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Abstract

Saunders has recently claimed that “identical quantum particles”
with an anti-symmetric state (fermions) are weakly discernible objects,
just like irreflexively related ordinary objects in situations with perfect
symmetry (Black’s spheres, for example). Weakly discernible objects
have all their qualitative properties in common but nevertheless dif-
fer from each other by virtue of (a generalized version of) Leibniz’s
principle, since they stand in relations an entity cannot have to it-
self. This notion of weak discernibility has been criticized as question
begging, but we defend and accept it for classical cases likes Black’s
spheres. We argue, however, that the quantum mechanical case is
different. Here the application of the notion of weak discernibility in-
deed is question begging and in conflict with standard interpretational
ideas. We conclude that the introduction of the conceptual resource
of weak discernibility does not change the interpretational status quo
in quantum mechanics.

1 Introduction

Both in ordinary life and in science we are accustomed to thinking in terms
of objects, i.e. individuals, which differ from each other and can bear their
own names. A possible point of view is that the individuality involved here
should be seen as primitive, or as grounded in a metaphysical principle like



haecceity or in an underlying Lockean substance. In this paper, however, we
take an empiricist stance. We are interested in a notion of individuality that
can be grounded empirically: we take as our starting point that at least in
science entities should differ in one or more of their qualitative features, as
described by the relevant scientific theory, in order to be treated as individu-
als. This is in the spirit of Leibniz’s principle of the identity of indiscernibles
(PII). Classical physics is in accordance with this empiricist motif: if PII is
formulated in a sufficiently general way (including the notion of weak dis-
cernibility, needed to deal with symmetrical configurations; see below for a
definition of weak discernibility), it is satisfied by the objects recognized by
classical physical theory [4, Ch. 2].

In quantum theory the notion of individuality is notoriously problematic.
It has recently been claimed by Saunders [10, 11], however, that quantum
particles with an antisymmetric wavefunction (fermions) obey PII in the same
way as classical objects in symmetrical configurations: according to Saunders,
fermions are weakly discernible individuals. We oppose this conclusion. As
we shall argue, the situation in quantum mechanics is essentially different
from classical physics. In a nutshell, our argument is that in the case of
fermion systems the assumption that there are several objects is dubious to
begin with, and that the introduction of the notion of weak discernibility
does not help. PII can certainly be maintained in quantum theory, but the
ontology that fits the Principle is field-theoretic rather than one of many
individual particles.

2 Weakly Discernible Objects

If we want to give Leibniz’s principle a fundamental role we must evidently
consider the putative counterexamples that have been proposed to it. These
concern cases in which there appear to be indiscernible but nevertheless dif-
ferent individuals. Think of Max Black’s spheres [2], of identical chemical
composition and two miles apart in a relational space (& la Leibniz, not in
Newtonian absolute space where absolute positions could label the spheres);
Kant’s enantiomorphic hands; or, for a mathematical example, the points in
the Euclidean plane. In all these cases the objects have all their qualitative
features in common: both spheres in Black’s example have equal material
properties and both are at two miles from a sphere; similarly, Kant’s hands
have the same internal geometric properties and both are mirror images of



another hand; and so on. So these cases appear to demonstrate that we
ordinarily employ concepts of object and individuality that are independent
of the presence of distinguishing qualitative differences—in violation of PII.

As Hawley points out [6], defenders of PII can respond to such examples
in a variety of ways. First, they may query whether the situations figuring in
the examples are possible at all. If they are willing to concede this possibility,
they can dispute that these situations are best described in terms of distinct
but indiscernible individuals: they may either argue that if a correct analysis
of discernibility is employed the objects are discernible after all, or they may
claim that there were no distinct objects to start with.

In the just-mentioned examples the best response—so we shall argue—
for friends of PII is to say that these are possible situations in which more
than one objects are present; and that these objects are not indiscernible.
Let us pay attention to the details of the discernibility issue first. We follow
Saunders [10, 11], who takes his clue from Quine [8], in noting that in cases
like those in the examples irreflerive qualitative relations are instantiated:
relations entities cannot have to themselves. This irreflexivity is the key to
proving that (a generalized version of) PII is satisfied after all: if an entity
stands in a relation that it cannot have to itself, there must be at least two
entities.

