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HOW SET THEORY IMPINGES ON LOGIC

The set-theoretical universe

Reality often cannot be grasped and understood in its unfathomable
richness and mind-blowing complexity. Think only of the trivial case of the shape
of the Earth. Every time the wind blows, a bird flies, a tree drops a leave, every
time it rains, a car moves or we get a haircut, the form of the Earth changes. No
available or conceivable geometry can describe the ever changing form of the
surface of our planet. Sometimes the best we can do is to apply the method of
theoretical science: to pick up a mathematical structure from the set-theoretical
universe, a structure that has some formal similarities with some features of the
real world situation we are interested in, and to use that structure as a model of
that parcel of the world. In the case of the Earth, the structure can be an
Euclidean sphere, or a sphere flattened at the poles, or an ellipsoid, but of course
these structures do not represent the car and the hair, and so are realistic only
up to a point.

The largest part of scientific activity results in data, in contributions to
history (in a broad sense). Only exceptionally does scientific activity result in
abstract schemata, in formulas, in theories. In history there is truth and falsity,
but we are not sure whether it makes sense to apply these same categories to an
abstract theory. We pick up a mathematical structure and construct a theory. We
still have to determine its scope of application or validity, the range of its
realizations. If it is consistent, it will have at least mathematical realizations, and
that we can know a priori. But the range of its real world applications is a matter
for empirical research to ascertain.

Mathematical (or theoretical) science departs very drastically from usual
ways of representing and understanding. In order to realize how utterly different
its method of representation is from ordinary language, it suffices to ponder how
remote the set-theoretical universe (the reservoir of mathematical structures) is

from anything in ordinary language or everyday experience.



Mathematicians create the set-theoretical universe from almost nothing,
from just the empty set, by means of successive (and never ending) iterations of
the operations of the power set and the union. The ordinal numbers include the
natural numbers and extend the possibility of carrying out iterations into the
transfinite. The usual ordinal numbers B such that (for some ordinal o) B = a+1
are the successor ordinals. The limit ordinals are the ordinals that are not
successor ordinals. Von Neumann proved a general recursion theorem, that
allows us to define ordinal functions by transfinite recursion over all the ordinals.
So he was able to give a precise definition of the cumulative hierarchy of sets by

means of the ordinal function Vg :

Vo=
Vor1 = (Vo)
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Assuming the axiom of foundation (i.e. that all sets are in the cumulative
hierarchy), von Neumann defined the set-theoretical universe V as the union of
all the V; (for any ordinal B): V = UscqVp. (Of course, the universe V and the class
Q of all ordinals are proper classe).This definition has become canonical. The set-
theoretical universe is usually figured as an inverted cone, whose (inverted) vertex
is the empty set. This inverted cone proceeds upward by iterations of the
operations of power set and union, indexed by the ordinals. To each ordinal o
corresponds a new slice of sets (the sets with rank a). The union of all those slices
is the set-theoretical universe, V.

All the mathematical structures used in science for modeling the real world
(the natural and real numbers, the Euclidean and non-Euclidean spaces, the
probability spaces, the vector spaces, the Hilbert spaces, the differential
manifolds, the tensor fields, ...), all of them appear somewhere in this inverted
cone. The rank of a structure is the least ordinal  such that the structure is in
the slice Vj of the set-theoretical universe.

Concerning the inverted cone of the set-theoretical universe, we can ask (1)
how wide it is, and (2) how tall it is. Different axioms and hypothesis determine
the width and the depth (or height) of the cone. The Continuum Hypothesis and
Godel’s axiom of constructibility (V = L) concern the width of the cone. If we
accept the Generalized Continuum Hypothesis (GCH), the cone is narrower. If we
reject it, it becomes wider. The axiom of constructibility makes for an especially

narrow cone. On the other hand, large cardinal axioms concern the height of the



cone. The axiom of infinity, the existence of X1, of inaccessible cardinals, of Mahlo
cardinals, of weakly compact cardinals, of measurable cardinals, of Woodin
cardinals, and so on, make for deeper and deeper (or higher and higher) cones.
Set theory is deep and full of open questions. One could be tempted to think that
logic is a harmless pursuit, independent of set-theoretical assumptions, but it is

not.

