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Abstract
How is scientific knowledge used, adapted and extended in deriving real-world
systems and technological devices? This paper aims at developing a general model
of "applying science" based on the Exemplar-Based Explanation (EBE) model.
EBE embodies the view that a real-world system is derived not by solving
theoretical laws for specific boundary conditions but by constructing the system
out of previously derived systems that function as exemplars. I will discuss a
number of artifacts from hydraulics and language technology, and develop an
instantiation of EBE which generalizes over different disciplines. I argue that
engineering practice is highly cumulative: new systems are almost literally built
upon and constructed out of previous systems resulting into increasingly complex
wholes.

1. Introduction
How do we get from theory to technology? That is to say, how is scientific
knowledge used, adapted and extended in deriving real-world systems and
technological devices? It has for a long time been assumed that technological
devices are derived by solving the laws from pure science for specific
boundary conditions (see Boon 2004 for an overview). According to this
view, technology is taken as "applied science" (Bunge 1966). Yet it has
become increasingly clear that in deriving a real-world system we do not
simply solve theoretical laws for specific boundary conditions. Instead, we
also add non-theoretical elements, such as intermediate models, corrections,
normalizations and other adjustments, that stand in no deductive relation to
laws (see Cartwright 1983, 1999; Boumans 1999; Morrison 1999 and the
many examples therein). Applying a scientific theory to a concrete system is
a matter of intricate approximation and de-idealization for which no general
rules are known. How then do we derive a real-world system in
engineering? In line with Ronald Giere, Thomas Nickles and others, I argue
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that engineers work in a model-based way. In deriving a new system they
look for known systems that are in various ways similar to the new system.
The models and techniques that successfully accounted for the known
systems are extended and adapted to the new systems (see Giere 1988,
1999; Nickles 2003). Such known systems function as exemplars on which
new systems are modeled.

The notion of exemplar is usually attributed to Thomas Kuhn in his
account on normal science (Kuhn 1970). Kuhn urged that exemplars are
"concrete problem solutions that students encounter from the start of their
scientific education" (ibid. 1970, p. 187) and that "scientists solve puzzles by
modeling them on previous puzzle-solutions" (ibid. p. 189). Scientists
possess what Kuhn called "acquired similarity relations" that allow them "to
see situations as like each other, as subjects for the application of the same
scientific law or law-sketch" (ibid. p. 190). In Bod (2004), I proposed a
formal, computational model of Exemplar-Based Explanation, termed EBE,
which simulates this problem solving activity. EBE represents problem
solutions by derivation trees which describe each step in linking laws to
phenomena. Explanations of new phenomena are constructed out of largest
possible derivational chunks from derivation trees of previous phenomena
such that derivational similarity is maximized. I showed that EBE can solve
a large variety of problems and phenomena. Yet the model runs into trouble
as soon as non-theoretical elements such as corrections, approximations and
normalizations are needed. For real-world systems and technological devices
EBE is inadequate.

The current paper investigates what is involved in creating a
computational model for deriving technological devices and real-world
systems. In doing so, I will start off with the EBE model and explore how
its shortcomings may be alleviated. I will show that as long as non-
theoretical elements can be stated in terms of mathematical equations, they
can be integrated in a derivation tree, resulting in a new EBE model. I argue
that engineering practice is a highly cumulative enterprise: new systems are
almost literally built upon and constructed out of previous systems resulting
into increasingly complex wholes. I contend that this complexity is dealt
with by taking derivations of previous systems as "given" and work from
there, rather than working from theoretical laws.

This paper is organized as follows. In section 2, I will review EBE
and show how it applies to problem solving in science. In section 3, I move
to technology and discuss a number of concrete systems from hydraulics for
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which there are no formal derivations from higher-level laws but which
involve empirical corrections and coefficients. I will develop a new EBE
model which integrates theoretical and phenomenological modeling and
which can derive a range of new hydraulic systems. In section 4, I will
provide an excursion into a field at the other end of the technological
spectrum, discussing some examples from language engineering. What
counts for hydraulics also counts for language technology: real-world
systems are derived not from theoretical laws, but from parts of derivations
of previous systems. I contend that the new EBE model provides a general
model of "applying science" for different technological disciplines.

2. Review of the exemplar-based explanation (EBE) model
Let's start by reviewing the EBE model in Bod (2004) with a simple
idealized example. Consider the following derivation of the Earth's mass
from the Moon's orbit in the textbook by Alonso and Finn (1996, p. 247):

Suppose that a satellite of mass m describes, with a period P, a circular orbit of
radius r around a planet of mass M. The force of attraction between the planet and
the satellite is F = GMm/r2. This force must be equal to m times the centripetal
acceleration v2/r = 4π2r/P2 of the satellite. Thus,

4π2mr/P2 = GMm/r2

Canceling the common factor m and solving for M gives

M = 4π2r3/GP2.

Figure 1. Derivation of the Earth's mass according to Alonso and Finn
(1996)

This rather textual derivation can be formally represented by the derivation
tree in figure 2.
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F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

Figure 2. Derivation tree for the derivation in figure 1

This derivation tree represents the various derivation steps (insofar as they
are mentioned in figure 1) from higher-level laws to an equation of the mass
of a planet. In general, a derivation tree is a finite tree in which each node is
labeled with a formula; the boxes are only convenient representations of
these labels. The formulas at the top of each "vee" (i.e. each pair of
connected branches) in the tree can be viewed as premises, and the formula
at the bottom of each "vee" can be viewed as a conclusion, which in this tree
is arrived at by simple term substitution. The last derivation step in the tree is
not formed by a "vee" but consists in a unary branch which solves the
directly preceding formula for a certain variable (in the tree above, for the
mass M). The reader is referred to Baader and Nipkow (1999) for an
overview on term rewriting and equational reasoning.