To see in more detail how this works, let us formalize a bit. In first-order
formal languages we can define identity (=) as follows:

s=1t= P(s) < P(t), (1)

where P denotes an arbitrary predicate in the language, and the right-hand
side of the definition stipulates that s and t can replace each other, salva
veritate, in any P. This definition captures PII, and our empiricist notion
of individuality, if the language is that of a physical theory, in which the
predicates refer to physical properties and relations (and not to haecceities).

There can now be various kinds of discernibility ([11]). Two objects are
absolutely discernible if there is a one-place predicate that applies to only one
of them; relatively discernible if there is a two-place predicate that applies
to them in only one order; and weakly discernible if an irreflexive two-place
predicate relates them. The latter possibility is relevant to our examples.
If there is an irreflexive but symmetric two-place predicate P(.,.) that is
satisfied by s and ¢, the definition (1) requires that if s and ¢ are to be



identical, we must have:
Vz(P(s,x) < P(t,x)). (2)

But this is false: in any valuation in which P(s,t) is true, P(t,t) cannot
be satisfied by virtue of the fact that P is irreflexive. It follows therefore
that PII is satisfied by any two individual objects that stand in an irreflexive
qualitative relation. What is needed to dispel the impression that PII is in
trouble in these cases is to apply the principle not only to monadic predicates,
but to all qualitative n-ary predicates (and thus to all available qualitative
relations).

3 Begging the Question?

The just-sketched proof used the notion of a valuation. A valuation results
from letting the names and bound variables in the formulas of the language
refer to specific elements of the intended domain. In order to construct a
valuation, we therefore have to name and distinguish the things we are talking
about. However, this is an impossible task in the symmetrical configurations
of the examples. Because of the symmetry we cannot uniquely refer and
assign names on the basis of the given structure of properties and relations.
It is impossible, for example, to single out any specific point in the Euclidean
plane on the basis of the properties of the plane and its points, even if we
include all relational properties. This impossibility may seem to take the edge
off the above argument for the validity of PII; and therefore to jeopardize the
Leibniz-style individuality of our entities after all (because individuals must
be able to bear names, whereas no names can be given here on the basis of
qualitative differences) [7].

But in this form the difficulty is only apparent. In order for the notions
of number and names to apply to the members of a domain it is sufficient
that a function exists that maps the domain one-to-one onto a set of labels,
e.g. the set {1,2,...,n} [13, p. 457]; it is not needed that we can actually
construct such a labelling. In the examples we have been considering it was
given in the description of the cases (two spheres, two hands, many points)
that the required mappings exist—and this was all we needed.

Although the name-giving problem is thus dissolved, its discussion has
highlighted an important issue: in the proof we needed that the domains



possessed a structure underwriting the existence of bijections to sets of la-
bels (e.g., sets of one or more natural numbers). But the existence of such a
structure is obviously far from evident in the context of a discussion of the
applicability of PII. As we have already seen, one of the possible responses
to putative counterexamples to PII is to argue that there is no multitude
of systems at all: that there is rather one undivided physical system. This
response does not need any appeal to weak discernibility, and moreover it
is ontologically parsimonious—in a way it is the simplest option. In other
words, we must have good reasons to assume the existence of separate com-
ponents in the first place. But how can we have such reasons without getting
into a circular argument? Our starting point was the empiricist desire to
ground individuality in empirically accessible qualitative features, by means
of PII; but what is the use of this exercise if we must already know about the
existence of individual objects before we can even apply PII? It is therefore
urgent to see how we may justify the presence of an “object structure” in
an empiricist way, and how it may be possible to apply the notion of weak
discernibility without begging the question of individuality.

4 Relata and Relations

If it were indeed necessary to make sure that the domains we are discussing
consist of distinct objects prior to any application of PII, this would be
self-defeating for the empiricist enterprise. Why should we engage in any
Leibnizean arguments if we already know that there are more than one ob-
jects? More importantly, it seems clear that prior to using PII we can base
our judgement that there are different objects only on non-empirical grounds,
involving primitive thisness, haecceity, substance or some similar metaphys-
ical principle. As French and Krause comment in their discussion of weak
discernibility [4, pp. 170-171]:

“Doesn’t the appeal to irreflexive relations in order to ground the
individuality of the objects which bear such relations involve a
circularity? In other words, the worry is that in order to appeal
to such relations, one has already had to individuate the particles
which are so related and the numerical diversity of the particles
has been presupposed by the relation which hence cannot account
for it”.



