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Abstract
How is scientific knowledge used, adapted and extended in deriving real-world
systems and technological devices? This paper aims at developing a general model
of "applying science" based on the Exemplar-Based Explanation (EBE) model.
EBE embodies the view that a real-world system is derived not by solving
theoretical laws for specific boundary conditions but by constructing the system
out of previously derived systems that function as exemplars. | will discuss a
number of artifacts from hydraulics and language technology, and develop an
instantiation of EBE which generalizes over different disciplines. | argue that
engineering practice is highly cumulative: new systems are almost literally built
upon and constructed out of previous systems resulting into increasingly complex
wholes.

1. Introduction

How do weget from theory to technology? That is to say, how is scientific
knowledge used, adapted and extended in deriving real-world systems and
technological devices? It has for a long time been assumed that technological
devices are derived bgolving the laws from pure science for specific
boundary conditions (see Boon 2004 for an overviévecording to this

view, technologyis taken as "applied science" (Bunge 1966). Yet it has
become increasingly clear that in deriving a real-world systendo not
simply solve theoretical laws for specifioundary conditions. Instead, we
also addhon-theoreticaklementssuch as intermediate models, corrections,
normalizations and other adjustments, that stand itedloictive relation to

laws (see Cartwright983, 1999; Boumans 1999; Morrison 1999 and the
many examples therein). Applying a scientific theora ttoncrete system is

a matter of intricate approximation and de-idealization for whicgemeral

rules are known. How thewlo we derive a real-world system in
engineering? In line with Ronald Giere, Thomas Nickles and others, | argue



that engineers work in a model-based wiayderiving a new system they
look for known systems that are in variomays similar to the new system.
The models and techniques that successfatlgounted for the known
systems are extended and adapted to the new systems (sed 98@&re
1999; Nickles 2003). Such knovaystems function asxemplarson which
new systems are modeled.

The notion of exemplar igsually attributed to Thomas Kuhn in his
account on normal science (Kuli®70). Kuhn urged that exemplars are
"concrete problensolutions that students encounter from the start of their
scientific education” (ibid. 1970, p. 187) and that "sciensistge puzzles by
modeling them omprevious puzzle-solutions" (ibid. p. 189). Scientists
possess what Kuhn called "acquired similarity relations" that allow them "to
see situations as like each other, as subjects fagpkcation of the same
scientific law or law-sketch" (ibid. gl90). In Bod (2004), | proposed a
formal, computational model of Exemplar-Based Explanation, termed EBE,
which simulates thigroblem solving activity. EBE represents problem
solutions byderivation treeswhich describezach step in linking laws to
phenomena. Explanations of new phenomena are constructed largest
possiblederivational chunks from derivation trees of previous phenomena
such thatderivational similarityis maximized. | showed that EBE can solve
a large variety of problems and phenomena. Yet the model runs into trouble
as soon as non-theoretical elemesush as corrections, approximations and
normalizations are needed. For real-world systems and technological devices
EBE is inadequate.

The current papernvestigates what is involved in creating a
computationaimodel for deriving technological devices and real-world
systems. Irdoing so, | will start off with the EBE model and explore how
its shortcomings may be alleviated. | will shathat as long as nen
theoretical elements can be statederms of mathematical equations, they
can be integrated in a derivation tree, resultmg new EBE model. | argue
that engineering practice is a highly cumulative enterprise: new syatems
almost literally built upon and constructed out of previous systems resulting
into increasingly complex wholes.contend that this complexity is dealt
with by taking derivations of previous systems as "given" and work from
there, rather than working from theoretical laws.

This paper is organizeass follows. In section 2, | will review EBE
and show how it applies to problem solving in science. In section 3, | move
to technology and discuss a number of concrete systemafrdraulics for



which there are no formal derivations from higher-level lawsviith
involve empirical corrections and coefficientawvill develop a new EBE
model which integrates theoretical and phenomenologicadeling and
which can derive a rangef new hydraulic systems. In section 4, | will
provide an excursion into a field at the other end of tdalnological
spectrum, discussing some examples from langwaggneering. What
counts for hydraulics also counts for languagehnology: real-world
systems are derived not from theoretical laws, but from parts of derivations
of previoussystems. | contend that the new EBE model provides a general
model of "applying science" for different technological disciplines.

2. Review of the exemplar-based explanation (EBE) model

Let's startby reviewing the EBE model in Bod (2004) with a simple
idealized example. Consid#re following derivation of the Earth's mass
from the Moon's orbit in the textbook by Alonso and Finn (1996, p. 247):

Suppose that a satellite of masslescribes, with a peridd, a circular orbit of
radiusr around a planet of mak& The force of attraction between the planet and
the satellite i = GMm/r2. This force must be equal totimes the centripetal
acceleratiov/r = 4rer/P2 of the satellite. Thus,

412mr/P2 = GMm/r2
Canceling the common factorand solving foM gives

M = 412r3/GP2,

Figure 1. Derivation of the Earth's mass according to Alonso and Finn
(1996)

This rather textual derivation can be formally represented by the derivation
tree in figure 2.



E=ms a=\Jr

F = m2r v = 2rr/P

~_"

F = 4m?mr/P F = GMm/P

4mmr/P2 = GMm/2

M = 412r3/GP

Figure 2. Derivation tree for the derivation in figure 1

This derivation tree represerite various derivation steps (insofar as they
are mentioned in figure 1) from higher-level laws to an equation of the mass
of a planet. In general, a derivation tree is a finite tree in which each node is
labeledwith a formula; the boxes are only convenient representations of
these labels. The formulas at the topeafch "vee" (i.e. each pair of
connected branches) the tree can be viewed as premises, and the formula
at the bottom of each "vee" can be viewed as a conclusion, which in this tree
Is arrived at by simple term substitutiofihe last derivation step in the tree is
not formed by a "vee" but consists in a unary branch which solves the
directly precedingormula for a certain variable (in the tree above, for the
massM). The reader is referred to Baader and Nipkow (1999) for an
overview on term rewriting and equational reasoning.

