
Implications for a spatially discrete transition amplitude in 
the twin-slit experiment 

 
W.M. Stuckeya) 

Department of Physics, Elizabethtown College, Elizabethtown, PA 17022-2298 
 
 

 
A discrete path integral formalism is used to obtain the transition amplitude 

between ‘sources’ (slits and detector) in the twin-slit experiment of quantum mechanics. 
This method explicates the normally tacit construct of dynamic entities with temporal 
duration. The resulting amplitude is compared to that of standard wave mechanics in 
order to relate ‘source’ dynamics and spatial separation. The implied metric embodies 
non-separability, in stark contrast to the metric of general relativity. Thus, this approach 
may have implications for quantum gravity. 
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I. INTRODUCTION 

According to Feynman1, the twin-slit experiment “has in it the heart of quantum 

mechanics. In reality, it contains the only mystery.” Herein we address this “mystery” by 

taking to heart Pauli’s admonition that2 “in providing a systematic foundation for 

quantum mechanics, one should start more from the composition and separation of 

systems than has until now (with Dirac, e.g.) been the case.” Our result resonates strongly 

with Smolin’s belief3 that what “we are all missing” in the search for quantum gravity 

“involves two things: the foundations of quantum mechanics and the nature of time.” 

We start in section 2 by introducing a discrete path integral formalism whence 

quantum mechanics (QM) follows in the temporally continuous and spatially discrete 

limits while quantum field theory (QFT) follows in the temporally and spatially 

continuous limits. Per this formalism we are able to explicate the manner in which 

relations (as opposed to the wavefunction) may be viewed as fundamental to relata (such 

as particles) as suggested by our previous work on the Relational Blockworld 

interpretation4 of QM. In section 3, we argue that the fully spatiotemporally discrete 

starting point is, in a sense, more fundamental than its QM and QFT limits. Then, by 

relating our particular discrete Lagrangian to its QM counterpart, we expose the notion of 

trans-temporal identity5 employed tacitly in the construct of an action (classical or 

quantum). This may shed light on the “nature of time” as necessary, per Smolin, for 

quantum gravity. In section 4, we obtain the transition amplitude and interaction energy 

for an exchange of momentum between two QM ‘sources’, i.e., a source and detector in 

the parlance of QM. We use this result in section 5 to obtain the QM amplitude for the 

twin-slit experiment.  

When we compare this amplitude to that of standard wave mechanics, we find a 

relationship between spatial distance and ‘source’ dynamics quite unlike that of 

Einstein’s equations of general relativity (GR). In particular, the implied metric isn’t an 

“extreme embodiment of the separability principle6.” To wit, there are no waves, particles 

or fields propagating from source to detector through otherwise empty space during the 

exchange of momentum. Indeed, this notion of spatial distance is not defined between 

points of empty space, but only between ‘sources’. Thus, our rendition of the twin-slit 

experiment necessarily circumvents “a fundamental incompatibility between general 
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relativity and quantum mechanics7,” i.e., QM embodies non-separability via quantum 

entanglement while the GR metric and its underlying differentiable manifold embody 

pervasive spatiotemporal separability. In this sense, QM’s “only mystery” may indeed be 

a foundational issue relevant to quantum gravity per Smolin’s suggestion. 

 

II. DISCRETE PATH INTEGRAL FORMALISM 

In QFT for a scalar field without scattering we have for the transition amplitude8  
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According to Zee, the QM counterpart then obtains in (0+1) dimensions. In the derivation 

of Eq. (1) from QM, the field φ is obtained in the continuum limit of a discrete set of 

oscillators qa distributed in a spatial lattice. Any one of these qi is supposed to replace φ 

in Eq. (1) in order that it reduce to QM. However, each qi is fixed in space so the notion 

that we’re integrating over all possible paths in space (standard treatment) from a source 

to a detector when we compute Z is not ontologically consistent with the fact that we 

integrate over all values of q but not over all values of the index ‘i’ in qi. We rather 

suggest that the method for obtaining QM is to associate sources J(x) with elements in the 

experimental set up (all of which may be deemed “sources” and “detectors” in a 

relational reality) while maintaining a discrete collection qi(t). Thus, we want to obtain a 

QM situation from the spatially discrete counterpart to 
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More generally, we assume that the truly fundamental starting point is both 

spatially and temporally discrete so we start with9 

∫ ∫ 
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where Aij is the discrete matrix counterpart to the differential operator of Eq. (2) while Jm 

and Qn are the discrete vector versions of J(x,t) and qi(t). [More on this in section 3.] The 

solution to Eq. (3) is 
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Since Aij has an inverse, it has a non-zero determinant so it’s composed of N linearly 

independent vectors in its N-dimensional, representational vector space. Thus, any vector 

in this space may be expanded in the set of vectors comprising Aij. Specifically, the vector 

Jm, which will be used to represent elements in the experimental set up, can be expanded 

in the vectors of Aij. In this sense it is clear how relations, represented by Aij, can be 

fundamental to relata, represented by Jm. 