But there is a way out here, offered by the structuralist proposal ac-
cording to which the numerical diversity of the relata need not be prior to
the existence of the relations ([4, p. 172]). According to this structuralist ap-
proach relata can be determined by relations, as a kind of nodes in a relational
network. This does not necessarily mean that the relations are ontologically
prior to the relata. Relata and relations may be on a par, ontologically speak-
ing: the relata may have no other properties than specified by the relations,
whereas the relations can only exist if they connect relata [3]. This position
fits the empiricist outlook of PII very well if the relations are understood as
the qualitative relations occurring in scientific theories. From an empiricist
point of view, adopting the structuralist position appears the natural way to
defuse the circularity threat.

So in our earlier examples we need not assume that there is a division
of labor between “objecthood providers” and the relations that are defined
on the domain. We can accept the relational structure as the only access
to Leibnizean objecthood, i.e. objecthood with a qualitative grounding. The
relations in our two physical examples—being at a spatial distance from each
other, being each other’s mirror image—indeed give us information about the
presence of objects. These relations define relata that can be displaced with
respect to each other, or that can be reflected and whose orientations can be
compared. Such relata are actual things, objects, that differ from each other
because of their mutual distance or their mirror-image relation, respectively.
If irreflexive relations of this type apply, there must be more than one objects
as relata.

As we shall illustrate in a moment, however, the mere possibility of speak-
ing about a domain in terms of irreflexive relations is not enough to ensure
such an objecthood structure. It is sometimes usual to employ properties
or relations talk even in situations in which there are no different objects
at all—in such cases considerations about the irreflexivity of the relations
obviously cannot do anything to show that the “objects” are in fact weakly
discernible. This means that even within the context of a structuralist out-
look it has to be decided whether the concept of object is applicable in the
first place, before arguments about weak discernibility based on irreflexivity
of relations can make sense.



5 Relations without Objects

To see the possibility of relations without actual relata, consider the example
of Euros in a bank account (not coins in a piggy bank, but transferable
money in a real bank account). Imagine a situation in which by virtue
of some financial regulation the Euros in a particular account can only be
transferred to different one-Euro accounts. So, in a complete money transfer
an account with five Euros, say, would be emptied and five different one-
Euro accounts would result. In this case the Furos in the original account
stand in an irreflexive relation to each other, namely “only transferable to
different accounts”. But this does not make them into different physical
objects. We could try to exploit the irreflexive relations for the purpose
of distinguishing individual Euros; e.g., we may attempt to label the Euros
by means of the accounts they will end up in. However, looking at the
situation after the money transfer clearly does not achieve anything for the
purpose of distinguishing between the Euros in the account they are actually
in, before the transfer. The essential point is that the relations here do
not relate occurrent, actual, physical features of the situation; they do not
connect actual physical relata. Rather, the relational structure is defined
with respect to what would result if the actual situation were changed. There
is of course no doubt that five different one-Euro accounts (with different
account numbers) are five individuals; but this does not mean that it makes
sense to consider the five Euros as individual objects when they are still in
one common account. On the contrary, the case of more than one money
units in one bank account is the standard example to illustrate absence of
individuality; it is a case in which only the account itself, with the total
amount of money in it, can be treated as possessing individuality [9, 12].
Although we are accustomed to using relations and things talk here, there
is nothing in the actual physical situation that directly corresponds to this.
Speaking of several Euros in a bank account is a facon de parler. According
to our best understanding of the situation, statements like “all Euros in this
account have the same value—namely one Euro” are not about individual
things.

Thus, we have found an important silent presupposition in the argument
for PII-based individuality in the presence of irreflexive relations. Such rela-
tions can only be trusted to be significant for the individuality issue if they
are of the sort to connect actual relata.