Note that a derivation treeaptures the notion of a deductive
nomological (D-N)explanation of Hempel and Oppenheim (1948). In the
D-N account, a phenomenon is explained by deducing it from general laws
and antecedent conditions. But a derivation tree representsimaorgist a
D-N explanation: there is also an implititeoretical model in the tree in
figure 2. A theoretical model israpresentation of a phenomenon for which
the laws of the theory are true (Suppes 1961, 1967; van Fraassen 1980). By
equating the centripetal force of circular motidm2mr/P2 with the
gravitational forceGMm/r2 the model that is implied in figure 2 istao
particle model where one particle describes a circular orbit arourcdrtbe
one due to gravitational interaction and fehich the mass of the first
particle is negligible compared to the other.



EBE proposes thasubtrees from derivation trees be productively
reused to construct derivation trees for new phenomena. E.g. Kéipiler's
law, which states that3/P2is constant, can be derived by reusing the
following subtree in figure 3 from thederivation tree in figure 2. This
subtree reflects a theoretical model of a general planet-satellite or sun-planet
system -- or any other orbiting system whéne mass of the orbiting
particle is negligible compared to the other.

F = me a=\2r

F=mar v = Zrr/P

F = 4i2mr/P2 F = GMm/2

~._

41?mr/P2 = GMm/r2

Figure 3. A subtree from figure 2 reflecting a theoretical model of a planet
satellite system

The subtree in figure 3 needs only to be extended with a derivation step that
solves the last equation fo#/ P2, as represented in figure 4.

E=ms a=VvIr
F = mar v = 2rr/P
E = 42mr/P2 F = GMm/r?

42mr/F2 = GMm/r2

r3P2 = GM/4m2

Figure 4. Derivation tree for Kepler's third law from the subtree in figure 3

Thus we can productively reupartial derivations of previous phenomena
to derive new phenomena. Instead of starting each time $avaich, we



learn from previous derivations and reuse themsfadwving new problems.
This is exactly what the exemplar-based view entails: a theafigwed as a
prior corpus of derivationsr problem-solutions of exemplary phenomena
(our body of physical knowledge, if you wish) by which new phenomena
are predicted and explained. In a similar wag/can derive the distance of a
geostationary satellite, namely by solving the subtree in figurer3 for
However, itis not typically the case that derivations involve only one
subtree. For example, ideriving the velocity of a satellite at a certain
distance from a planet, we cannot directly use the lsunfpree in figure 3,
but need to extract two smaller subtrees from figure 2 that are first combined
by term substitution (represented by the operatit¥) ‘and then solved fov
in figure 5:

F = me a=vr 0 F = GMm/R = F=me a=r =
\/
F=mer F=myir F = GMm/2
~
mv2/r = GMm/i2
= F=ma a=\2Ir
\/
F=mvfr F = GMm/i2
\/
mv@/r = GMm/#2
v =V (GM/r)

Figure 5. Constructing a derivation tree for a satellite's velocity by
combining two subtrees from figure 2

1 The substitution operatiomr combination operatiotic" is a partial function on pairs of labeled
trees; its range is the set of labeled trees. The combination of ame treeu, written ast ° u, is
defined iff the equation at the root nodewtan be substituted in the equation at the root node of
(i.e. iff the lefthandside of the equation at the root noda biferally appears in the equation at the
root node ot). If t ° u is defined, it yields a tree that expands the root nodes of coptesndiu to a

new root node where the righthandside of the equation at the root nadés cfubstituted in the
equation at the root node of Note that the substitution operation can be iteratively applied to a
sequence of trees, with the convention thas left-associative.



Although exceedingly simple, figure $hows that we can create new
derivations by combining different parts from previous derivations, i.e. from
exemplars. The result can in principle be used as an exemplar itself.

EBE can be summarized by the following two parameters: ¢bygus
of derivation treesepresenting exemplars and (2patchingprocedurethat
combines subtrees from the corpus by meainterm substitution into a
new derivation tree. (Of course there may be additional mathematical
operationon the root node of each subtree, to which | will come back in the
next section.) Note that subtrees can bamnyf size: from single equations to
any combination of laws up tentire models and derivations. This reflects
the continuum between rules, rule-schemes and entire exemplars in EBE.

Derivational Similarity

How does EBE "know" which subtrees from previous explanations can be
reused in solving a new problem -- rather than tryingatildtombinations of
subtrees? Kuhn's (and also Giere's) suggestion is sitiahtists see
similarity relations or family resemblances between a new phenomenon and
previous problem solutions artderefore know which law patterns can be
applied to derive the new phenomenon. This similarity relationship remains
a rather vague notion in most accounts and some believe it cannot be
formalized or that seeking a formalizatishould be resisted (cf. Kuhn
1970, p. 192). How does EBE deal with this? Since EBE's matching
procedure is entirely derivational, | interpret the notion of similarity in terms
of derivationalor explanatory similarity Following Bod (2004), a new
phenomenon is derivationally similar to a previously explained phenomenon
if the derivation of the previous phenomenman be (partially) reused to
explain the newpohenomenon, that is, if their resulting derivation trees share
one or more subtrees. The larger the subtrees they share -- i.e. the larger the
partial match between theo trees -- the more derivationally similar they
are. Rathetthan trying to define similarity between phenomena, EBE
focuses on the similarity betwedarivationsof phenomena.

