Mendelian!) definition of the gene 

as unit of heredity (5.1).  
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Figure 1. Age related results for the forced choice task on Section B, Question 4. See Table 2 and text for 
details. Association 0.625, significance 0.01. 
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Figure 2. Age related results for the forced choice task on Section B, Question 4. See Table 2 and text for 
details. Association 0.590, significance 0.009. 
 

These two definitions turn out to be extremely strongly associated with age, younger 

subjects favoring the ‘molecular’ definition and older subjects the ‘(pre-) Mendelian’ 

definition (Figure 2). 
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The fact that older biologists are more inclined to assign the gene a role in evolutionary 

theory is probably an artifact of the fact that biologists with an evolutionary focus were 

concentrated in our oldest age group, which in turn results from the fact that departments 

with an evolutionary focus have been growing (if at all) much more slowly than 

departments with a molecular focus in the last few decades. The finding that older 

biologists take a more pluralistic view of the gene cannot be dismissed in the same way. 

Pluralism, we suspect, is a genuine function of age, which is perhaps to be expected, 

given the regularity with which cherished ideas about the gene have been overthrown in 

the last fifty years.  

 

4.3. Results for Hypothesis One 

Hypothesis one predicts a strong divergence between molecular and evolutionary 

biologists, given the emphasis on the investigation of the intrinsic, structural nature of the 

gene in the former discipline and the emphasis on genes as markers of phenotypic effects 

in the later discipline. In particular, we expected molecular biologists to be reluctant to 

identify a gene only by its contributions to relatively distant levels of gene expression. 

Conversely, we expected evolutionary biologists to be reluctant to treat two similar DNA 

sequences as the same gene when they lead to different outcomes for the larger system in 

which they are embedded. 

 

In the light of this hypothesis we made the following predictions for the free-choice task 

on Section B of the questionnaire (Table 2): 

• Question 1. The molecular group is more likely to accept a structural conception 

of the gene (answer alternative 1.3) than the evolutionary group. The evolutionary 

group is more likely to accept the Gene-P option (1.1) than the molecular group. 

• Question 2. The molecular group is more likely to accept the classical molecular 

conception (2.3). The evolutionary group is more likely to accept the Gene-P 

variants 2.1 v 2.2.  
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1. In short: What is a gene? 
1. That which makes the difference between two phenotypes . 
2. Any Nucleic acid sequence whatsoever. 
3. Nucleic acid sequence with a certain characteristic structure. 
4. Nucleic acid sequence with a certain characteristic function. 
5. A carrier of heritable information. 
6. A resource for Development. 

2. What is the biological function of a gene? 
1. Causing a phenotypic outcome. 
2. Determining a phenotypic outcome.  
3. Coding for the primary structure of a protein. 
4. Providing a developmental resource, on a par with other (epigenetic and environmental) resources, for the 

construction of the organism.  
5. To channel and reinforce epigenetic propensities instead of specify incremental alterations in morphology. 
6. Releasing and biasing the expression of latent morphogenetic capacities. 
7. Mechanism to buffer the development of established and ecologically successful phenotypes against environmental 

perturbations and metabolic noise. 
8. Functional part of a program for development that is written in the sequence of nucleotide bases.  

3. What makes two genes “homologous”? 
1. Both have derived from a common ancestral gene (they are orthologous). 
2. Both have an identical sequence of nucleotides. 
3. Both produce functionally equivalent molecular products. 
4. Both are situated at homologous sites on homologous chromosomes. 
5. Both are able to recombine with one another in practice. 
6. Both are able to recombine with one another in theory (physically compatible). 
7. Both have derived from a gene duplication (they are paralogous). 

4. What is the methodological value of the gene concept? 
1. A gene has instrumental utility in predicting a phenotypic outcome.  
2. Central concept in evolution: allows i) shortcut definition of evolution as change in gene frequency and ii) a general 

conception of evolution as gene selection. 
3. Studying the biological role of a particular gene, which involves locating it within the contexts in which it is 

biologically active, helps to elucidate the complex molecular pathways in which it is an interactant. 
4. A convenient entry point to functionally conserved multi-molecular modules as units of development, morphology, 

variation and innovation.  
5. ‘Gene’ functions to remind modern geneticists of what it is that make a region of nucleic acid ‘interesting’, or of 

what constitutes ‘meaningful structure’ in the genome. 
6. A gene draws our attention to a collection of useful functional domains (exons) which can be combined in different 

ways. 
7. A handy and versatile term whose meaning is determined by the context in which it is used. 