Again, by construction, QM is the spatially discrete but temporally continuous 

limits of Eq. (4) in order that our action models a collection of denumerable particles 

qi(t). [QFT obtains in the temporally and spatially continuous limits, i.e., φ(x,t).] For two 

coupled quantum oscillators (particles) q1(t) and q2(t) each of mass m with potential 

energy given by 
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where k11 = k22 = k and k12 = k21, our Lagrangian is  
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When computing the action, integration by parts yields iii qqq &&& −→2 , so the spatially and 
temporally discrete version of Aij in Eq. (3) would be 
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where again Qn denotes a single vector which must ultimately be divided into q1(t) [first 

half of entries] and q2(t) [second half of entries] in the temporally continuous limit to 

recover QM for Eq. (6). The process of temporal identification Qn  qi(t) may be 

encoded in the blocks along the diagonal of Aij whereby the spatial division between the 

qi(t) would then be encoded in the relevant off-diagonal (interaction) blocks:  
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In the temporally continuous limit when Qn  qi(t) for two particles, Eq. (7) becomes 
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so that 
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which instantiates the relevant spacetime symmetries of our particular QM situation per 

Bohr et al.10. 
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III. THE NATURE OF TIME: COMPOSITION 

We believe the discrete view, as in Eq. (3), is fundamental to that of QM’s 

continuous temporal and discrete spatial distribution because the form of Eq. (3) 

represents a more general view than a “sum over paths,” which is possible when the 

action contains “dynamical bodies” (quantum particles) and takes a form as in Eq. (12). 

That since, without a priori dynamic constraint, it’s possible to construct Aij and Jm such 

that the phase P(Qn) cannot be interpreted as an action with distinct dynamical objects. 

For example, a diagonal Aij has an inverse but does not represent entities with temporal 

duration, i.e., trans-temporal objects; dynamically, it would represent N entities with zero 

spacetime dimension and, therefore, no temporal extent. And, Aij in a form such as that of 

Eq. (7) cannot be diagonalized via mere rotation, since the rows do not represent an 

orthogonal set. Indeed, non-orthogonality (non-zero projection between adjacent rows) is 

precisely what allows for a discrete formulation of acceleration. Thus, the possible 

stationary P(Qn) resulting from its symmetries in Qn is a set which subsumes and exceeds 

stationary P(qi(t)) obtained via extrema of the action, whence the classical equations of 

motion. 

More importantly, it is clear from the discrete formulation that the QM 

description tacitly assumes an a priori process of trans-temporal identification,              

Qn  qi(t), as well as an implicit specification of spatial distribution via a restriction on 

coefficients in P(Qn). Indeed, there is no principle which dictates the construct of  

trans-temporal objects fundamental to the formalism of dynamics in general – these 

objects are “put in by hand.” Thus, the approach herein suggests the need for a 

fundamental principle which would explicate the trans-temporal identity employed tacitly 

in QM, QFT and all dynamical theories. Since this principle restricts the form of both Aij 

and Jm, it is likely a self-consistency relationship between what is meant by 

objects/substances and the spatiotemporal measurements pertaining thereto. Again, this 

resonates strongly with Smolin’s quote in section 1 and we will see this further intimated 

in the analysis of the twin-slit experiment below (section 5). 

 



 6

IV. SIMPLE TWO-SOURCE RESULT 

To obtain the QM amplitude between a single pair of ‘sources’ we need the 

spatially discrete and temporally continuous counterpart to Eq. (4). Therefore, we must 

find Dim(t – t/) in 
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we find 
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so the QM amplitude in this simple case is given by  
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having restored ħ, used D12 = D21 and ignored the “self-interaction” terms J1D11J1 and 

J2D22J2. We can simplify the expression via the Fourier transform 
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so that  
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Using Eq. (15) we find 
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with J1(t) real. The interaction energy E is then given by 
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where T is the interaction time. 