Note that a derivation tree captures the notion of a deductive-
nomological (D-N) explanation of Hempel and Oppenheim (1948). In the
D-N account, a phenomenon is explained by deducing it from general laws
and antecedent conditions. But a derivation tree represents more than just a
D-N explanation: there is also an implicit theoretical model in the tree in
figure 2. A theoretical model is a representation of a phenomenon for which
the laws of the theory are true (Suppes 1961, 1967; van Fraassen 1980). By
equating the centripetal force of circular motion 4π2mr/P2 with the
gravitational force GMm/r2 the model that is implied in figure 2 is a two
particle model where one particle describes a circular orbit around the other
one due to gravitational interaction and for which the mass of the first
particle is negligible compared to the other.
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EBE proposes that subtrees from derivation trees be productively
reused to construct derivation trees for new phenomena. E.g. Kepler's third
law, which states that r 3/P2 is constant, can be derived by reusing the
following subtree in figure 3 from the derivation tree in figure 2. This
subtree reflects a theoretical model of a general planet-satellite or sun-planet
system -- or any other orbiting system where the mass of the orbiting
particle is negligible compared to the other.

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

Figure 3. A subtree from figure 2 reflecting a theoretical model of a planet-
satellite system

The subtree in figure 3 needs only to be extended with a derivation step that
solves the last equation for r3/P2, as represented in figure 4.

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2π r/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

Figure 4. Derivation tree for Kepler's third law from the subtree in figure 3

Thus we can productively reuse partial derivations of previous phenomena
to derive new phenomena. Instead of starting each time from scratch, we
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learn from previous derivations and reuse them for solving new problems.
This is exactly what the exemplar-based view entails: a theory is viewed as a
prior corpus of derivations or problem-solutions of exemplary phenomena
(our body of physical knowledge, if you wish) by which new phenomena
are predicted and explained. In a similar way we can derive the distance of a
geostationary satellite, namely by solving the subtree in figure 3 for r .

However, it is not typically the case that derivations involve only one
subtree. For example, in deriving the velocity of a satellite at a certain
distance from a planet, we cannot directly use the large subtree in figure 3,
but need to extract two smaller subtrees from figure 2 that are first combined
by term substitution (represented by the operation "°"1) and then solved for v
in figure 5:

F = ma a = v2/r

F = mv2/r  

F = GMm/r2 F = ma a = v2/r

F = mv2/r  F = GMm/r2

o =

mv2/r = GMm/r2

=

F = ma a = v2/r

F = mv2/r  F = GMm/r2

mv2/r = GMm/r2

v = √ (GM/r)

=

Figure 5. Constructing a derivation tree for a satellite's velocity by
combining two subtrees from figure 2

1 The substitution operation or combination operation "° " is a partial function on pairs of labeled

trees; its range is the set of labeled trees. The combination of tree t and tree u, written as t °  u, is

defined iff the equation at the root node of u can be substituted in the equation at the root node of t
(i.e. iff the lefthandside of the equation at the root node of u literally appears in the equation at the

root node of t). If t °  u is defined, it yields a tree that expands the root nodes of copies of t and u to a

new root node where the righthandside of the equation at the root node of u is substituted in the
equation at the root node of t. Note that the substitution operation can be iteratively applied to a

sequence of trees, with the convention that °  is left-associative.
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Although exceedingly simple, figure 5 shows that we can create new
derivations by combining different parts from previous derivations, i.e. from
exemplars. The result can in principle be used as an exemplar itself.

EBE can be summarized by the following two parameters: (1) a corpus
of derivation trees representing exemplars and (2) a matching procedure that
combines subtrees from the corpus by means of term substitution into a
new derivation tree. (Of course there may be additional mathematical
operations on the root node of each subtree, to which I will come back in the
next section.) Note that subtrees can be of any size: from single equations to
any combination of laws up to entire models and derivations. This reflects
the continuum between rules, rule-schemes and entire exemplars in EBE.

Derivational Similarity
How does EBE "know" which subtrees from previous explanations can be
reused in solving a new problem -- rather than trying out all combinations of
subtrees? Kuhn's (and also Giere's) suggestion is that scientists see
similarity relations or family resemblances between a new phenomenon and
previous problem solutions and therefore know which law patterns can be
applied to derive the new phenomenon. This similarity relationship remains
a rather vague notion in most accounts and some believe it cannot be
formalized or that seeking a formalization should be resisted (cf. Kuhn
1970, p. 192). How does EBE deal with this? Since EBE's matching
procedure is entirely derivational, I interpret the notion of similarity in terms
of derivational or explanatory similarity. Following Bod (2004), a new
phenomenon is derivationally similar to a previously explained phenomenon
if the derivation of the previous phenomenon can be (partially) reused to
explain the new phenomenon, that is, if their resulting derivation trees share
one or more subtrees. The larger the subtrees they share -- i.e. the larger the
partial match between the two trees -- the more derivationally similar they
are. Rather than trying to define similarity between phenomena, EBE
focuses on the similarity between derivations of phenomena.