Second-order logic and set theory

At first sight, second-order logic looks like the most natural framework for
formulating such mathematical theories as natural number arithmetic, Euclidean
geometry, mathematical analysis, and even ZFC set theory, all of which are
categorical in second-order language. Only in second-order logic are all these
theories complete, and only in second-order logic can their corresponding
mathematical structures be characterized uniquely, up to isomorphism.
Unfortunately it is impossible to mine all these alleged riches from second order
logic. There cannot be any complete calculus for deducing all the theorems of a
second-order theory from its axioms. And second-order logic itself is
indeterminate. The set of its valid formulas cannot be known. If it was known, it
would settle all the many open questions of set theory. As a matter of fact, we
need to settle all the open questions of set theory before second-order logic can be
made determinate.

A sentence of pure second-order logic is a closed formula of second-order
logic that does not contain any symbol besides logical constants and quantified
variables. It does not contain any specifically mathematical or set-theoretical
symbol. Corresponding to each open question in set theory there is a sentence (a
closed formula) of pure second-order logic, such that the formula is logically valid

if and only if the set-theoretical question has an affirmative answer.

The axiom of choice

No one really doubts the axioms of ZF. The first doubts were expressed in
relation to the axiom of choice (AC), that, in one of its versions, says that there is

a universal choice function, i.e., a function that assigns to each non-empty set in



the universe one of its members. It is equivalent to many different mathematical
statements, like the well-ordering theorem. The well-ordering theorem was
conjectured by Cantor in 1883. It was a necessary keystone of the Cantorian
construction of set theory. Only if every set can be well ordered can we be sure
that every set has an ordinal as its order type and an aleph as its cardinality.
Cantor tried to prove it, but failed. It was first proved by Zermelo in 1904, but
only under the assumption of the axiom of choice, to which it is equivalent.

The following sentence of pure second-order logic (interpreted on any

universe) says that the universe can be well-ordered.

AW [(Vxyu (Wxy A Wyu = Wxu) A - Wxx A Vxy(Wxy v Wyx v x=y)
A VZ(AxZx = Ju(Zu A VX(Zx = Wux v u=x)))]

This formula is satisfied by a structure iff the universe of the structure can

be well-ordered (i.e., is well-ordered by some relation).

The Continuum Hypothesis

The other conjecture Cantor unsuccessfully tried to prove was the
continuum hypothesis. With the benefit of hindsight, we now know that it could
not be proved, as it is independent of the rest of axioms of set theory.

In order to be able to formulate a formula of pure second-order logic equivalent to
the continuum hypothesis in a compact way, we have to introduce some
abbreviations or definitions. Notice that these abbreviatory devices are fully
dispensable. Any formula formulated with the so defined symbols is just an
abbreviation of another and longer formula of pure second-order logic. Here are

some definitions:

Yis injectable into Z (smaller than or equal to 2): Y=< Z

Y=< Zoa AW [Vxyz (Wxy A Wxz = y=2) A (Wyx A Wzx = y = 2))
AVu (Yu= Ix (Wux A Zx))]



Y is bijectable onto Z (equinumerous with 2): Y~ Z

Y~Zoa YZANZ<Y

Yis smaller than Z: Y=< Z

Y<Zoa Y ZANAY~Z

Z is infinite: Inf(Z) [Dedekind]

Inf(Z) ©ar AY [VX (YXx = Zx) A X (Zx A YY) A Z~ Y]

Y is the power set of X: 9 (X,Y)

@ (XY) ©a AW [Vu (Xu < 3z Wuz) A Vu (Yu < 3z Wzu) A
AVZ (Vu (Zu = Xu) = Fvx (Zx < Wxv)) A Vuv (Vx (Wxu & Wxv) = u=v)]

[Here the first formulas mean Dom(W) = X and Range(W) = Y. W mimics the

membership relation between elements of X and subsets of X (elements of Y)].

The Generalized Continuum Hypothesis (GCH) says that, for any infinite set
A, there are no intermediate cardinalities between |A| and | p(4)]|. It is
equivalent to the validity of the pure second-order logic formula abbreviated

below.