Still this similarity measure does not tels which subtrees from
previous derivation trees can be used to explain a newly presented
phenomenon. Sure enough, EBE could exhaustively enumeratesaible
combinations of subtrees that result in a derivation of the phenomenon, and
next establish the similarity relations lofetermining the largest partial
matches withprevious derivations. But this is highly inefficient and



unnecessary. In fact, there exist algorithms thatestablish the largest
partial match in one go by computing the so-caBbdrtest derivatiorof a
given phenomenon. The shortest derivation of a phenomenon is its
derivation whichconsists of the smallest number of subtrees from the
corpus. Since subtrees are allowed to be of arbitrary sizeshbeest
derivation corresponds to the derivatinee which consists of largest partial
match(es) with previous derivation trees in the corpus. Given afset
subtrees and a (new) phenomenon, the shortest derivation can be computed
by means of a so-callebest-first searchprocedurewhich efficiently
searches for the shortest path from root nodetlie phenomenon) to leaf
nodes (i.elaws or antecedent conditions) -- where path length is defined as
the number of subtrees (see B&000; Cormen et al. 2002). Thus
derivational similarity can be maximized by minimizing derivation length.

EBE embodies the hypothesis that scientists try to explain a new
phenomenon by maximizing derivationgsimilarity between the new
phenomenon and previously derived phenomena. #ral shortest
derivation provides a possible way attain this goal. The rationale behind
maximizing derivational similaritys that it favors derivation trees which
maximally overlap with previous derivatidrees, such thabnly minimal
recourse to additional derivational steps needs to be misldée that EBE
does not imply that scientists actually usbest-first search algorithm in
explaining new phenomena. The existence of such an algorithm only shows
that it is possiblen principle to find an explanation which is derivationally
most similar to previous explanations.

For example, the phenomenon known as Kepler's third law in fgure
Is maximallysimilar (modulo equivalence) to the problem of deriving the
Earth's mass from the Moon's orbit in figure 2, becauseadyig subtree
(figure 3) from the Earth's mass problem is needed to d&epder's law.
Even if the two problems may seem differentttee layman, for the
physicist they are nearly equal, except for the final solutioa oértain
variable. The newproblem can be solved by almost entirely reusing a
previous problensolution, which is in fact based on the same model. Also
the phenomenon of the velocity of a satellite in figure 5 is quite similar to the
Earth-Moon system, though somewhat less than Kepler's thirditee it
involvestwo (smaller) subtrees that result in a smaller fracbbrcommon
derivation steps, as can be seen by comparing resp. figures 4 vaitial
figure 2.



In passing | should note that it is also possible for one phenomenon to
have different derivation trees, in which céise phenomenon may be called
derivationally redundant. For example, it is well known that the problem of
deriving the Earth'snass can be solved not only from the Moon's orbit but
also from the gravitational acceleration of an object atBheth's surface.
Thus our notion of similarity only tells us something about the similarity of
the derivationsof phenomena rather than of the phenomena themselves. If
one phenomenohas two different derivations with no common subtrees,
thenthese derivations refer to different underlying models. We will come
back to this at the end of section 3.

We should keep in mind that the phenomena discussed so far are highly
idealized and limited to textbook examples. Theredsistoricalanalog of
using parts from the derivatiarf the Earth's mass to solve Kepler's third
law (it rather happened the other way round). Yet in science education the
two problems are treated as closely interconnected, and with good reason: it
shows that the two problenean be solved by using the same law schemes
and underlyingnodel. In the next section | will investigate how the EBE
approach can be extended to real-wagdtems and technological devices.
As an intermediate stepcould also have dealt with idealized phenomena
that arenot exactly solvable. A typicaétxample is the three-body problem in
Newtonian dynamics. Eveifiwe make the problem unrealistically simple
(e.g. by assuming that the bodies are perfect sphiea¢die in the same
plane), the motiomf three bodies due to their gravitational interaction can
only be approximated by techniques such as perturbedilonlus. However,
in perturbation calculus every derivation step still follows numeridadiyn
higher-levellaws. The actual challenge lies in real-world systems for which
there are derivation steps that aot dictated by any higher-level law.

3. Extending EBE to real-world systems and technological devices

Derivations of real-world systems and technological devicestakingly
absent in physics textbooks. Biey are abundant in engineering practice.
As an example | will discuss a concrete system from hydrathies/elocity

of a jet through a small orifice, known as Torricelli's theorang which |

will also refer to as awrifice system | have chosethis system because it
functions as a shared example in hydraulics on which several other systems
aremodeled, and yet it has no rigorous solution from higher-level laws but
involves additional empirical coefficients. | will show how a "derivation" of



the orifice systenis used as an exemplar for deriving a range of other real
world systems, such as weirs, notches and water breaks.

The orifice system is usually derived from Daniel Bernoulli's famous
equation, which in turns derived from the Principle of Conservation of
Energy? Accordingto the Principle of Conservation of Energy the total
energy of a system of particles remains constant. The total esdigy sum
of kinetic energyEk), internal potential energyeg int) and external potential

energy Ep,exd:
2E = Ex +Ep,int+ Ep,ext = constant

Applied to an incompressible fluithe principle comes down to saying that
the total energy per unit volume of a fluid in motion remaimsstant, which
Is expressed by Bernoulli's equation:

P9z + pv2/2 + p = constant

The termpgz is the external potential energy per unit volume due to gravity,
wherep is the fluid's density andthe height of the unit (note the analogy
with mghin classical mechanics). The tepw?/2 is the kinetic energy per
unit volume (which is analogous t\2/2 in classical mechanics). Anxis

the potential energy per uniblume associated with pressure. Bernoulli's
equation is also written as

pgz1 + pv122 + p1 = pgze + pv22/2 +p

which says that the total energy of a fluid in motion is the same at any two
unit volumes along its path.