Still this similarity measure does not tell us which subtrees from
previous derivation trees can be used to explain a newly presented
phenomenon. Sure enough, EBE could exhaustively enumerate all possible
combinations of subtrees that result in a derivation of the phenomenon, and
next establish the similarity relations by determining the largest partial
matches with previous derivations. But this is highly inefficient and
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unnecessary. In fact, there exist algorithms that can establish the largest
partial match in one go by computing the so-called shortest derivation of a
given phenomenon. The shortest derivation of a phenomenon is its
derivation which consists of the smallest number of subtrees from the
corpus. Since subtrees are allowed to be of arbitrary size, the shortest
derivation corresponds to the derivation tree which consists of largest partial
match(es) with previous derivation trees in the corpus. Given a set of
subtrees and a (new) phenomenon, the shortest derivation can be computed
by means of a so-called best-first search procedure which efficiently
searches for the shortest path from root node (i.e. the phenomenon) to leaf
nodes (i.e. laws or antecedent conditions) -- where path length is defined as
the number of subtrees (see Bod 2000; Cormen et al. 2002). Thus
derivational similarity can be maximized by minimizing derivation length.

EBE embodies the hypothesis that scientists try to explain a new
phenomenon by maximizing derivational similarity between the new
phenomenon and previously derived phenomena. And the shortest
derivation provides a possible way to attain this goal. The rationale behind
maximizing derivational similarity is that it favors derivation trees which
maximally overlap with previous derivation trees, such that only minimal
recourse to additional derivational steps needs to be made. Note that EBE
does not imply that scientists actually use a best-first search algorithm in
explaining new phenomena. The existence of such an algorithm only shows
that it is possible in principle to find an explanation which is derivationally
most similar to previous explanations.
 For example, the phenomenon known as Kepler's third law in figure 4
is maximally similar (modulo equivalence) to the problem of deriving the
Earth's mass from the Moon's orbit in figure 2, because only one big subtree
(figure 3) from the Earth's mass problem is needed to derive Kepler's law.
Even if the two problems may seem different to the layman, for the
physicist they are nearly equal, except for the final solution of a certain
variable. The new problem can be solved by almost entirely reusing a
previous problem solution, which is in fact based on the same model. Also
the phenomenon of the velocity of a satellite in figure 5 is quite similar to the
Earth-Moon system, though somewhat less than Kepler's third law since it
involves two (smaller) subtrees that result in a smaller fraction of common
derivation steps, as can be seen by comparing resp. figures 5 and 4 with
figure 2.
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In passing I should note that it is also possible for one phenomenon to
have different derivation trees, in which case the phenomenon may be called
derivationally redundant. For example, it is well known that the problem of
deriving the Earth's mass can be solved not only from the Moon's orbit but
also from the gravitational acceleration of an object at the Earth's surface.
Thus our notion of similarity only tells us something about the similarity of
the derivations of phenomena rather than of the phenomena themselves. If
one phenomenon has two different derivations with no common subtrees,
then these derivations refer to different underlying models. We will come
back to this at the end of section 3.

We should keep in mind that the phenomena discussed so far are highly
idealized and limited to textbook examples. There is no historical analog of
using parts from the derivation of the Earth's mass to solve Kepler's third
law (it rather happened the other way round). Yet in science education the
two problems are treated as closely interconnected, and with good reason: it
shows that the two problems can be solved by using the same law schemes
and underlying model. In the next section I will investigate how the EBE
approach can be extended to real-world systems and technological devices.
As an intermediate step, I could also have dealt with idealized phenomena
that are not exactly solvable. A typical example is the three-body problem in
Newtonian dynamics. Even if we make the problem unrealistically simple
(e.g. by assuming that the bodies are perfect spheres that lie in the same
plane), the motion of three bodies due to their gravitational interaction can
only be approximated by techniques such as perturbation calculus. However,
in perturbation calculus every derivation step still follows numerically from
higher-level laws. The actual challenge lies in real-world systems for which
there are derivation steps that are not dictated by any higher-level law.

3. Extending EBE to real-world systems and technological devices
Derivations of real-world systems and technological devices are strikingly
absent in physics textbooks. But they are abundant in engineering practice.
As an example I will discuss a concrete system from hydraulics: the velocity
of a jet through a small orifice, known as Torricelli's theorem, and which I
will also refer to as an orifice system. I have chosen this system because it
functions as a shared example in hydraulics on which several other systems
are modeled, and yet it has no rigorous solution from higher-level laws but
involves additional empirical coefficients. I will show how a "derivation" of
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the orifice system is used as an exemplar for deriving a range of other real-
world systems, such as weirs, notches and water breaks.

The orifice system is usually derived from Daniel Bernoulli's famous
equation, which in turn is derived from the Principle of Conservation of
Energy.2 According to the Principle of Conservation of Energy the total
energy of a system of particles remains constant. The total energy is the sum
of kinetic energy (Ek), internal potential energy (Ep,int) and external potential
energy (Ep,ext):

ΣE  =  Ek + Ep,int + Ep,ext  =  constant

Applied to an incompressible fluid, the principle comes down to saying that
the total energy per unit volume of a fluid in motion remains constant, which
is expressed by Bernoulli's equation:

ρgz + ρv2/2 + p  =  constant

The term ρgz is the external potential energy per unit volume due to gravity,

where ρ  is the fluid's density and z the height of the unit (note the analogy

with mgh in classical mechanics). The term ρv2/2 is the kinetic energy per
unit volume (which is analogous to mv2/2 in classical mechanics). And p is
the potential energy per unit volume associated with pressure. Bernoulli's
equation is also written as

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

which says that the total energy of a fluid in motion is the same at any two
unit volumes along its path.