GCH ©a VXYZ (InfX) A p(X,Y) A Z< Y= Z< X)

In ZFC set theory we can neither prove nor disprove GCH, because it is
independent of the rest of the axioms of standard set theory, as proved by Kurt
Godel and Paul Cohen. So, GCH is a logical truth iff the generalized continuum
hypothesis is a set-theoretical truth, but we do not know whether it is (or we want
it to be) true, and so neither we do know whether the corresponding formula is a

logical truth.



Inaccessible cardinals

A cardinal k is inaccessible iff
(1) ¥ is an uncountable cardinal (i.e., k > Xo)

(2) x is a strong limit cardinal (i.e., the power set (or power of 2) construction on
inferiors does not lead us to k: for any cardinal A: A < k implies 2" < «)

(3) x is regular (i.e., K is not the supremum of a set of fewer than « smaller
ordinals).

Regularity of cardinals can also be defined in terms of cofinality. The
cofinality of a, cf(a), is the minimum ordinal B such that there is a function
fi o > B with range(f) cofinal in a. The cofinality of a limit ordinal A, cf(A), is the
smallest cardinal k such that A is the supremum of « smaller cardinals. A
cardinal x is regular iff cf(x) = «.

If ¥ is an inaccessible cardinal, then « is a fixed point of the aleph function:
N¢ = . If ¥ is an inaccessible cardinal, then all of ZFC axioms are true in Vi (i.e.,
V. is a model of ZFC). A consequence of this last fact (via Godel's 2nd
incompleteness theorem) is that the existence of inaccessible cardinals is
unprovable in ZFC. The relative consistency is also unprovable.

In ZFC we can neither prove nor disprove the existence of inaccessible
cardinals. So the assertion that there are inaccessible cardinals adds new
strength to the theory, is an axiom that adds new depth (or height) to the set-
theoretical universe.

There are inaccessible cardinals iff there are sets of inaccessible cardinality.
The predicate Inacc(Z) says that the set Z is of inaccessible cardinality. It can be
defined in pure second order logic (remember that the symbols Inf and p are just

abbreviations):

Inacc(Z) <ar

InfZ AIY(Y<ZAInf(V)AVX (X< Z=3TY(p(X,Y) A Y<2
ANVXYW [X < ZAVu (Xu< Ix Wuwgd A Vu (Yu < Ix Wxu)
AVYyXy=VvV(Vx(Vxo Wyx) > V< Z) = Y<Z

This formula says that Zis infinite and uncountable, that the power set

construction on inferiors does not lead us to Z (strong limit), and that the range of



any function that applies inferiors to the elements of inferiors does not lead us to
Z (what is equivalent to regularity). So, the formula defines a set of inaccessible
cardinality.

JX Inacc(X) is satisfiable iff there is an inaccessible cardinal.

-V X Inacc(X) is a logical truth iff there are no inaccessible cardinals.

Of course, still stronger axioms have been proposed, asserting the existence
of larger and larger cardinals (like Mahlo cardinals, weakly compact cardinals,
measurable cardinals, Woodin cardinals or supercompact cardinals). Each of
these axioms is independent of the previous ones and implies them. But (with
some ingenuity and much space) we could reformulate all these axioms as

sentences of pure second-order logic.

First-order logic and set theory

Everyone agrees that second-order logic is set-theory in disguise, but first-
order logic is often supposed not to be contaminated by any set-theoretical
decisions. Is it so?

The set of logically valid sentences of first-order logic is the set of all
sentences that are satisfied (or true) in all structures (or in all interpretations on
all domains). Depending on which and how many sets there are, there will be
more or less logically valid sentences. The more sets there are, the less formulas
will be satisfied in all of them, i.e. the less formulas are logically valid.

First, a trivial point. Usually we do not admit in our semantics (or model
theory) structures with an empty universe. Because of that, formulas like the
following are logically valid:

dx (Px v - Px) dx x=x VX Zx = dx Zx

If we admit structures with the empty set as universe, then these formulas
become invalid, obviously.