6 Actuality

Whether relations occurring in scientific theories connect and determine ac-
tual relata is decided by their meaning, reflected by the role they play within
the theory in question. In cases in classical physics without particular sym-
metries, a feature of such relations is that they can be used to distinguish
and name the different relata. For example, in an arbitrary configuration of
classical particles the mutual distances will unambiguously characterize each
individual particle. Changing the configuration so that it becomes more
symmetrical will change the values of the distances, but not the actuality
of the objects: the description of the situation furnished by classical the-
ories will not change as far as the actuality of the particles is concerned,
when we approach a Blackean spheres-type configuration. The discernibility
in asymmetrical situations thus provides us with a test for the actuality in
symmetrical situations: we are justified in assuming the existence of differ-
ent actual entities if breaking of the symmetry does not involve a change in
the type of description given, and results in a situation with distinguishable
objects (this strategy resembles the one followed by Adams, who proposes to
compare Black’s spheres with spheres of which one has a very slight chemical
impurity [1, p. 17]). This breaking of the symmetry is analogous to the in-
troduction of a coordinates origin in describing a figure in plane geometry. If
a mapping to natural numbers exists in the presence of such a standard, our
theoretical accounts will still be able to work with such a mapping when the
reference point has been removed; what changes is merely the constructibility
of the mapping. The following mathematical case provides another example.
The numbers 1 and —1 share all their structural properties in the structure
< Z,+ > (the relational structure of integers with addition, without indi-
vidual names for the numbers), just like the spheres in our earlier example.
Nevertheless, they are not identical. An indication of this is that the intro-
duction of a standard, e.g. for being positive, makes it possible to distinguish
and name these two numbers. This possibility of naming disappears when we
forget about the standard—however, this does not collapse the two numbers
into one. They still are the kind of entities that have, e.g., an actual nu-
merical distance to other entities in the structure—and to each other!-—even
though the symmetry makes it impossible to assign names ([4, p. 265]).
Indeed, why do we feel so sure that there are two Blackean spheres and
two Kantian hands? It seems obvious that this is because our mind’s eye
sees Black’s spheres at different distances, and Kant’s hands with different



orientations, before us; when we break the symmetry of the configurations
in these cases by introducing a point of reference, a gauge or standard, the
relations make it possible to distinguish the entities with respect to this
standard. Thus we can name Black’s spheres via their unequal distances to
a reference point and in Kant’s universe we may imagine a reference hand
conventionally called “left”. Another example, relevant for our subsequent
discussion of quantum objects, is furnished by two oppositely directed ar-
rows in an otherwise empty Leibnizean world. If we fix a standard of being
“up”, we break the symmetry and the individual arrows become absolutely
discernible as up or down.

These cases are to be contrasted with the case of the Euros in a bank
account. Even though that situation is not symmetrical (the Euros have
different destinations) this cannot be used to distinguish actual Euros in the
account, according to our best available way of theoretically describing and
explaining the situation.

7 The Quantum Case

A notorious interpretational problem of quantum theory concerns so-called
identical particles. These are of the same kind, i.e. “they” possess the same
intrinsic properties (like mass, charge, spin); e.g., electrons, protons or neu-
trons. It is a principle of quantum mechanics that the state of a collection
of such particles is completely symmetric (in the case of bosons) or anti-
symmetric (fermions). This symmetrization postulate implies that all one-
particle states occur symmetrically in the total state of a collection of identi-
cal particles. It follows that any property or relation that can be attributed,
on the basis of the total quantum state, to any one particle is attributable
to all others as well.

The standard response is to say that identical quantum particles “lack
individuality”. This is an awkward way of saying that there are no different
particles at all: although there is traditional talk of “many of them”, this
should be understood in the same way as talk about many Euros in a bank
account. In principle it is better, according to this received view, to renounce
talk that suggests the existence of individual particles and to reconceptualize
the situation in terms of the excited states of a field (analogous to thinking
of the Euros in an account as one sum of money).

However, the situation is also reminiscent of the symmetric configura-



tions of classical objects described in the previous section. As we have seen
there, symmetry is not at all decisive for proving the absence of Leibniz-style
individuality: particles may well be weakly discernible individuals. Could
it not be that in the quantum case there are irreflexive physical relations
between particles that guarantee their individuality in the same way as they
did for Black’s spheres, Kant’s hands and Euclid’s points? This is the po-
sition adopted by Saunders, at least for the case of fermions [11]. Indeed,
the anti-symmetry of the state of many-fermions systems seems to imply
the existence of irreflexive relations between components of the total sys-
tem: intuitively speaking, the fermions in any pair stand in the relation of
“occupying different one-particle states”, even though the particles do not
receive individually different quantum mechanical state descriptions. It is
true (and noted by Saunders) that for bosons with their symmetrical states
this manoeuvre is not available, so that collections of identical bosons are
still best understood as one whole. But the conclusion that standard quan-
tum mechanics entails that fermions (these are the ordinary matter particles;
bosons are quanta of interaction fields) are ordinary individuals—although
only weakly discernible—is surprising and highly significant by itself.