Here is how the engineering textbook Advanced Design and Technology
presents the derivation of Torricelli's theorem from Bernoulli's equation
(Norman et al. 1990, p. 497):

We can use Bernoulli's equation to estimate the velocity of a jet emerging from a
small circular hole or orifice in a tank, Fig. 12.12a. Suppose the subscripts 1 and 2
refer to a point in the surface of the liquid in the tank, and a section of the jet just

2 Bernoulli used a precursor of this principle which was known as "Equality between the Potential
Ascent and Actual Descent" (see Mikhailov 2002, p. 70).
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outside the orifice. If the orifice is small we can assume that the velocity of the jet
is v at all points in this section.

h

v

1

2

vena contracta

(a)

(b)

Figure 12.12

The pressure is atmospheric at points 1 and 2 and therefore p1 = p2. In addition the
velocity v1 is negligible, provided the liquid in the tank has a large surface area. Let

the difference in level between 1 and 2 be h as shown, so that z1 − z2 = h. With
these values, Bernoulli's equation becomes:

h = v2/2g   from which   v = √(2gh)

This result is known as Torricelli's theorem. If the area of the orifice is A the
theoretical discharge is:

Q(theoretical) = vA = A√(2gh)

The actual discharge will be less than this. In practice the liquid in the tank
converges on the orifice as shown in Fig. 12.12b. The flow does not become
parallel until it is a short distance away from the orifice. The section at which this
occurs has the Latin name vena contracta (vena = vein) and the diameter of the jet
there is less than that of the orifice. The actual discharge can be written:

Q(actual) = CdA√(2gh)

where Cd is the coefficient of discharge. Its value depends on the profile of the
orifice. For a sharp-edged orifice, as shown in Fig. 12.12b, it is about 0.62.

Figure 6. Derivation of Torricelli's theorem in Norman et al. (1990)
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Thus the theoretically derived discharge of the system differs substantially
from the actual discharge and is corrected by a coefficient of discharge, Cd.
This is mainly due to an additional phenomenon which occurs in any orifice
system: the vena contracta. Although this phenomenon is known for more
than three centuries (cf. Torricelli 1644), no rigorous derivation exists for it
and it is taken care of by a correction factor. Note that the correction factor is
not an adjustment of a few percent, but of almost 40%. The value of the
factor varies however with the profile of the orifice and can range from 0.5
(the so-called Borda mouthpiece) to 0.97 (a rounded orifice).

Introductory engineering textbooks tell us that coefficients of discharge
are experimentally derived corrections that need to be established for each
orifice separately (see Norman et al. 1990; Douglas and Matthews 1996).
While this is true for real-world three-dimensional orifices, it must be
stressed that there are analytical solutions for idealized two-dimensional
orifice models by using free-streamline theory (see Batchelor 1967, p. 497).
Moreover, Sadri and Floryan (2002) have shown that the vena contracta can
also be simulated by a numerical solution of the general Navier-Stokes
equations which is, however, again based on a two-dimensional model. For
three-dimensional orifice models there are no analytical or numerical
solutions (Munson 2002; Graebel 2002). The coefficients of discharge are
then derived by physical modeling, i.e. by experiment. This explains perhaps
why physics textbooks usually neglect the vena contracta in dealing with
Torricelli's theorem. And some physics textbooks don't deal with Torricelli's
theorem at all. To the best of my knowledge, all engineering textbooks that
cover Torricelli's theorem also deal with the coefficient of discharge. (One
may claim that the vena contracta can still be qualitatively explained:
because the liquid converges on the orifice, the area of the issuing jet is less
than the area of the orifice. But there exists no quantitative explanation of Cd
for a three-dimensional jet.)

Although no analytical or numerical derivations exist for real-world
orifice systems, engineering textbooks still link such systems via
experimentally derived corrections to the theoretical law of Bernoulli, as if
there were some deductive scheme. Why do they do that? One reason for
enforcing such a link is that theory does explain some important features of
orifice systems: the derivation in figure 6, albeit not fully rigorous, explains
why the discharge of the system is proportional to the square-root of the
height h of the tank, and it also generalizes over different heights h and
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orifice areas A. Another reason for enforcing a link to higher-level laws is
that the resulting derivation can be used as an exemplar for solving new
problems and systems. To show this, I will first turn the derivation in figure
6 into its corresponding derivation tree. But how can we create such a
derivation tree if the coefficient of discharge is not derived from any higher-
level equation? The orifice system indicates that there can be
phenomenological models that are not derived from the theoretical model of
the system. Yet, when we write the coefficient of discharge as the empirical
generalization Q(actual) = CdQ(theoretical), which is in fact implicit in the
derivation in figure 6, we can again create a derivation tree and "save" the
phenomenon. This is shown in figure 7 (where we also added the principle
of conservation of energy).

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh) Q(theoretical) = vA  

Q(theoretical) = A√(2gh) Q(actual) = CdQ(theoretical)

Q(actual) = CdA√(2gh)

Figure 7. Derivation tree for the derivation in figure 6

The tree in figure 7 closely follows the derivation given in figure 6, where
the initial conditions for p1, p2, v1, z1 and z2 are represented by a separate
label in the tree. The coefficient of discharge is introduced in the tree by the
equation Q(actual) = CdQ(theoretical). Although this equation does not
follow from any higher-level law or principle, we can use it as if it were a
law. Of course it is not a law in the universal sense; it is a correction, a rule
of thumb, but it can be reused for a range of other hydraulic systems,
ranging from nozzles, notches, weirs, open channels and many pipeline
problems -- see Douglas and Matthews (1996).