Here is how the engineering textbod#lvanced Design anfiechnology
presents thalerivation of Torricelli's theorem from Bernoulli's equation
(Norman et al. 1990, p. 497):

We can use Bernoulli's equation to estimate the velocity of a jet emerging from a
small circular hole or orifice in a tank, Fig. 12.12a. Suppose the subscripts 1 and 2
refer to a point in the surface of the liquid in the tank, and a section of the jet just

2 Bernoulli used a precursor of this principle which was known as "Equality between the Potential
Ascent and Actual Descent" (see Mikhailov 2002, p. 70).

10



outside the orifice. If the orifice is small we can assume that the velocity of the jet
isv at all points in this section.

A

ua
h —

/
T\

vena contract
Y v (b)
(a)
Figure 12.12

The pressure is atmospheric at points 1 and 2 and thepgfengg. In addition the
velocity v1 is negligible, provided the liquid in the tank has a large surface area. Let
the difference in level between 1 and 2hb&s shown, so that — z> = h. With

these values, Bernoulli's equation becomes:

h=v2/2g from which v=V(2gh)

This result is known as Torricelli's theorem. If the area of the orifidetise
theoretical discharge is:

Q(theoretical) =vA = AV(2gh)

The actual discharge will be less than this. In practice the liquid in the tank
converges on the orifice as shown in Fig. 12.12b. The flow does not become
parallel until it is a short distance away from the orifice. The section at which this
occurs has the Latin namena contractgvena= vein) and the diameter of the jet
there is less than that of the orifice. The actual discharge can be written:

Q(actual) =C4AV(2gh)

whereCy is the coefficient of discharge. Its value depends on the profile of the
orifice. For a sharp-edged orifice, as shown in Fig. 12.12b, it is about 0.62.

Figure 6. Derivation of Torricelli's theorem in Norman et al. (1990)
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Thus thetheoretically derived discharge of the system differs substantially
from the actual discharge and is corrected by a coefficient of dischayge,
This is mainly due to an additionghenomenon which occurs in any orifice
system: thevena contractaAlthough this phenomenon is known forore

than three centuries (cf. Torricelli 1644), no rigorous derivation exisis for
and it is taken care of by a correction factor. Note that the correction factor is
not an adjustment of a few percent, but of almost 40%. The value of the
factor varies however with the profile of the orifice and can range from 0.5
(the so-called Borda mouthpiece) to 0.97 (a rounded orifice).

Introductory engineering textbooks tell us that coefficientdistharge
are experimentally derived corrections that need to be established for each
orifice separately (see Norman et al. 1990; Douglas and Matthews 1996).
While this is true for real-world three-dimensional orifices, it must be
stressed that there are analytical solutions for idealized two-dimensional
orifice models by using free-streamlitieeory (see Batchelor 1967, p. 497).
Moreover, Sadri and Floryan (2002) have shown thavéim@ contractecan
also be simulated by a numericsdlution of the general Navier-Stokes
equations which is, howeveagainbasedon a two-dimensional model. For
three-dimensional orificenodels there are no analytical or numerical
solutions (Munsor2002; Graebel 2002). The coefficients of discharge are
then derived by physical modeling, i.e. by experiment. €kains perhaps
why physicstextbooks usually neglect theenacontractain dealing with
Torricelli's theorem. And some physics textbooks don't deal with Torricelli's
theorem at all. To the best of my knowledge, all engineering textbooks that
cover Torricelli's theoremalso deal with the coefficient of discharge. (One
may claim that thevena contractacan still be qualitatively explained:
because the liquid converges on the orifice, the area of the issuing jet is less
than the area of the orifice. But there exists no quantitative explanatién of
for a three-dimensional jet.)

Although no analytical or numericalerivations exist for real-world
orifice systems, engineering textbooks still liskich systems via
experimentally derived corrections the theoretical law of Bernoulli, as if
there were some deductive scheM#éy do they do that? One reason for
enforcing such dink is that theory does explain some important features of
orifice systems: the derivation in figure 6, albeit not fully rigorous, explains
why the discharge of the system is proportional to the square-root of the
heighth of the tank, and it also generalizes over different heigrasd

12



orifice areasA. Another reasoffior enforcing a link to higher-level laws is
that the resulting derivation can beed as an exemplar for solving new
problems and systems. To show this, | will fitstn the derivation in figure

6 into its corresponding derivation tree. Budw can we create such a
derivation tree if the coefficient of discharge is not derived from any higher-
level equation? The orifice system indicatdsat there can be
phenomenological models that are detived from the theoretical model of
the system. Yet, when we write the coefficient of discharge as the empirical
generalizatiorQ(actual) = CgQ(theoretical) which is in fact implicitin the
derivation in figure 6 we can again create a derivation tree and "save" the
phenomenon. This is shown in figure 7 (where we also added the principle
of conservation of energy).

| 2 E = constan |

P1= 82
PGz + pvi2I2 +py = pgz + PVRI2 + 7 -2,=h
v=V(2gh Q(theoretical) =vA
Q(theoretical) =AV(2gh) Q(actual) =CQ (theoretical

Q(actual) =C4AV(2gh)

Figure 7. Derivation tree for the derivation in figure 6

The tree in figure 7 closely follows therivation given in figure 6, where
the initial conditions foip1, p2, v1, Z1 andz are represented by a separate
label in the tree. The coefficient of discharge is introduced in the tree by the
equationQ(actual) = CyQ(theoretical) Althoughthis equation does not
follow from any higher-level law or principle, we can usastif it were a
law. Of course it is10t a law in the universal sense; it is a correction, a rule
of thumb, but it can be reused for a range of other hydraulic systems,
ranging from nozzles, notches, weirs, opdrannels and many pipeline
problems -- see Douglas and Matthews (1996).