Some first-order formulas (called infinite schemata by Quine) are only

satisfied by infinite structures, like the following:

Vxdy Rxy A Vx -Rxx A Vxyz (Rxy A Ryz = Rx2z)

Vx3dyvVz (Rxy A “Rxx A (Ryz = Rxz)) [the same, in prenex normal form)|



Vxy (fld) = fly) = x=y) A JyVx fig = y

The negations of these formulas, like

~Vx3dyvz (Rxy A “Rxx A (Ryz = Rxz))

are logically true if all sets are finite, but are not valid if there are infinite sets.
Many invalid (assuming infinite sets) first-order formulas become valid

formulas, if we restrict our set-theoretical background to finite sets. The formula

Vxyz (Rxy n Ryz = Rxz) A Vx Rxx A Vxy (Rxy v Ryx v x = y)
= JyvVx (Rxy v x=Yy)

says that if R is a lineal order, then R has a maximum. If there are infinite sets,
then some lineal orders have a maximum and some other lineal orders do not. In
this case, this formula is true in certain structures and is false in other
structures, so that it is not logically true. On the contrary, if there are no infinite
sets, if all sets are finite, then every lineal order has a maximum, and the formula
is logically true.

The first-order formula

Vxyz (Rxy n Ryz = Rxz) A Vx aRxx A Vxy (Rxy v Ryx v x =y
= Ixy (Rxy A x# yYy) A 73z (Rxz A Rzy)

says that if Ris a lineal order, then R is not dense. Of course, no finite ordering is
dense. If there are only finite sets, this formula is logically true. If there are
infinite sets, this formula is not logically valid, as many infinite orderings (like the
rationals or the reals) are dense.

The first-order formula

Vxyz (Rxy n Ryz = Rxz) A Vx 1 Rxx A Vxy (Rxy v Ryx v x = y)
= [Vxy (Sxy = Rxy) A Ixy Sxy = FzVxy (Sxy v Syx = Szx v z = x)]

says that if Ris a lineal order and Sis a non-empty suborder of R, then Shas a

minimum. Its validity would imply that any lineal ordering is a well-ordering.



Indeed, every finite lineal ordering is a well ordering, and so the formula is valid if
all sets are finite. But many infinite lineal orderings (like the integers or the
rational or the reals) are not well-orderings. So, the formula is not valid, if there
are infinite sets.

In contrast with second order validity (which is not well defined), first order
validity is well determined, both if we accept infinite sets or if we keep to finite
ones. But in both different cases we get different notions of validity, different sets
of valid sentences.

If we reject infinite sets, and admit only finite sets, we get many more valid
first-order formulas. As there are less sets, and so less structures, there are more
formulas satisfied by the fewer structures. All the formulas usually considered
valid continue to be valid, but many new ones become valid, like the formulas
previously considered.

We have seen that second-order logic depends massively on set theory, but
also first-order logic has some dependency. In the polemic about logicism in the
first decades of the 20t century, the status of the axiom of infinity played a
crucial role. The polemic closed with the agreement that the axiom of infinity
belonged to set theory and had nothing to do with logic. But, as we have just
seen, it has much to do with logic, even with first-order logic. Whether we accept
it or not in the metatheory as background of our definitions, we get quite different
(extensionally different) first-order logics.

The standard notion of first-order logic is the one that accepts infinite sets
in the set-theoretic background. This logic is semantically complete, as Godel first
proved in 1930. That means that the set of the valid sentences of first-order logic
is recursively enumerable, or, in other words, that it can be generated by the
successive application of the rules of a deductive calculus. This is also equivalent
to say that the calculus allows as to deduce all the consequences of a given set of
premisses. All the proofs (Godel’s, Henkin’s, ...) of the semantic completeness of
first-order logic proceed by the construction of certain infinite sets (sets of terms,
in Henkin’s case), and lose all acceptability if we reject infinite sets. Furthermore,
if we reject infinite sets, we reduce so drastically the amount of available
structures, that the number of valid formulas increases considerably. The set of
valid formulas becomes much larger and complex, so much so that it ceases to be

recursively enumerable, as proved by Trakhtenbrot in 1950. So, first-order logic



is only semantically complete in so far as we countenance infinite sets in the
metatheoretic background.

The other way around, if we replace standard second-order logic (in which
the second order variables vary over the full power set of the universe of the
structure) by Henkin second-order logic (in which variables can vary on any
particular subset of the power set of the universe), then there are many more
structures available than in the standard case, and so there are fewer formulas
satisfied in all of them, i.e., there are fewer valid formulas. The set of valid
formulas becomes so much smaller and less complex, that it even becomes

recursively enumerable.
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