Does the derivation tree in figure 7 again represent a deductive-
nomological (D-N) explanation? Different from the derivation trees in
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section 2, the final result Q(actual) = CdA√(2gh) in figure 7 is not deduced

from general laws and antecedent conditions only. Additional knowledge in
the form of a correction is needed to enforce a link. While this correction can
be expressed in terms of a mathematical equation, it clearly goes beyond the
notion of fundamental law or antecedent condition that are said to be
essential to a D-N explanation (see Hempel 1965, p. 337).3 Of course, the
correction can be viewed as an auxiliary hypothesis, but it should be kept in
mind that it is not derived from any higher-level law.

It is also difficult to frame the derivation tree in figure 7 into the
semantic notion of theoretical model, since the formula Q (actual) =

CdA√(2gh) is not true in the theoretical model of the system, except if Cd

were equal to 1, which never occurs. However, the derivation tree does seem
to concur in the notion of a partial model (or partial structure) since such a
model allows for accommodating only a partial satisfaction of (some of) the
laws in the theory (see da Costa and French 2003, p. 60). We can imagine a
hierarchy of models: a theoretical model, a phenomenological model and a
data model that are connected in terms of partial isomorphisms. The
derivation tree in figure 7 implies two of such models: a theoretical model of
discharge and a phenomenological model of discharge which are connected
by Cd.

A new EBE model
What does this all mean for EBE? By using the derivation tree in figure 7 as
an exemplar and by using the same substitution mechanism for combining
subtrees from exemplars as in section 2, together with a mathematical
procedure that can solve an equation, we obtain an exemplar-based model
for fluid mechanics that can explain a range of new real-world systems. For
example, the three subtrees in figure 8 can be extracted from the derivation
tree in figure 7 and be reused in deriving the rate of flow of a rectangular
weir of width B and height h (see e.g. Norman et al. 1990, p. 498).

3  Note that the correction factor does neither fit the notion of what Hempel called a proviso
(Hempel 1988). A proviso would consist of the condition that there are no additional phenomena and
thus no vena contracta. Under this proviso, the derivation of the discharge would need no correction
factor, but it would be far from the truth.
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ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA  Q(actual) = CdQ(theoretical)

Figure 8. Three subtrees from figure 7 that can be reused to derive a weir

By adding the mathematical equivalence vA = ∫vdA and the equation dA =
Bdh, which follows from the definition of a rectangular weir, we can create
the derivation tree in figure 9 for the discharge of a weir.

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρ v22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA  

Q(actual) = CdQ(theoretical)

Q(theoretical) = ∫vdA dA = Bdh

Q(theoretical) =  ∫vBdh

Q(theoretical) =  B√(2g) ∫√hdh

Q(theoretical) =  (2/3)B√(2g) h3/2

Q(actual) =  (2/3) Cd B√(2g) h3/2

Figure 9. Derivation tree for a weir constructed by combining the subtrees
from figure 8

The derivation tree in figure 9 closely follows the derivations given in
Norman et al. (1990, p. 498) and Douglas and Matthews (1996, p. 117),
where a weir system is constructed out of an orifice system. This
corresponds to engineering practice where new systems are almost literally
built upon or constructed out of similar previous systems. To give an
historical example, the earliest known derivation of the weir system by Jean-
Baptiste Bélanger (1828, p. 37) takes the orifice system as given and reuses
it to derive the formula for the weir system in figure 9. That is, rather than
deriving the weir system from scratch (i.e. from the principle of energy



16

conservation), Bélanger reused not only Bernoulli's derivation of Torricelli's
theorem (as reflected by the leftmost subtree in figure 8) but also the
empirical coefficient of discharge (the rightmost subtree in figure 8) and the
equation for discharge itself (the intermediate subtree in figure 8). Bélanger
thus modeled the weir system by reusing and extending (parts of) a
previously derived system in such a way that only minimal recourse to
additional derivational steps is needed. EBE simulates this exemplar-based
modeling by combining those derivational chunks that maximize
derivational similarity or, equivalently, minimize derivation length. Note that
the three subtrees in figure 8 indeed correspond to the smallest number of
subtrees from the orifice system that are needed to construct, via some
intermediate mathematical steps, a derivation for the weir system.

The resulting derivation in figure 9 effectively becomes an exemplar
itself (which in EBE means that it is added to the corpus) and is reused and
extended to derive a so-called V-notch. The V-notch, in turn, is extended to
derive a so-called trapezoidal notch, which is again further extended to
derive a Cipolletti weir, etc. (see e.g. Douglas and Matthews 1996; Chanson
2002). Modeling in engineering is thus highly cumulative: new systems are
built upon or constructed out of previous systems and their derivations form
increasingly complex wholes. We can handle this complexity by taking
large(st) partial derivations from previous systems as "given" (as in EBE)
and work from there, rather than deriving a system all the way down from
laws.