Does the derivation tree in figure 7 again represemteductive
nomological (D-N)explanation? Different from the derivation trees in
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section 2, the final resu@@(actual) =CgAV (2gh) in figure 7 is not deduced
from general laws and antecedent conditions only. Additional knowledge in
the form of a correction is needed to enforce a link. While this correction can
be expressed in terms of a mathematical equation, it clearly goes beyond the
notion of fundamental law or antecedent condittbat are said to be
essential to a D-N explanation (see Hemp@b5, p. 3378 Of course, the
correction can be viewed as aoxiliary hypothesisbut it should be kept in
mind that it is not derived from any higher-level law.

It is alsodifficult to frame the derivation tree in figure 7 into the
semantic notion of theoretical model, since the formQl@ctual) =

CdA\/ (2gh) is not true in the theoreticahodel of the system, exceptdy

were equal to 1, which never occurs. However, the derivationltre® seem

to concur in thenotion of apartial model (orpartial structure) since such a
model allows for accommodating only a partial satisfaction of (some of) the
laws in the theory (see da Costa and French 2003, p. 60). We can imagine a
hierarchy of models: a theoretical modepteenomenological model and a
data modelthat are connected in terms of partial isomorphisms. The
derivation tree in figure 7 implies two of such models: a theoretical model of
discharge and a phenomenological model of discharge whidoanected

by Cqg.

A new EBE model

What does this all mean for EBE? By using the derivation tree in figure 7 as
an exemplar and by using the same substitution mechdarstombining
subtreedrom exemplars as in section 2, together with a mathematical
procedure thatan solve an equation, we obtain an exemplar-based model
for fluid mechanics that can explaanrange of new real-world systems. For
example, the three subtrees in figure 8 can be extractedliederivation

tree in figure 7 and be reused in deriving the rate of flow of a rectangular
weir of width B and heighh (see e.g. Norman et al. 1990, p. 498).

3 Note that the correction factor does neither fit the notion of what Hempel calpedvaso
(Hempel 1988). A proviso would consist of the condition that there are no additional phenomena and
thusnovena contractaUnder this proviso, the derivation of the discharge would need no correction
factor, but it would be far from the truth.

14



| 2E= constarl Q(theoretical) =vA Q(actual) =CqQ(theoretical

p1=p2
V]_:O
p9zZy + V12 + py = pgzp + PVRI2 + pp 2-72=h

v=v(2gh
Figure 8. Three subtrees from figure 7 that can be reused to derive a weir
By adding the mathematicabuivalencesA = [vdA and the equationAl=

Bdh, whichfollows from the definition of a rectangular weir, we can create
the derivation tree in figure 9 for the discharge of a weir.

| 2E= constarl Q(theoretical) =vA

P1=P2
-0
pgz1 + pw2l2 +p1 = pgza+ PVa32 + p Z-7y=h Qtheoretical) JvdA dA = Bch

| v = V(2gh) | Q(theoretical) =[vEdh

Q(theoretical) =BV (2g) [Vhdh

Q(theoretical) = (2/:BV(2g)h3/2 Q(actual) =CQ(theoretical

Q(actual) = (2/3C4BV(2g)h3/2

Figure 9. Derivation tree for a weir constructed by combining the subtrees
from figure 8

The derivation treen figure 9 closely follows the derivations given in
Norman et al. (1990, p. 498) and Douglas and Matthews (1998, 7)),
where a weir system is constructed out of an orifice system. This
corresponds to engineering practice where new sysaeenalmost literally

built upon or constructed out of similar previous systems. To give an
historical example, the earliest known derivation of the sxstem by Jean
Baptiste Bélanger (1828, p. 37) takes the orifice system as given and reuses
it to derive the formula for the weir system in figure 9. Tisatather than
deriving theweir system from scratch (i.e. from the principle of energy
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conservation), Bélanger reused not only Bernoulli's derivation of Torricelli's
theorem(as reflected by the leftmost subtree in figure 8) but also the
empirical coefficient oflischarge (the rightmost subtree in figure 8) and the
equation for discharge itself (the intermediate subtree in figurBélanger
thus modeled theveir system by reusing and extending (parts of) a
previously derived system in such a way that only minimal recaorse
additional derivational steps is neede®E simulates this exemplar-based
modeling by combining thoselerivational chunks that maximize
derivational similarity or, equivalently, minimize derivation length. Note that
the three subtrees in figureil®deed correspond to the smallest number of
subtrees from the orifice system that are neddedonstruct, via some
intermediate mathematical steps, a derivation for the weir system.

The resulting derivation ifigure 9 effectively becomes an exemplar
itself (which in EBE means that it is added to the corpus) and is reused and
extended to derive a so-call®dnotch The V-notch, in turn, is extended
derive a so-calledrapezoidal notch which is again further extended to
derive aCipolletti weir, etc. (seee.g. Douglas and Matthews 1996; Chanson
2002). Modelingn engineering is thus highly cumulative: new systems are
built upon or constructed out of previous systemd their derivations form
increasingly complex wholes. We cdrandle this complexity by taking
large(st) partial derivations from previoggstems as "given" (as in EBE)
and work from there, rather than deriving a system all the way di@mm
laws.