 

5. TWIN-SLIT EXPERIMENT AND SEPARABILITY 

We now use the amplitude of section 4 to analyze the twin-slit experiment. There 

are four J’s which must be taken into account when computing the amplitude (figure 1), 

so we will use the solution obtained in section 4 to link J1 with each of J2 and J4, and J3 

with each of J2 and J4, i.e., J1 ↔ J2 ↔ J3 and J1 ↔ J4 ↔ J3. In doing so, we ignore the 

contributions from other pairings, i.e., the exact solution would contain one integrand 

with Qn  qi(t), i = 1,2,3,4 reflecting a discrete ‘field theoretic’ correction to QM. Also, 

we’re finding interference effects while ignoring diffraction effects, i.e., the exact 

solution would employ two J’s for each slit – one J for each edge of each slit. 
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FIG. 1. Twin-slit Experiment 

 

Finally, we assume a monochromatic source of the form  j1(ω)* = Γ1δ(ω–ωo) with Γ1 a 

constant, so the amplitude between J1 and J2 is  
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whence we have for the amplitude between J1 and J3 via J2 and J4 
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with ψ the QM amplitude. With the source equidistance from either slit we expect the 

phase Γ1 d12j2 equals the phase Γ1 d14j4 so we have the familiar form 
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The interaction energy between slit Ji and detector region J3 is then  
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Per standard wave mechanics the phases in the exponents of Eq. (30) differ 

according to the interference given by 
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from slit Ji to detector region J3 and p is the momentum exchanged for each detector 

event. Thus, the phases in Eq. (30) must relate to spatial separation via 
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Assuming the impulse j3 is proportional to the momentum transfer p, we have  
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relating the spatial separation gim of the trans-temporal objects Ji and Jm to their intrinsic 

(m, k, ωo) and relational (kim) dynamical characteristics.  

While Eq. (33) suggests a relationship between the spacetime metric and 

dynamics a la GR, gim is distinct from ),( mi eeg rr⇒

, where{ }jer spans the tangent space T of 

the spacetime manifold and ∗∗
⇒

⊗∈ TTg  is the spacetime metric with T* dual to T. The 

metric implied by Eq. (33) is defined only between trans-temporal objects, in stark 

contrast to the field ),( mi eeg rr⇒

 which takes on values for all points of the differentiable 

spacetime manifold, even in regions where the stress-energy tensor is zero.  Indeed, as is 

clear from our presentation, there is ‘no thing’ being displaced spatially by Ji(t) and there 

is no particle or wave (of momentum p or otherwise) moving ‘through space’ from the 

source to the detector, even though there is a transfer of momentum. Thus, our simple 

analysis of Feynman’s “mystery,” in accord with Pauli’s dictum concerning the 

articulation of composition and separability, resonates strongly with Smolin’s sentiment 

that the nature of time and QM’s foundational issues may be highly relevant to quantum 

gravity. 



 10

 

REFERENCES 
1R.P. Feynman, R.B. Leighton and M. Sands, The Feynman Lectures on Physics III, 

Quantum Mechanics (Addison-Wesley, Reading,1965), p. 1-1. 
2W. Pauli, Scientific Correspondence with Bohr, Einstein, Heisenberg a.o., Vol 2, 1930-

1939, edited by Karl von Meyenn (Springer-Verlag, Berlin, 1985), pp. 402-404. 
3L. Smolin, The Trouble with Physics (Houghton Mifflin, Boston, 2006), p. 256. 
4W.M. Stuckey, M. Silberstein, and M. Cifone, Phys. Ess. (to be published); preprint 

arXiv: quant-ph/0503065. 
5S. French and D. Krause, Identity in Physics: A Historical, Philosophical and Formal 

Analysis (Clarendon, Oxford, 2006), p 19. 
6D. Howard, in Potentiality, Entanglement and Passion-at-a-Distance, edited by     R.S. 

Cohen et al. (Kluwer Academic, Great Britain, 1997), p. 122. 
7Ibid, p. 129. 
8A. Zee, Quantum Field Theory in a Nutshell (Princeton U.P., Princeton, 2003), p. 18. 
9Ibid, p. 22. 
10A. Bohr, B.R. Mottelson and O. Ulfbeck, Found. Phys. 34, 405 (2004); Phy. Today 57, 

15 (2004). 

 
 