The example of building new systems out of largest possible
derivational chunks from previous systems is not only interesting for
simulating engineering practice. I urge that we actually need exemplar-based
knowledge to derive new real-world systems. Just compare the derivation of
the weir in figure 9 with figure 5 in section 2 where we also constructed a
new derivation tree by combining subtrees from a previous derivation tree --
i.e. a satellite's velocity from a derivation of the Earth's mass. But there is a
very important difference: while the phenomenon represented in figure 5 can
just as well be derived from theoretical laws rather than from previous
subtrees, this is not the case for the phenomenon represented in figure 9. For
deriving the weir system, we need to make recourse to the empirical rule
Q(actual) = CdQ(theoretical) which is taken from a previously explained
phenomenon that functions as an exemplar.

This use of theory-external knowledge in engineering modeling is also
discussed by Margaret Morrison and Mary Morgan who call it "additional
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'outside' elements" (Morrison and Morgan 1999, p. 11). They argue that
models are autonomous entities which mediate between theory and the
world. EBE is consonant with this view, in that previous models or
exemplars can be reused almost independently of theory for deriving new
systems. But in addition, EBE provides an exact computational model for
dealing with "additional 'outside' elements". EBE is also in agreement with
Boumans (1999) who argues that models are used as "recipes" for
constructing other models. According to Boumans, models in economics
integrate a broad range of ingredients such as analogies, metaphors,
theoretical notions, mathematical concepts and techniques, stylized facts,
empirical data and even policy views. In the next section, I will discuss
models from language technology that also include various kinds of other
elements such as idiosyncratic and idiomatic expressions. EBE is also
congenial to the accounts by Nancy Cartwright and Ronald Giere.
Cartwright gives a wealth of examples for her claim that "approximations
and adjustments are required whenever theory treats reality" (Cartwright
1983, p. 13). In similar vein, Giere states that "strictly speaking, most
purported laws of nature seem clearly to be false" (Giere 1999, p. 90). But
while all these accounts stress the necessity of using theory-external
elements in modeling, none of the accounts propose a computational
mechanism which describes how theory-internal and theory-external
knowledge can be integrated and (re)used for deriving new systems.

The surplus value of EBE, as I see it, is that (1) it proposes a
computational approach to modeling in engineering, explicating which parts
of previous systems and models can be used where, and (2) it integrates
both theory-internal and theory-external knowledge; that is, as long as
empirical rules, corrections, approximations, normalizations and the like can
be stated in terms of mathematical equations they can be integrated by a
derivation tree, and be reused to solve new problems by maximizing
derivational similarity. EBE bypasses the notorious problem of defining
"similarity of phenomena" by using a more precise (though perhaps more
limited) notion of "similarity of derivations" of phenomena. EBE may
therefore also suggest a formal alternative to case-based reasoning where
previous cases are used to explain other, "similar" cases (cf. VanLehn
1998).

In doing all this, we need to slightly extend our previous definition of
EBE given in section 2. There we stated that the leaf nodes of a derivation
tree should refer to either general laws or antecedent conditions. In the new
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EBE model, the leaf nodes may also be empirical rules -- or any other
equations that are not deduced from higher-level laws. We may lump these
three kinds of knowledge (laws, antecedent conditions and empirical rules)
together as "knowledge that is not derived from higher-level knowledge".
The definition of derivational similarity remains the same. We conjecture
that scientists try to derive a new phenomenon by maximizing derivational
similarity with previously derived phenomena, i.e. by using the largest
partial matches from previous derivation trees, such that minimal recourse to
additional derivation steps is needed.

The final formula in figure 9 is widely used in hydraulic engineering,
where the coefficient Cd is often established experimentally. Yet it should be
stressed that Cd is not a meaningless fudge factor. Instead, Cd has been
defined in terms of other meaningful variables for various types of systems.
For example, for the class of rectangular weirs there exists an empirical
generalization which computes Cd from two other quantities. This
generalization was first formulated by Henry Bazin, the assistant of the
celebrated hydaulician Henry Darcy (Darcy and Bazin 1865), and is
commonly referred to as Bazin formula (also called "Bazin weir formula",
to distinguish it from "Bazin open channel formula" -- see Douglas and
Matthews 1996, p. 119):

Cd  =  (0.607 + 0.00451/H) ⋅ (1 + 0.55(H/(P + H)2))

In this formula H = head over sill in metres, and P = height of sill above
floor in metres of the weir.  Bazin formula is an empirical regularity derived
from a number of concrete weir systems. Although the regularity is known
for more than 150 years, there exists no derivation from higher-level laws.
Yet this does not prevent us from using and reusing the regularity in
designing real world systems that have to work accurately and reliably, and
it is easy to see that the formula can be integrated in the derivation tree of
figure 9. Hydraulics is replete with formulas like Bazin's, each describing
particular regularities within a certain flow system. There are, for example,
Francis formula, Rehbock formula, Kutter formula, Manning formula,
Chezy formula, Darcy formula, Keulegan formula, to name a few (see
Chanson 2002 for an overview). Many of these formulas are known for
more than a century but none of them has been deduced from higher-level
laws. They are entirely based on previous systems and form the lubricant
that makes new systems work.
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In passing it is noteworthy that we cannot derive the phenomena from
classical mechanics in section 2 by means of the derivations from fluid
mechanics given in this section. For instance, Kepler's third law cannot be
derived by subtrees from the orifice system. While this may seem trivial,
there are many classical phenomena that can be derived by subtrees from the
derivations given in this section. An example is the (idealized) velocity that
an object attains in free fall from a height h in Newtonian mechanics, which

is v = √ (2gh). This is "equal" to Torricelli's theorem, which gives the

(idealized) velocity of the jet from a tank of height h, v = √(2gh). So what

happens if we use EBE to construct a derivation for a phenomenon which is

merely described by v = √(2gh) on the basis of a corpus which contains

both the Bernoullian derivation of Torricelli's theorem and the Newtonian
derivation of the velocity of a falling object? Then EBE obtains two different
derivations for this phenomenon: one derived from Bernoulli's law and one
from Newton's laws. Since the derivations are both maximally similar to a
derivation in the corpus, which of the two should be chosen? If no
distinction is made between the velocity of a fluid and that of a point mass, v