The example of building new systems out of largest possible
derivational chunks from previous systems is not only interesting for
simulating engineering practice. | urge that we actuadigdexemplar-based
knowledge to derive new real-world systems. Just compardetiheation of
the weir in figure 9 with figure 5 in section 2 where we also constructed a
new derivation tree by combining subtrees from a preuvieuiation tree --

l.e. a satellite's velocity from a derivation of the Earth's mass. But there is a
very important difference: while the phenomenon represented in figeaia

just as well be derived from theoretical lavegher than from previous
subtrees, this inotthe case for the phenomenon represented in f@urer
deriving the weir system, we need to make recourse to the empirical rule
Q(actual) = GyQ(theoretical)which is taken from a previously explained
phenomenon that functions as an exemplar.

This use of theory-external knowledge in engineering modediradso
discussed by Margaret Morrison and Matgrgan who call it "additional
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‘outside’ elements" (Morrison and Morgaf99, p. 11). They argue that
models are autonomoumntities which mediate between theory and the
world. EBE is consonant witlthis view, in that previous models or
exemplars can beeused almost independently of theory for deriving new
systems. But in addition, EBfrovides an exact computational model for
dealing with "additional 'outside' elements". EBE is also in agreewi#mt
Boumans (1999) who argudbat models are used as "recipes" for
constructing other models. According to Boumans, models in economics
integrate a broadange of ingredients such as analogies, metaphors,
theoretical notions, mathematical concegisl techniques, stylized facts,
empirical data and evepolicy views. In the next section, | will discuss
models from languag&chnology that also include various kinds of other
elements such as idiosyncratic and idiomatic expressions. EBlsas
congenial tothe accounts by Nancy Cartwright and Ronald Giere.
Cartwright gives avealth of examples for her claim that "approximations
and adjustments are required whenever theory trealgy" (Cartwright
1983, p. 13). In similavein, Giere states that "strictly speaking, most
purported laws of nature seem clearly to be false" (Giere 1999, p. 90). But
while all these accounts stress the necessity of using theory-external
elements in modeling, none of the accounts proposenaputational
mechanism which describelsow theory-internal and theory-external
knowledge can be integrated and (re)used for deriving new systems.

The surplus value of EBE, asske it, is that (1) it proposes a
computational approach to modeling in engineering, explicating which parts
of previous systems and models can be used where, and (2) it integrates
both theory-internal and theory-external knowleddest is, as long as
empirical rules, corrections, approximationsymalizations and the like can
be stated in terms of mathematiesjuations they can be integrated by a
derivation tree, and besused to solve new problems by maximizing
derivational similarity. EBE bypasses the notorious probt#ndefining
"similarity of phenomena" bysing a more precise (though perhaps more
limited) notion of "similarity of derivations" of phenomena. EBE may
therefore also suggestfarmal alternative to case-based reasoning where
previouscases are used to explain other, "similar" cases (cf. VanLehn
1998).

In doing all this, we need to slightly extend our previous definition of
EBE given in section 2. There we stated that theredks of a derivation
tree should refer to either general laws or antecedent conditions.newhe

17



EBE model,the leaf nodes may also be empirical rules -- or any other
eqguations that are not deduced from higher-level laws. We may lump these
three kinds of knowledge (laws, antecedemnditions and empirical rules)
together as "knowledge that is not derived frbigher-level knowledge".

The definition of derivational similarityemains the same. We conjecture
that scientists try to derive a ngghenomenon by maximizing derivational
similarity with previously derived phenomena, i.e. by using ldrgest
partial matches from previous derivation trees, such that minimal recourse to
additional derivation steps is needed.

The finalformula in figure 9 is widely used in hydraulic engineering,
where the coefficientq is often established experimental¥et it should be
stressed thatq is not a meaningless fudge factor. Inste@g, has been
defined in terms of other meaningful variables for various types of systems.
For examplefor the class of rectangular weirs there exists an empirical
generalization which compute€ g4 from two other quantities. This
generalization was first formulated by Henry Bazihe assistant of the
celebrated hydaulician Henrparcy (Darcy and Bazin 1865), and is
commonly referred to as Bazin formula (atsaled "Bazin weir formula”,
to distinguish itfrom "Bazin open channel formula" -- see Douglas and
Matthews 1996, p. 119):

Cd = (0.607 + 0.0045H) ({1 + 0.55H/(P + H)2))

In this formulaH = head over silln metres, and® = height of sill above
floor in metres of the weir. Bazin formula is an empirical regularity derived
from anumber of concrete weir systems. Although the regularity is known
for more than 150 years, there exists no derivetiom higher-level laws.

Yet this does not prevent us from using and reusing the regularity in
designing real world systems that have to work accurately and reliably, and
it is easy to see thdlhe formula can be integrated in the derivation tree of
figure 9. Hydraulics is replete with formulas like Bazin's, edebcribing
particular regularities within a certain flow systeihere are, for example,
Francis formula,Rehbock formula, Kutter formula, Manning formula,
Chezy formula, Darcy formula, Keulegan formuta, name a few (see
Chanson 2002 for an overview). Many thfese formulas are known for
more than a century but none of théas been deduced from higher-level
laws. Theyare entirely based on previous systems and form the lubricant
that makes new systems work.
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In passing it is noteworthy that we cannot detive phenomena from
classical mechanics in section 2 by means of the derivations ffoam
mechanics given in this sectiofor instance, Kepler's third law cannot be
derived bysubtrees from the orifice system. While this may seem trivial,
there are many classical phenomenadhatbe derived by subtredésom the
derivations given in this section. An example is the (idealizebcity that
an object attains in frefall from a heighth in Newtonian mechanics, which