5. At length: What is a gene: 
1. The functional and physical unit of heredity passed from parent to offspring. 
2. A stretch of DNA sequence that codes for a particular protein that has a particular function. 
3. A package of information that contains and implements a particular instruction. 
4. A gene is defined by its relationship to a phenotype regardless of the specific molecular sequence and the whole 

developmental mechanisms involved.  
5. A developmental resource defined by its specific molecular sequence and functional template capacity but which is 

indeterminate with respect to the phenotypic outcomes to which it will contribute.  
6. A segment of chromosome. Some genes direct the synthesis of proteins, others have regulatory functions. 
7. A process that includes DNA sequences and other components, which participate in the time and tissue specific 

expression of a particular polypeptide product. 
8. Any stretch of DNA, beginning and ending at arbitrarily chosen points on the chromosome, that segregates and 

recombines with appreciable frequency. 
9. A functional unit and part of the processes that specify cellular and intercellular organization, defined by the action 

of a complex self-regulating system for which the inherited DNA provides the crucial raw material. 
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Table 2: Section B of the questionnaire. In the free choice task, subjects were asked to tick every acceptable 
answer alternative. In the forced choice task they were asked to choose the best alternative. The ‘Other’ 
alternative for each question has been omitted. 
 

(Because this was a free choice task, when more than one answer alternative 

seemed to express the same conception of the gene, we predicted a weak 

disjunction of these alternatives (either a or b or both) as the response for the 

relevant group). 

• Question 4. The evolutionary group is more likely to accept the Gene-P 

alternative 4.1 and the specifically evolution-oriented 4.2. The molecular group is 

more likely to accept 4.3 and 4.6, answers that emphasize the investigation of 

genes at the molecular level. 

• Question 5. Evolutionary biologists are more likely to accept the gene-P option 

5.4, whilst the molecular group are more likely to accept statements of the 

classical molecular conception (5.2 v 5.6) and the more complex answers relating 

genes to other processes at the molecular level (5.5 v 5.9). 

 

1.3 M 50%, E 50%, ns 1.1 E 0%, M 43%, ns  

2.3 M 100%, E 100%, ns 2.1v2 E 0%, M 71%, .458/.002 

4.3 M 77%, E 80%, ns 4.1 E 40%, M 72%, ns 

4.6 M 39%, E 40%, ns 4.2 E 100%, M 46%, .342/.023 

5.2v6 M 95%, E 100%, ns 5.4 E 20%, M 10%, ns 

5.5v9 M 55%, E 60%, ns 

 

  

 
Table 3: Test of hypothesis 1 with data from the free choice task. Left-hand column shows answer 
alternatives for which we predicted agreement by the molecular group (M), right-hand column those for 
which we predicted agreement by the evolutionary group (E). Result cells: the numbers behind the 
characters show percentage of yes answers among the respective group (M, E), the following fractions 
indicate strength (0 – 1) and significance (0 – 1) of association. Results marked ns were not significant 
(>10% or .100). Bold results indicate high significance (< 5% or .050), italic results show associations in 
the reverse direction to that predicted. 
 

The results for the free choice task were not consistent with hypothesis one. Rather than 

favoring the phenotype-focused Gene-P conception, the evolutionary group tended to 

reject it when it was offered explicitly (Table 3). The forced choice results were similar, 
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and are not reported here for reasons of space (Complete results are available at 

http://philsci-archive.pitt.edu). So the results from Section B, in which we asked direct 

questions, suggest that biologists with an evolutionary focus in their research do not 

conceptualize genes in terms of their phenotypic effects in any way that distinguishes 

them from biologists with a purely molecular research focus. A very different picture 

emerges, however, from responses to the indirect questions in Section C (Table 4).   