The technical details of the argument can be illustrated by the example
of two fermions in the singlet state. If |T) and ||) stand for states with spins
directed upwards and downwards in a particular direction, respectively, the

anti-symmetrization principle requires that a typical two-fermion state looks
like

1
E{ITM D2 =Dl 12}, (3)

in which the subscripts 1 and 2 refer to the one-particle state-spaces of which
the total state-space (a Hilbert space) is the tensor product. These two one-
particle state-spaces are the available candidates for the description of single
particles and their labels are candidate names for the individual fermions
(for the moment, we are assuming hypothetically that the notion of different
individuals makes sense). Now, the anti-symmetry of the total state implies
that the state restricted to state-space 1 is the same as the restricted state
defined in state-space 2. (The “partial traces” are ${|T)(1| + ||){l|} in both
cases.) The total spin has the definite value 0 in state (3); that is, state (3) is
an eigenstate of the operator S; ® [ + I ® S5. Therefore, it seems natural to
say that the two spins are oppositely directed. On the other hand, we cannot
assign a definite spin direction to the single particles because the up and
down states occur symmetrically in each of the states in the Hilbert spaces
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1 and 2, respectively.

This situation appears essentially the same as the one of the two arrows.
In that case, it was not possible to designate one of the arrows as up and
the other as down—but nevertheless there had to be two individual arrows
in view of the oppositeness of their directions. Similarly, in the fermion case
with total spin zero we apparently are dealing with two individual quantum
objects with opposite spins.

8 Quantum Individuals?

On closer examination the similarity starts to fade away, however. One
should already become wary by the observation that the irreflexive relations
in the quantum case have a theoretical representation that is quite different
from that of their classical counterparts. There the relations could be formal-
ized by ordinary predicates that can be expressed as functions of occurrent
properties of the individual objects (like “up” and “down” with respect to
a conventionally chosen standard, or +1 and —1), with the correlation ex-
pressed by the fact that the sum of these two quantities has a fixed value.
By contrast, in quantum theory the correlation is expressed in the following
way: the state of the total system is an eigenstate of a linear operator in
the total system’s Hilbert space. Concomitant with this formal difference
is an essential difference in interpretation: according to standard interpre-
tational ideas!, quantum states should be interpreted in terms of possible
measurement results and their probabilities, rather than in terms of occur-
rent properties. In the case at hand, a system in an eigenstate of the total
spin operator with eigenvalue 0, this means that a measurement of the to-
tal spin will with probability 1 have the outcome 0. In this special case, in
which the outcome is certain (probability 1), it is—according to the same
standard interpretational ideas—harmless to assume that the total system
possesses the property “total spin 0” also independently of measurement;
but even so, this total spin cannot be understood as being composed of def-
inite individual spin values of the two subsystems. Although it is of course

! Certainly, there are also interpretations that interpret the quantum state in terms of
occurrent physical properties, even if no measurements are performed. Examples are the
Bohm interpretation and modal interpretations. These interpretations treat the fermions
case in terms of component systems with different qualitative properties, so that they do
not need the notion of weak discernibility.

11



possible to perform individual spin measurements on the subsystems (whose
possible outcomes and corresponding probabilities are predictable from the
total quantum state), there are no corresponding occurrent spin properties
in the subsystems, independently of measurement. In the singlet state (3)
the prediction of quantum mechanics is that individual spin measurements
will with certainty yield opposite results, summing up to 0; but on the pain
of running into paradoxes and no-go theorems it cannot be maintained that
these results reveal oppositely directed spins that were already there before
the measurements. This is an example of the notorious “holism” of quantum
mechanics: definite properties of a composite system do not supervene on
properties of its parts.

This suggests that the correct analogue to the quantum case is not pro-
vided by two oppositely directed classical arrows, but rather by a two-Euro
account that can be transformed (upon “measurement”, i.e. the intervention
brought about by a money transfer) into two distinct one-Euro-accounts.