= √(2gh) is inherently ambiguous (or semantically undetermined) and two

different models and derivations apply to it. This is not as problematic as it
seems, since historically Daniel Bernoulli solved the problem of the velocity
of water from an orifice by analogically treating a flow in terms of
Newtonian-like particles, which makes the two phenomena indeed
"equivalent". But if we want to avoid EBE mixing up derivations from
different fields, we should introduce different variables for point mass
velocity and fluid velocity. This can be accomplished by using
subcategorizations, e.g. vp for the velocity of a particle and vf for a fluid. This
way, the two velocities cannot be substituted, and the phenomena vp =

√(2gh) and vf  = √ (2gh) get each a different derivation. But Bernoulli's

historical example suggests that mixing up terms may also be illuminating,
opening the door to analogical modeling.

4. EBE in other disciplines: an excursion into language technology
What counts for hydraulics also counts for many other technological
disciplines: real-world systems and phenomena are derived not from general
laws, but from parts of derivations of previous systems and phenomena. As
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an example from the other end of the technological spectrum, I will give a
brief excursion into language technology.

While language theory is permeated by the idea that a language is
aptly described by a formal grammar, i.e. a finite and succinct set of rules
which can derive an infinite set of well-formed utterances, language
technology does not work that way. As soon as a natural language
processing system, such as a dialog understanding system or a machine
translation system, needs to deal with a non-trivial fragment of a language,
say English, formal grammars turn out to be severely inadequate.
Grammars either undergenerate, which means that they provide no
derivation for otherwise well-formed utterances, or they overgenerate,
which means that they provide too many derivations for well-formed
utterances (cf. Manning and Schütze 1999). "All grammars leak", is the
well-known dictum of Edward Sapir (Sapir 1921, p. 38). In fact, there are
so many idiosyncratic and idiomatic phenomena in natural language that
only an approach which takes into account previously produced sentences
can accurately model a language. After unsuccessful attempts to apply
formal grammars to automatic linguistic analysis, a different paradigm has
been developed since the 1980s in language technology: new sentences are
derived not by using a concise set of rules, but by using a large corpus of
previously derived sentences together with a "learning procedure" (see
Manning and Schütze 1999 for an historical overview).4

Before going into the details of this learning procedure, let me first
explain what derivations of sentences look like. It is by now widely
acknowledged that sentence derivations can be represented by tree structures,
similar to derivation trees in physics in the previous sections. The first
linguistic tree structure was (most likely) proposed by Wilhelm Wundt in
his Logik (Wundt 1880). But it was Noam Chomsky who made the notion
of syntactic phrase-structure tree more widely accepted (Chomsky 1957).
Although richer structures have also been proposed in the meantime
(ranging from feature structures to attribute-value matrices), there is ample
agreement that tree structures form the backbone of sentence analysis,
sometimes enriched with phonological, morphological and semantic
representations (see Sag, Wasow and Bender 2003; Bresnan 2000;

4 Even if the notion of "grammar" is still used by many systems it is not succinct but consists of
(tens of) thousands of rules that are derived from actual language corpora (see e.g. Knuuttila and
Voutilainen 2002).



21

Goldberg 1995). In this section, I will focus on syntactic representations
only.

So what does a syntactic phrase-structure tree look like? Figure 10
gives two tree structures for respectively the sentences She wanted the dress
on the rack and She saw the dog with the telescope.

 S

NP

she

VP

VP

 V NP

PP

 P NP

 S

NP VP

 V

wanted

NP

NP PP

NP P

she

the dress

the rackon

the dog thesaw with telescope

Figure 10. Two sentences with their phrase-structure trees

A phrase-structure tree describes how parts of a sentence combine into
constituents and how these constituents combine into a representation for the
whole sentence. The constituents in a phrase-structure tree are labeled with
syntactic categories such as NP for noun phrase, PP for prepositional
phrase, VP for verb phrase and S for the whole sentence. To keep the
example simple, we have left out some low-level labels for Noun and
Article. The two trees in figure 10 are structurally different in that in the first
sentence the prepositional phrase on the rack forms a noun phrase with the
dress, whereas in the second sentence the prepositional phrase with the
telescope forms a verb phrase with saw the dog. Both sentences are
"structurally ambiguous", to which I will come back below.

Although phrase-structure trees are not labeled with equations, they
are compositionally built up as in physics derivation trees: each category is
defined in terms of its underlying subcategories (and if we enrich each
syntactic label with its logical-semantic interpretation, we would again obtain
derivation trees with equations). Note that phrase-structure trees are
represented upside down: the root is at the top instead of at the bottom. This
is pure convention.