IS v= \/(Zgh). This is "equal" to Torricelli's theorem, which gives the

(idealized) velocity of the jet from a tank of heidhtv = \/(29h). So what
happens if we use EBE to construct a derivatiormfphenomenon which is

merely described by = \/(Zgh) on the basis of a corpus whichntains

both the Bernoullian derivation of Torricelli's theoramd the Newtonian
derivation of the velocity of a falling object? Then EBE obtains two different
derivations for this phenomenon: one derived from Bernoulli's law and one
from Newton's laws. Since the derivations are both maxinsathylar to a
derivationin the corpus, which of the two should be chosen? If no
distinction is made between the velocity of a fluid and that pbint massy

= \/(Zgh) Is inherently ambiguous (or semanticaligdetermined) and two
different models and derivations apply to it. This is not as problematic as it
seems, since historically Daniel Bernoulli solved the problem of the velocity
of water from an orifice by analogically treating a flow in terms of
Newtonian-like particles, which makes theo phenomena indeed
"equivalent".But if we want to avoid EBE mixing up derivations from
different fields, we should introduce different variabfes point mass
velocity and fluid velocity. This can be accomplished bging
subcategorizations, e.g; for the velocity of a particle andg for a fluid. This

way, the two velocities cannot lmibstituted, and the phenomewa =

\/(Zgh) andv =V (2gh) get each a differenderivation. But Bernoulli's

historical example suggests that mixing up terms may alsiiub@nating,
opening the door to analogical modeling.

4. EBE in other disciplines: an excursion into language technology

What counts for hydraulics also counts for many other technological
disciplines: real-world systems and phenomena are denivefilom general
laws, but from parts of derivations of previastems and phenomena. As
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an example from the other end of the technologspactrum, | will give a
brief excursion into language technology.

While languageheoryis permeated by the idea that a language is
aptly described by a formal grammar, ieefinite and succinct set of rules
which can derive an infinite set of well-formed utterances, language
technology does not work that wayAs soon as a natural language
processing system, su@s a dialog understanding system or a machine
translation system, needs to deal with a non-trivial fragraeatlanguage,
say English, formal grammars turn out to be severely inadequate.
Grammars eitheundergenerate which means that they provide no
derivation for otherwise well-formed utterances, they overgenerate
which meansthat they provide too many derivations for well-formed
utterancegcf. Manning and Schutze 1999). "All grammars leak", is the
well-known dictum of Edward Sapir (Sapir 1921,38). In fact, there are
so many idiosyncratic and idiomatic phenomena in natural language that
only an approach which takes into account previously prodsest&nces
can accurately model a language. After unsuccessdteimpts to apply
formal grammars to automatic linguistic analysigjifferent paradigm has
been developed since the 1980s in languagknology: new sentences are
derived not by using a concise setroles, but by using a large corpus of
previously derived sentences together with a "learning procedure" (see
Manning and Schiitze 1999 for an historical overviéw).

Before going into the details of this learning proceduremletfirst
explain whatderivations of sentences look like. It is by now widely
acknowledged that sentence derivations can be represented by tree structures,
similar to derivation trees in physi@s the previous sections. The first
linguistic treestructure was (most likely) proposed by Wilhelm Wundt in
his Logik (Wundt 1880). But it was Noam Chomsky who made the notion
of syntactic phrase-structuré&ree more widely accepted (Chomsky 1957).
Although richer structures have also begemposed in the meantime
(ranging from feature structures attribute-value matrices), there is ample
agreement that tree structures form treckbone of sentence analysis,
sometimesenriched with phonological, morphological and semantic
representations (see Sag, Wasow and Bender 2003; Bresnan 2000;

4 Even if the notion of "grammar" is still used by many systems it is not succinct but consists of
(tens of) thousands of rules that are derived from actual language corpora (see e.g. Knuuttila and
Voutilainen 2002).
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Goldberg 1995). In thisection, | will focus on syntactic representations
only.

So what does a syntactic phrase-structtge look like? Figure 10
gives two tree structures for respectiviilg sentenceShe wanted the dress
on the rackandShe saw the dog with the telescope

S
PN /\
N v
she v NP | /\
| /\ " /\< /PP\
wanted N /PP\ \|/ /NP\ ,|3 }p\

saw the dog with the telescop
the dressP NP

on the rack

Figure 10. Two sentences with their phrase-structure trees

A phrase-structure tree describes how paft& sentence combine into
constituents and how these constituents combine into a representation for the
whole sentence. The constituentaiphrase-structure tree are labeled with
syntactic categories such &8 for noun phrasePP for prepositional
phrase,VP for verb phrase an® for the whole sentence. To keep the
example simple, we haveft out some low-level labels for Noun and
Article. The two trees in figure 10 are structurall§ferent in that in the first
sentence the prepositional phrasethe rackiorms a noun phrase withe
dress whereas in the second sentertbe prepositional phraseith the
telescopeforms averb phrase withsaw the dog Both sentences are
"structurally ambiguous", to which | will come back below.

Although phrase-structure trees are not labeled with equations, they
are compositionally built up as in physics derivation treash category is
defined in terms of its underlying subcategoriaad if we enrich each
syntactic label with its logical-semantic interpretation,waild again obtain
derivation trees withequations). Note that phrase-structure trees are
represented upside down: the root is atttipeinstead of at the bottom. This
IS pure convention.