To investigate further whether or not the quantum relations connect ac-
tual physical systems, we can copy the strategy followed in the classical case,
namely breaking the symmetry and seeing whether in the resulting situa-
tion the quantum relations can serve as name-givers. However, this cannot
work as long as we stay within a many-fermions system: quantum mechan-
ics forbids fermion systems that are not in an anti-symmetric state—it is
a matter of lawlike principle that the only relations fermions can possess
with respect to each other are perfectly symmetrical. This is a significant
difference from the symmetrical classical cases, where the symmetry was con-
tingent and where, e.g., the theory allowed evolutions from symmetrical to
asymmetrical configurations. In quantum mechanics the mutual relations
between fermions cannot serve to distinguish individual component systems
as a matter of principle. The theory does not allow any asymmetrical situa-
tions with which to approach the symmetrical situation, and our earlier test
fails.

It is true that this does not prove that there are no individual fermions—
compare with the situation in a hypothetical world in which laws stipulate
that classical spheres can only occur in symmetric configurations. In such a
world we could still have good reasons to think in terms of individual spheres,
because our theories could allow for an external object, serving as a point of
reference that makes the spheres discernible. Our next attempt is therefore
to break the symmetry in the fermion case by the introduction of a standard
that is external to the fermion system itself. Quantum mechanics does not
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require symmetry of the total state of a fermion system plus something else,
so with an external standard in hand we may hope to be able to distinguish
individual fermions. This would support the idea that the quantum relations
are of the kind that connect particles; it would provide evidence that it makes
sense to speak about actual objects at all.

To see the inevitability of a negative outcome of any such test, consider
an arbitrary system of identical quantum particles to which a gauge system
has been added without any disturbance of the original system (i.e., the total
state is the product of the original symmetrical or anti-symmetrical identical
particles state and the state of the gauge system). Let the new total state
be denoted by |¥). Any quantum relation in this state between the gauge
system ¢ and one of the identical particles, described in subspace 7, say, has
the form (V|A(g,7)|¥). Here A(g,j) is a hermitian operator working in the
state-spaces of the gauge system ¢ and identical particle 7. We can now use
the (anti)-symmetry of the original identical particles state to show that the
gauge system stands in exactly the same relations to all identical particles.
The (anti)-symmetry entails that P;;|V) = £|¥), where P;; stands for the
operator that permutes identical particle indices ¢ and j. Now,

(V[A(g,7)|¥) = (P ¥|A(g, )| Py ¥) =
(WP Alg, j) Pyl ) = (U|A(g,1)|¥).

In other words, any quantum relation the gauge system has to j, it also has
to i, for arbitrary values of ¢+ and j. That means that these quantum rela-
tions have no discriminating value in the situation as it actually is, without
measurement interventions and the disturbances caused by them.

It must be stressed that if the situation is changed by a measurement
interaction, distinct individual results will arise?, just as in the case of the
opposite spin results of measurements in the total spin 0 state (3). But we
are here interested in the question of whether a many-fermions system as it
is can be regarded as a collection of weakly discernible individuals; not in
the question of whether such a system can be transformed into a collection
of individuals. With regard to the first question all available evidence points
into one direction: fermions behave like money units in a bank account. It
does not matter what external standard we introduce, it will always possess
the same relations to all (hypothetically present) entities. This leaves us

2The expressions (¥|A(g, j)|¥) are in this case interpreted as expectation values, aver-
ages over very many experimental trials.
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without a good reason to suppose that there are any actual objects compos-
ing many-fermions systems®. This is an essential difference with the earlier
examples of classical weakly discernible objects.

9 Conclusion

There is thus an important contrast between quantum mechanical many-
fermion systems and classical collections of weakly discernible objects. In
the latter case we have reason to think that there are objects that are name-
able in abstracto, although the symmetry of the situation makes it impossi-
ble to actually assign names. Application of the concept of weak discerni-
bility shows that nevertheless there is no conflict with Leibniz’s principle.
The strangeness of the quantum case runs much deeper. There is no sign
within standard quantum mechanics that “identical fermions” are things at
all; there is no ground for the supposition that the quantum relations “be-
tween fermions” connect any actual physical objects. The irreflexivity of
relations does not help us here. Quantum relations have an interpretation
not in terms of what is actual, but rather via what could happen in case of a
measurement. Their irrelevance for the question of whether there are actual
objects is illustrated by the fact that they cannot be used in any name-giving
procedure, not even after the introduction of an external standard. As far as
standard quantum mechanics goes, there are no separate individual fermions
and the question of whether they are weakly discernible does not even arise.
Conventional wisdom, saying that systems of identical quantum particles are
best considered as one whole, like an amount of money in a bank account,
appears to have it right after all.
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