 

In the light of hypothesis one, we predicted that the molecular and evolutionary groups 

would respond differently to several items in Section C of the questionnaire (see Table 

4). Questions 6.4, 6.5, 6.6 and 6.7 present a series of cases in which the proposed identity 

between two DNA sequences is based on their producing identical proximal gene 

products, whilst their more distal products, with more direct causal relevance to the 

phenotype, are increasingly allowed to diverge. We expected the molecular group to 

classify all these pairs as the same gene, because of their proximal similarity. Whilst both 

groups should agree that 6.4 represents two copies of the same gene, we expected the 

evolutionary group to reject the claim that the sequences in 6.5, 6.6 and 6.7 are two 

copies of the same gene, because the distal products of the two sequences differ in ways 

that should lead to different phenotypic effects. Questions 6.9 and 6.10 also describe 

sequences which have the same nucleotide sequence but different molecular products, 

and so we expected the molecular group to treat these as the same gene and the 

evolutionary group to treat them as different genes. Conversely, 6.19 describes sequences 

that differ at the molecular level but have the same effect on the phenotype, a 

straightforward instance of same Gene-P, and we expected the evolutionary group to 

accept this as a case of the same gene and the molecular group to reject it.  

 

In contrast to the results for the direct questions in Section B, those for the indirect 

questions in Section C supported hypothesis one (Table 5). The pattern of answers to 

questions 6.5, 6.6 and 6.7 shows the evolutionary group responding significantly more 

strongly to changes in distal function than the molecular group. Answers to 6.9 and 6.19 
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6.1  Any two identical nucleotide sequences, beginning and ending at arbitrary points, at equivalent loci on homologous 
chromosomes in different cells of the same organism. 

6.2  Two transcription units of identical nucleotide sequence at equivalent loci on homologous chromosomes in 
different cells of the same organism.  

6.3  Two transcription units of identical nucleotide sequence on non-homologous chromosomes in the same organism. 

6.4  Two transcription units of identical nucleotide sequence leading to the same functional protein.  

6.5  Two transcription units of identical nucleotide sequence, which are translated into the same polypeptide chain, 
regardless of how it is folded. 

6.6  Two transcription units of identical nucleotide sequence, which produce the same final transcript, regardless of 
what happens to this transcript.  

6.7  Two transcription units of identical nucleotide sequence, which produce the same primary transcript, regardless of 
what happens to this transcript. 

6.8  Two transcription units of identical nucleotide sequence which produce the same final transcript but contain 
different introns. 

6.9  Two transcription units of identical nucleotide sequence whose final transcript contains differently spliced exons. 

6.10  Two transcription units of identical nucleotide sequence, one of which has its exons scrambled in its final transcript 
(as happens in ciliates). 

6.11  Two transcription units of identical nucleotide sequence with different promoters but with identical levels of 
transcription.  

6.12  Two transcription units of identical nucleotide sequence with different promoters and different levels of 
transcription.  

6.13  Two transcription units which differ only in a single silent mutation.  

6.14  Two transcription units that differ in a number of silent mutations, not affecting the level of expression.  

6.15  Two transcription units that differ in a number of silent mutations, affecting the level of expression significantly. 

6.16  Two otherwise identical transcription units containing different nonsense mutations both of which destroy the 
corresponding enzyme’s catalytic activity. 

6.17  Two transcription units, which differ so as to produce a single substitution in the amino acid sequence but with no 
observable developmental effect.  

6.18  Two transcription units with identical sequences but which produce different polypeptides due to differences in the 
genetic code (eg., between mitochondria and nuclei). 

6.19  Two allelic transcription units differing in sequence but with identical phenotypic effect. 

6.20  Two transcription units of identical nucleotide sequence, one of which is found on a free transposon and one of 
which is found in normal genomic DNA. 

6.21  Two identical nucleotide sequences, one is an active coding sequence, the other is split into two (non-functional) 
pieces by an insertion.  

6.22  Two transcription units of identical nucleotide sequence that have evolved independently in different taxa through 
convergent evolution.   

Table 4: Section C of the questionnaire. Subjects were asked whether each item described two copies of the 
same gene. Question 6.8 contained a typological error. 
 

differed in the predicted direction, although the difference was not statistically 

significant. However, the fact that in the direct questions the evolutionary group was less 

accepting of Gene-P conceptions than the molecular group and that this position is here 
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apparently reversed, leads us to take these insignificant results as at least somewhat 

suggestive. The striking difference between the results for Section B and Section C of the 

questionnaire lead us to advance a new hypothesis, namely that the evolutionary group 

has an explicit belief that genes are molecular entities and should be defined and 

investigated at that level, but that when asked to think about actual cases, they employ a 

Gene-P conception that abstracts away from differences at the molecular level and 

focuses on phenotypic effects. We hope to investigate this hypothesis in future research. 