How can these sentences be used to derive new sentences, i.e. what
does a "learning procedure" look like? There is not one way to do this. One
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straightforward but not very succesful method is to read off the "grammar
rules" that are implicit in the trees, such as S => NP VP, VP => V NP, NP
=> NP PP, NP => the dress, etc. in figure 10 (Charniak 1996).5 Another,
more successful method is by reading off for every single word a subtree
including that word (Chiang 2000). Yet another and still more successful
method is by first enriching each syntactic label with its so-called
"headword" and by next reading off the rules from the trees (Collins 1997).
We know the relative successfulness of these methods as they have been
evaluated on the same benchmark, the so-called Penn Treebank corpus
consisting of 50,000+ sentences (Marcus et al. 1993). We will not go into
further details of these different methods (but see Bod 1998 or Bod et al.
2003).

While these methods may seem rather disparate, they are based on the
same underlying idea: new sentences are derived by parts of previously
derived sentences. The distinctive feature of each method is their definition
of what are to be considered the relevant parts. Yet it is also possible to
generalize over these different methods by taking all  partial trees as
"relevant" parts. This general model is known as Data-Oriented Parsing or
DOP (Bod 1998). By putting restrictions on the parts, other models and
methods can be instantiated (see Charniak 1997).

The following example illustrates how the general DOP model works.
If we take the sentences in figure 10 as our (unrealistically small) corpus, we
can derive the new sentence She saw the dress with the telescope by
extracting two subtrees from the trees in figure 10 and by combining them
by means of label substitution:

NP

the dress

° =  S

NP

she

VP

VP

 V NP

PP

 P NP

the thesaw with telescopedress

 S

NP

she

VP

VP

 V NP

PP

 P NP

thesaw with telescope

Figure 11. Deriving a new sentence by combining subtrees from figure 10

5 A grammar rule like S => NP VP says that a sentence (S) consists of a noun phrase (NP) followed
by a verb phrase (VP).
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Note the similarity of label substitution with term substitution in the
previous sections. Like term substitution, label substitution is a partial
function on pairs of labeled trees and its range is the set of labeled trees. The
label substitution of tree t and tree u, written as t ° u, is defined iff the root

node of u is equal to the leftmost syntactic leaf node of t (which in figure 11
is an NP). If label substitution is defined, it yields a tree where u is
substituted in the leftmost syntactic leaf node of t . As in EBE, the
underlying idea of DOP is that new trees are constructed by combining
partial trees from a prior corpus. It is easy to see that we can create an EBE
model for DOP by properly instantiating the two parameters given in section
2.

In figure 11, the new sentence She saw the dress with the telescope is
interpreted analogous to the corpus sentence She saw the dog with the
telescope: both sentences receive roughly the same phrase structure. Yet we
can also derive an alternative phrase structure for this new sentence, namely
by combining three (rather than two) subtrees from figure 10, as shown in
figure 12.

 S

NP VP

 V NP

NP PP

she

the dress

 V

saw

PP

 P NP

thewith telescope

=  S

NP VP

 V NP

NP PP

she

the dress

saw

 P NP

thewith telescope

° °

Figure 12. A different derivation for She saw the dress with the telescope

Thus the sentence She saw the dress with the telescope can be derived in (at
least) two different ways: either analogous to the first tree in figure 10 or
analogous to the second tree in figure 10. Which one should be chosen? As
in EBE, it is hypothesized that humans derive a new sentence by
maximizing derivational similarity -- or equivalently, minimizing derivation
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length -- with respect to previously derived sentences.6 For our example
sentence She saw the dress with the telescope, the shortest derivation (which
maximizes derivational similarity) is represented by figure 11: only two
subtrees from the corpus are needed to construct this tree, while at least three
corpus-subtrees are needed to construct the tree in figure 12.

As before, the notion of derivational similarity favors new trees that
are most similar to previous trees. Of course, the corpus in figure 10 is far
too small for simulating actual language processing. More realistic
experiments use corpora of hundreds of thousands of (manually)
constructed phrase-structure trees. By using largest possible derivational
chunks from such corpora, we can also take into account arbitrary multi-
word expressions or idiom chunks such as to take advantage of and fixed
phrases such as What time is it? (note that one does not say How late is it?
in English).

While DOP generalizes over a large number of models in natural
language technology, EBE is even more general: it allows in principle for
corpora of any sort of trees -- be they physical, linguistic, musical or of any
other kind. As long as we can construct a corpus of exemplary derivations
for a certain discipline, we can create an EBE model for it and use it to
derive new phenomena without making recourse to an axiomatic system of
rules. Sure enough, the exemplary derivations in the corpus do include
general laws or rules, such as F  = m a in physics or S => NP VP in
linguistics, but they also include very particularist information ranging from
empirical coefficients in hydraulics to idiomatic expressions in natural
language that do not follow from these laws or rules. The world may be full
of nomothetic elements like laws. But it is also full of idiographic,
particularist elements such as ad hoc corrections. EBE does justice to both.

5. Conclusion
I have argued for a general model of "applying science", termed EBE. This
model explains new systems and phenomena by recombining fragments or
chunks from previously derived systems and phenomena. Examples from
hydraulics and language technology suggest that EBE can operate with any
kind of corpus as long as we have a precise notion of "derivation". This
results in the following general methodology for applying science: (1)
construct a prior corpus of derivations of exemplary phenomena, and (2)

6 Most models also take into account the frequency of occurrence of derivational chunks in the
corpus (see Manning and Schütze 1999), but I will not go into this here.



25

combine as large derivational chunks as possible from the corpus in deriving
new phenomena. Newly constructed derivations are added to the corpus, and
may be reused as exemplars themselves. I contend that science and
technology should be understood not in terms of a "minimalist" system of
laws or rules, but in terms of a "maximalist", dynamically updated ensemble
of derivations.
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