How can these sentencles used to derive new sentences, i.e. what
does a "learning procedurtdok like? There is not one way to do this. One
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straightforward but not very succesful methodasead off the "grammar
rules" that are implicit in the trees, sueh S => NP VP, VP => V NP, NP

=> NP PP, NP =*he dress etc. infigure 10 (Charniak 1996)Another,

more successful method is by reading off for every single word a subtree
including that word (Chiang 2000). Yet another atill more successful
method is by firstenriching each syntactic label with its so-called
"headword" and by nextading off the rules from the trees (Collins 1997).
We know the relative successfulness of these methods asdleybeen
evaluated on the same benchmark, the so-called Penn Treebank corpus
consisting of 50,000+ sentences (Marcus e1893). We will not go into
further detailsof these different methods (but see Bod 1998 or Bod et al.
2003).

While these methods may seem rather disparate, thdaseel on the
same underlying idea: new sentences are derived by @lapieviously
derived sentences. The distinctive feature of @aethod is their definition
of what are to be considered thelevantparts. Yetit is also possible to
generalize over these different methodsthiing all partial trees as
"relevant” parts. This generalodel is known a®ata-Oriented Parsingr
DOP (Bod 1998). By putting restrictions dihe parts, other models and
methods can be instantiated (see Charniak 1997).

The following example illustrates how the general DOédel works.

If we take the sentences in figure 10 as our (unrealistisaiill) corpus, we
can derive the new senten&he saw the dreswith the telescopedy
extracting two subtrees from the trees in figure 10 anddmybining them
by means olabel substitution

S o NP = S
N /N N
NP VP the dress NP VP
she yp PP she /Vp\ /pp\
V/\NP P/\ P \Y% NP P NP
| A N TN
saw with the telescop saw the dress with the telescop

Figure 11. Deriving a new sentence by combining subtrees from figure 10

5 A grammar rule like S => NP VP says that a sentence (S) consists of a noun phrase (NP) followed
by a verb phrase (VP).
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Note the similarity of label substitution with term substitutionthe
previous sections. Like term substitution, label substitution is a partial
function on pairs of labeled trees and its rangbesset of labeled trees. The
label substitution of treeand treeu, written ast ° u, is defined iffthe root
node ofu is equal to the leftmost syntactic leaf nodé @ivhich in figure 11

iIs an NP). If label substitution is defined, it yields a tredere u is
substituted in the leftmost syntactic leaf nodetofAs in EBE, the
underlyingidea of DOP is that new trees are constructed by combining
partial trees from a prior corpus. It is easy to see that we can create an EBE
model for DOP by properly instantiating the two parameters given in section
2.

In figure 11, the new senten&he saw the dress with the telescape
interpreted analogous the corpus sentencghe saw the dog with the
telescopeboth sentences receive roughly the same phrase structure. Yet we
can also derive an alternative phrase structure for this new sentence, namely
by combining three (rather than two) subtrees from figure 16haan in
figure 12.

NP VP st P /NP\ NP /\/P\
she v NP with the telescop she v NP
/\ saw /\
NP PP NP /PP\
yaN VaNAY
the dress the dress

/N

with the telescop

Figure 12. A different derivation f@he saw the dress with the telescope

Thus the sentencghe saw the dress with the telescope be derived in (at
least)two different ways: either analogous to the first tree in figure 10 or
analogous to the second tree in figure 10. Which one should be chosen? As
in EBE, it is hypothesized that humans derive a reamtence by
maximizing derivational similarity -- or equivalently, minimizing derivation
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length -- with respecto previously derived sentencédor our example
sentencé&he saw the dress with ttedescopethe shortest derivation (which
maximizes derivational similarity) is represented by figlife only two
subtrees from the corpus are needed to construct this tree, while at least three
corpus-subtrees are needed to construct the tree in figure 12.

As before, the notionf derivational similarity favors new trees that
are most similar to previous trees. Of course, the corpus in figuiefad
too small for simulating actual languag®ocessing. More realistic
experiments use corpora of hundreds of thousaafigmanually)
constructed phrase-structurees. By using largest possible derivational
chunks from such corpora, we can also take adoount arbitrary muki
word expressions or idiom chunks suchtatsake advantage aind fixed
phrases such a&hat time is itAnote that one does not sépw late is it?
in English).

While DOP generalizes over a large number of modelsainral
language technology, EBIE even more general: it allows in principle for
corpora of any sort dfees -- be they physical, linguistic, musical or of any
other kind. As long as we can construataapus of exemplary derivations
for a certain discipline, we can create an Ef&del for it and use it to
derive new phenomena without making recourse to an axiomatic system of
rules. Sure enough, thexemplary derivations in the corpus do include
general laws or rules, such &s= ma in physics orS => NP VPin
linguistics, but theyalso include very particularist information ranging from
empirical coefficients in hydraulics to idiomatic expressions in natural
language that do not follow from these lawsues. The world may be full
of nomothetic elements like laws. Butt is also full of idiographic,
particularist elements such as ad hoc corrections. EBE does justice to both.

5. Conclusion

| have argued for a general model of "applying science", termed EBE. This
modelexplains new systems and phenomena by recombining fragments or
chunks from previously derivesystems and phenomena. Examples from
hydraulics and language technology suggest that EBE can operatmnyith
kind of corpus as long as we haveuecise notion of "derivation". This
results in the following general methodology applying science: (1)
construct a prior corpus of derivations @templary phenomena, and (2)

6 Most models also take into account the frequency of occurrence of derivational chunks in the
corpus (see Manning and Schitze 1999), but | will not go into this here.
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combine as large derivational chunks as possible from the corpus in deriving
new phenomena. Newly constructed derivations are added ¢orihes, and

may be reused as exemplars themselvesontend that science and
technology should be understood not in terms ‘Ghaimalist" system of

laws or rules, but in terms of a "maximalist”, dynamicalbhdated ensemble

of derivations.
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