 

Answer predictions for Molecular Group  

6.5 M 66%, E 0%, .389/.006 6.6 M 66%, E 20%, .285/.046  

6.7 M 60%, E 0%, .358/.012 6.9 M 50%, E 0%, .304/.033 

6.10 M 35%, E 0%, ns   

Prediction for Evolutionary Group  6.19 E 20%, M 16%, ns 
 

Table 5: Test of hypothesis 1 with data from the indirect section. In this table we expected for all but the 
last answer alternative (6.19) to find a higher level of agreement among molecular biologists. Result cells: 
the numbers behind the characters show percentage of yes answers among the respective group (M, E), the 
following fractions indicate strength (0 – 1) and significance (0 – 1) of association. Results marked ns were 
not significant (>10% or .100). Bold results indicate high significance (< 5% or .050), italic results show 
associations in the reverse direction to that predicted. 
 

4.4. Results for Hypothesis Two 

Hypothesis two predicts that evolutionary biologists will emphasize Gene P and effects 

on the phenotype, whilst developmental biologists emphasize Gene D and contextual 

effects on gene expression. Consequently, we also expected stronger support for the 

informational conception of the gene from evolutionists. 

 

This hypothesis predicts that the developmental group will differ from the evolutionary 

group in a fairly similar way to the molecular group. We therefore predicted a similar 

pattern of responses for these groups on the free-choice task on Section B of the 

questionnaire (see Table 2) as we predicted for the molecular and evolutionary groups 

when assessing hypothesis 1 in the last section. The main difference is the addition of a 

preference for some developmental and contextual notions of the gene (1.6., 2.4, 2.5, 2.6, 
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2.7., 5.7) on the part of the developmental group. The predictions and results are given in 

Table 6. 

 

1.3 D50%, E 50%, ns 1.1 E 0%, D 25%, ns 

1.6 D 50%, E 20%, ns 2.1v2 E 0%, D63%, .625/.024 

2.3 D 75%, E 100%, ns 4.1 E 40%, D 75%, ns 

2.4-7 D 75%, E 40%, .350/.207, ns 4.2 E 100%, D 75%, ns 

4.3 D 88%, E 80%, ns 5.4 E 20%, D 0%, ns 

4.6 D 38%, E 40%, ns   

5.2v6 D 88%, E 100%, ns   

5.5v9 D 75%, E 60%, ns 

 

  

5.7 D 38%, E 0%, .433/.118, ns    

 

Table 6: Test of hypothesis 2 with data from the free choice task. The columns on the left show answer 
alternatives for which a higher level of agreement was predicted for the developmental group (D). The table 
on the right shows our expectations for the evolutionary group (E). Results: the numbers behind the 
characters show percentage of yes answers among the respective group (D, E), the following two fractions 
indicate strength (0 – 1) and significance (0 – 1) of association. ‘Ns’ indicates that the result was not 
significant (>10% or .100). Bold results indicate significance (< 5% or .050), italics highlight outcomes 
reverse from the stated prediction. 
 

The results for the free choice task were not consistent with hypothesis two. Rather than 

favoring the phenotype-focused Gene P conception of the gene, the evolutionary group 

tended to reject it when it was offered explicitly (Table 6). So the results from Section B, 

in which we asked direct questions, suggest that biologists with an evolutionary focus in 

their research are as exclusively focused on the molecular-level properties of the gene as 

biologists with a developmental research focus, if not more so. But, just as with 

hypothesis one, a different picture emerges from the indirect questions in Section C.  

 

In the light of hypothesis two, we predicted that the developmental and evolutionary 

groups would respond differently to several items in Section C of the questionnaire 

(Table 4). As already noted, hypothesis two predicts that the developmental group will 

differ from the evolutionary group in a similar way to the molecular group. We therefore 
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predicted responses for these groups on the forced-choice task on Section C of the 

questionnaire as we predicted for the molecular and evolutionary groups when assessing 

hypothesis one in the last section. The predictions and results are given in Table 7. 

 

Predicted answers for Developmental group  

6.5 D 33%, E 0%, ns 6.6 D 67%, E 20%, .447/.094, ns 

6.7 D 56%, E 0%, .556/.038 6.9 D 67%, E 0%, .645/.016 

6.10 D 56%, E 0%, .556/.038   

 
Table 7: Test of hypothesis 2 with data from the indirect section. In this table we listed the indirect 
questions (Table 4) for which we expected a higher level of agreement from the developmental group when 
compared to the evolutionary. Result cells: the numbers behind the characters show percentage of yes 
answers among the respective group (D, E), the following fractions indicate strength (0 – 1) and 
significance (0 – 1) of association. Results marked ns were not significant (>10% or .100). Bold results 
indicate high significance (< 5% or .050), italic results show associations in the reverse direction to that 
predicted. 
 

In contrast to the results for the direct questions, and just as we saw with hypothesis one, 

the results for the indirect questions supported hypothesis two (Table 7). The pattern of 

answers to questions 6.5, 6.6 and 6.7 shows the evolutionary group responding more 

strongly to changes in distal function than the developmental group, although the results 

for the first two questions are above the 5% significance level. The results for 6.9 and 

6.10 show a significant association in the predicted direction (the corresponding results 

for hypothesis one showed an association in the predicted direction, but did not achieve a 

5% significance level, which is plausibly because the test lacked power). The contrast 

between the results for direct questions (Section B) and indirect questions (Section C) 

leads to repeat our tentative suggestion from the section on hypothesis one: that the 

evolutionary group has an explicit belief that genes are molecular entities and should be 

defined and investigates at that level whilst deploying in their actual thinking a Gene-P 

conception that abstracts away from differences at the molecular level and focuses on 

phenotypic effects.  
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4.5. Results for Hypothesis Three 

Hypothesis three predicts that developmental biologists will be less attracted to Moss’s 

Gene-P and to informational conceptions of the gene than (other) molecular biologists. 

We expected developmental biologists to be more attracted to conceptions that emphasize 

contingency and context dependency, such as Moss’s Gene-D and various 

developmentally-oriented definitions of the gene which we quoted from the literature on 

evolutionary developmental biology. 

 

In the light of this hypothesis we made the following predictions for the free-choice task 

on Section B of the questionnaire (see Table 2): 

• Question 1. The molecular group will be more likely to accept the Gene-P option 

(1.1) than the developmental group, who will be more likely to accept the Gene-D 

option (1.6).  

• Question 2. The developmental group will be more likely to accept some of the 

more or less radical epigenetic options (2.4 – 2.7). The molecular group will be 

more likely to accept the Gene-P variants 2.1 and 2.2. 

• Question 4. The molecular group will be more likely to accept the Gene-P 

alternative 4.1, while the developmental group will be more likely to accept 4.3 

and 4.6, answers that emphasize the investigation of genes at the molecular level, 

and also 4.4, an option highlighting the idea of developmental modularity. 

• Question 5. Molecular biologists will be more likely to accept the gene-P option 

5.4, while the developmental group should like the Gene-D version given by 5.5. 

Results are shown in Table 8. 

 

The results were broadly supportive of the hypothesis. Alternatives 1.6 and 5.5, which we 

saw as embodying the Gene-D conception, discriminated strongly between the two 

groups, with the association for 5.5 being significant at the 5% level. Question 5.5 could 

also be regarded as testing for interest in the context sensitivity of gene expression. 

Alternatives 1.1 and 2.1, which we saw as embodying the Gene-P conception, also 

discriminated strongly between the two groups, and the latter association was significant 
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at the 5% level. The stronger preference for the Gene-D conceptualization in the 

molecular group is particularly striking, since according to hypotheses one and two both 

these groups should show some tendency to prefer a Gene-D to a Gene-P 

conceptualization, at least as compared to the evolutionary group. 

 

1.6 D 50%, M 21%, ns 1.1 M 43%, D 14%, ns  

2.4-7 D 60%, M 53%, ns 2.1 M 41%, D 0%, .353/.041 

4.3 D 88%, M 75%, ns 2.2 M 72%, E 60%, ns 

4.4v6 D 60%, M 55%, ns 4.1 M 73%, D 60%, ns 

5.5 D 40%, M 13%, .282/.048  

 

5.4 M 20%, D 0%, ns  

 
Table 8: Test of hypothesis 3 with data from the free choice task. Left-hand column shows answer 
alternatives for which we predicted agreement by the developmental group (D), right-hand column those 
for which we predicted agreement by the molecular group (M). Result cells: the numbers behind the 
characters show percentage of yes answers among the respective group (D, M), the following fractions 
indicate strength (from 0 to 1) and significance (0 – 1) of association. Results marked ns were not 
significant (>10% or .100). Bold results indicate high significance (< 5% or .050), italic results show 
associations in the reverse direction to that predicted. 
 

We used the results on the forced choice task for the same five questions from Section B 

as a further test of hypothesis three. The purpose of the forced choice task was to reveal 

differences hidden by the free choice task, in which minimally acceptable options may 

not be distinguished from highly preferred options. Just as with the free choice task we 

predicted the answers that we expected from each group for each question. Because this 

was a forced choice task in which each subject close only one option, where more than 

one answer option seemed equally likely to be preferred by a particular group, we coded 

a strong disjunction of these answers as a single answer. Table 9 shows the result of our 

grouping and recoding exercise for the forced choice answers according to hypothesis 

three. 

 

As expected, the forced choice task discriminates more strongly between the two groups 

under scrutiny. Only Question 4 did not discriminate, the rest showing strong  
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(from 0.430 to 0.630) and highly significance (1%) association.  

 

Predictions for Developmental Group  Predictions for Molecular Group 

1.3, 1.4, 1.6  1.1, 1.5  

2.4, 2.5, 2.6, 2.7, 2.8  2.1, 2.2, 2.3 

4.3, 4.4, 4.6  4.1 

5.5, 5.7, 5.9  5.2, 5.3, 5.4, 5.6 

 

Table 9: Grouped force-choice prediction for Hypothesis 3. The answer alternatives in each cell were 
combined by strong disjunction on the grounds of their expected appeal to one group. 
 

In their responses to Question 1, the molecular group showed a preference for the Gene-P 

and informational gene options (1.1 v 1.5), while the developmental group was 

distributed between the classical molecular gene options and the Gene-D option (1.3 v 

1.4 v1.6). Results are shown in Figure 3. 
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Figure 3: Results for Hypothesis 3 for the forced choice task on Section B, Question 1. Association 0.430, 
significance 0.011. 
 

In response to Question 2, the molecular group preferred Gene-P conceptions and the 

classical molecular conception (2.1 v 2.2 v 2.3), whereas more than half of the 
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developmental group voted for one of the developmental or epigenetic alternatives (2.4 v 

2.6 v 2.7 v 2.8), Results are shown in Figure 4. 
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Figure 4: Results for Hypothesis 3 for the forced choice task on Section B, Question 2. Association 0.460, 
significance 0.006. 
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Figure 5: Results for Hypothesis 3 for the forced choice task on Section B, Question 5. Association 0.630, 
significance 0.000 
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For Question Five we predicted that the developmental group would be more likely to 

choose the alternatives that emphasize the role of genes in a larger developmental context 

(5.5 v 5.7 v 5.9), while the molecular group would be more likely to choose Gene-P and 

informational conceptions or alternatives reflecting the classical molecular conception 

(5.3 v 5.2 v 5.4 v 5.6). This pattern was in fact observed (Figure 5), and closer 

examination revealed that none of molecular group chose any of the developmental 

alternatives. 

 

The indirect questions in Section C of the questionnaire (see Table 4) provided another 

test of hypothesis three. We did not expect as great a difference between the molecular 

and developmental groups as between either of these and the evolutionary group. 

Nevertheless, since hypothesis three attributes to the molecular group a tendency to be 

more focused on the intrinsic similarity between DNA sequences themselves and less 

focused on similarities or differences in context, we expected the molecular group to be 

more likely to accept as two copies of one gene the pairs of sequences described in 

questions 6.5, 6.6 and 6.7., questions that introduce differences at progressively more 

distant stages of gene expression. Questions 6.18 and 6.20 also tested for whether 

sequence similarity would overwhelm other considerations. For question 6.19, however, 

although we had elsewhere predicted that molecular and developmental groups would be 

less attracted to Gene-P conceptions that evolutionary biologists, we predicted that the 

developmental group would be most unlikely to accept a judgment based on this 

conception, since it abstracts away from precisely the issues on which their research is 

focused. We therefore predicted that they would be less likely to accept the case 

described in 6.19 than the molecular group. The associations we actually observed for 

these various questions were all in the directions predicted, but only two of them were 

significant (Table 10). 
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Answer Prediction for Molecular Group 

6.5 M 66%, D 27%, .319/ .021 6.18 M 20%, D 0%, ns 

6.6 M 69%, D 54%, ns 6.19 M 16%, D 0%, ns 

6.7 M 61%, D 46%, ns 6.20 M 46%, D 10%, .313/ .024 

 

Table 10: Test of hypothesis 3 with data from the indirect section. In this table we listed the indirect 
questions (Table 4) for which we expected a higher level of agreement from the molecular biologists when 
compared to the developmental group. Result cells: the numbers behind the characters show percentage of 
yes answers among the respective group (M, D), the following fractions indicate strength (0 – 1) and 
significance (0 – 1) of association. Results marked ns were not significant (>10% or .100). Bold results 
indicate high significance (< 5% or .050), italic results show associations in the reverse direction to that 
predicted. 
 

5. Conclusions and Prospects for Future Research 

The results reported here provide tentative support for our three hypotheses. Hypothesis 

three seems most strongly supported. Biologists whose research focus is in 

developmental biology seem to conceptualize genes in a distinctive way, a way that 

appears to reflect their use of the gene concept to investigate the complex, developmental 

pathways through which genes are expressed. Hypotheses one and two, which suggest, in 

broad terms, that biologists whose research focus is in evolutionary biology conceptualize 

genes primarily via their effects on phenotypes, are supported in some tests but not 

others. The fact that the hypotheses are supported when indirect questions are used, but 

not when direct questions are used, leads us to advance an intriguing further hypothesis. 

We propose that these biologists may have an explicit belief that genes are molecular 

entities and should be defined and investigated at that level, whilst deploying in their 

actual thinking about genetic problems a conception of the gene that abstracts away from 

differences at the molecular level and focuses on phenotypic effects. We hope to test this 

hypothesis in future research. 

 

Our general results for the whole subject population are consistent with Fogle’s 

suggestion that the classical molecular gene concept continues to function as something 

like a stereotype for biologists, despite the many cases in which that conception does not 

give a principled answer to the question of whether a particular sequence is a gene (Fogle 
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2001). Given the extensive psychological literature on this kind of cognitive structure and 

on the reasoning processes it supports, this also suggests productive lines of future 

inquiry. 

 

Given the small number of subjects in this study and the simple criteria used to group 

them for statistical analysis, we are very encouraged by the ability of the study to discern 

differences between the groups. In ongoing research in the United States we are 

attempting to increase the number of subjects by an order of magnitude, and to use more 

sensitive measures to define our groups, including the techniques subjects utilized in their 

research, their individual ranking of journals and their attendance at professional 

meetings.  

 

Our results clearly indicate the importance of distinguishing between explicit and implicit 

ideas about the gene. In our ongoing research we ask subjects to engage in tasks such as 

dividing a limited research budget between a number of proposed research projects or 

indicating their confidence that a result will extrapolate from one model system to 

another. These tasks have the added advantage of providing numerical rather than 

categorical date, allowing a wider range of statistical procedures to be employed. 
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i In a recent essay, one of us has argued, contra Rheinberger, that his insights are consistent with the view 
that scientific concepts stand in a referential relationship to states of affairs outside the discourses in which 
they are employed  (Griffiths 2002). 
ii References to different ‘gene concepts’ (e.g. evolutionary, Mendelian, classical molecular) have the same 
problematic status as the ubiquitous references to different ‘species concepts’ in biology. As far as possible 
we will write, instead, of various different ‘conceptions’ of the gene, to avoid vexed issues about ‘counting 
concepts’ along axes of conceptual difference in time, or, as here, between fields.  
iii A fully annotated version of the questionnaire indicating these sources is available in the documents 
linked to this paper on the Philosophy of Science Association preprint server (http://philsci-
archive.pitt.edu). 
iv These definitions are available in the documents linked to this paper on the Philosophy of Science 
Association preprint server. (http://philsci-archive.pitt.edu). 


