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Although Galileo’s struggle to mathematize the study of nature is well
known and oft discussed, less discussed is the form this struggle takes in rela-
tion to Galileo’s first new science, the science of the second day of the
Discorsi. This essay argues that Galileo’s frst science ought to be understood
as the science of matter—unot, as it is usually understood, the science of the
strength of materials. This understanding sheds light on the convoluted
structure of the Discorsi’s first day. It suggests that the day’s meandering
discussions of the continuum, infinity, the vacuum, and condensation and
rarefaction establish that a formal treatment of the “eternal and necessary”
properties of matter is possible; i.e., that matter as such can be considered
mathematically. This would have been a necessary, and indeed revolutionary,
preliminary to the mathematical science of the second day because matter itself
was thought in the Aristotelian tradition to be responsible for the departure
of natural bodies from the unchanging and thus mathematizable character of
abstract objects. In addition, the first day establishes that when considered
Dphysically, these properties account for matter’s force of cobesion and resistance
to fracture. This essay closes by showing that this dual style of veasoning ac-
cords with the conceptual structure of mixed mathematics.

1. Introduction

Although Galileo’s Discorsi e Dimostrazioni Matematiche, intorno a due nuove
scienze (1638) is often heralded as his greatest work, the dialogue’s first day
was largely neglected in Galileo’s time and continues to be so in the his-
torical literature. One cause for this neglect is surely the day’s convoluted
structure. In contrast to the clear-cut propositional style of the remaining
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days, the first day appears as a rambling foray into the host of conceptual
issues related to the problem of the cohesion of bodies, often only tangen-
tially. What’s more, the lack of an explicit statement as to the purpose of
the day’s numerous discussions suggests that perhaps there was no unify-
ing purpose, only a mélange of related concerns.!

Despite this apparent incoherence, I will argue that the first day plays a
crucial role in the overall argumentative structure of the Discorsi. The first
day serves as a prelude to the science of the second day by establishing that
certain mathematical properties belong to matter necessarily.? In the sec-
ond day, Galileo derives a set of theorems concerning matter’s resistance to
fracture that rest on fundamental assumptions concerning the mathemati-
cal structure of matter. The role of the first day is to make these mathe-
matical assumptions plausible. It has long been recognized, of course, that
the first day also makes plausible a physical mechanism that causally ac-
counts for matter’s resistance to fracture. I would like to suggest, however,
that what is more important about the first day is that it establishes that
this mechanism can be described mathematically. In particular, by show-
ing that matter’s physical properties are such that its force of cohesion
is finite and acts continuously and uniformly along a given cross-section
of a body, the first day justifies the application of the law of the lever—
the principle on which the science of the second day is based—to the phe-
nomena of fracture. Once the application of the law of the lever is
justified, the causal explanation of matter’s resistance to fracture becomes
irrelevant. In other words, the second day only requires that certain math-
ematical properties are true of matter, regardless of their underlying phys-
ical explanation. It is for this reason that Galileo can frame his causal
account of cohesion as a mere conjecture (fantasia) (Discorsi, p. 27 {66}).?
His attitude towards it echoes his attitude in the third day towards
the (lacking) causal account of the heaviness of bodies. In both cases, he
is committed to a quantitative description of the phenomena in question

1. In contemporary scholarship, the first day is usually discussed in the context of Gali-
leo’s matter theory, particularly his so-called mathematical atomism (see, e.g., Shea 1970;
Smith 1976), and in the context of Galileo’s role in the development of the infinitesimal
calculus (for a concise introduction, see de Gandt {1995, p. 169—-176}). Although many in-
sights can be gleaned from these and similar studies, they ordinarily focus on particular as-
pects of the first day and do not attempt to explain the day’s contents as a whole or its over-
all relation to the remainder of the Discorsi. Notable exceptions are Le Grand (1978) and
Palmerino (2001).

2. I believe the same thesis can be made regarding the relationship of the first day to
the third and fourth days, but I will focus my attention on the second day only. Palmerino
(2001) studies the relationship between the first and last days.

3. References to the Discorsi cite the page number in Drake’s (2000) translation, fol-
lowed by the page number in Favaro’s Opere, Vol. VIII.
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while remaining agnostic about its underlying physical explanation.
Given the structure of the first two days, I will argue that Galileo’s first
new science is an instance of mixed mathematics; or, in the language of
medieval scholasticism, that it is a middle or subalternate science. Under
this description, the first day appears not simply as an attempt to
mathematize certain properties of matter, but as an attempt to establish
that a natural kind—matter—possesses physical properties that can be
understood mathematically.

Two caveats are required here, one concerning Galileo’s relationship to
the tradition of the subalternate sciences and another concerning termi-
nology. The first caveat is that there is significant disagreement regarding
Galileo’s relationship to this tradition. For example, although Wallace
(1992) holds that the young Galileo was an avid student of the theory of
mathematical demonstration of the Posterior Analytics and Machamer
(1978) and Lennox (1986) hold that Galileo’s actual mathematical reason-
ing fit the mold of demonstrations in the subalternate sciences, Laird
(1997) persuasively argues that Galileo was not engaged with (and could
have only been discouraged by!) any traditional philosophical questions
concerning these sciences. While it is beyond the scope of this paper to ar-
bitrate between these lines of thought, it seems that disagreements as to
the very meaning of “the tradition of the subalternate sciences” stand in
the way of a clear understanding of Galileo’s relation to it. The tradition
can be understood as a philosophical one, concerned with the justification
of certain modes of reasoning (as Laird {1997} understands it), or it can be
understood as a practical one, concerned with the application of such rea-
soning to particular physical problems (as Lennox {1986} understands it).
Moreover, Galileo’s relation to it can be judged in light of his own under-
standing of his position in the history of thought (as in Machamer 1978
and Wallace 1992), or it can be judged in light of his contemporaries’ and
successors’ reception of his work (as in Garber 2004). The goal of this es-
say is not to establish any historical claims along these or other possible
axes, but to provide an analytic view of the first two days of the Discorsi
based on internal textual evidence which can later serve as fodder for a
more comprehensive, and needed, historical thesis.

The second caveat is that when claiming that the first day establishes
that “certain mathematical properties belong to matter necessarily,” I do
not mean to be imputing to Galileo any belief in the meraphysical necessity
of the properties he studied. Galileo’s concern was only with matter as it
actually is, and questions regarding whether God could have created it dif-
ferently were foreign to his purposes in the Discorsi. I also do not mean to
impute to Galileo a belief in “essentialism,” the doctrine that “science is
concerned with and is able to discover facts about the inner natures or real
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essences of things” (Osler 1973, p. 504). As Osler rightly emphasizes, Ga-
lileo did not see himself as investigating essences, but the more-or-less ap-
parent properties of phenomena. I will argue, however, that in the case of
matter Galileo considered certain properties to be immutable, to always
accompany matter, and to belong to matter simply by virtue of matter
being the sort of thing it is.* Although “proper attributes” captures this
meaning and would have been a plausible rendering of Galileo’s intention,
using a term of art attributes to Galileo a precision in philosophical mat-
ters that is unwarranted. Although he was certainly aware of the philoso-
phies of his time, in the Discorsi Galileo did not use a technical term to la-
bel the properties he studied. Rather, he only characterized them
discursively as “eternal and necessary” (Discorsi, p. 13 {511). I follow his
lead and use these terms, but stress again that the more metaphysical im-
plications of “necessary” are nowhere to be found in the Discorsi.

Caveats aside, Galileo’s statements regarding the properties of matter
suggests that the Discorsi’s first science ought to be understood as the sci-
ence of matter—i.e., the science of the properties of bodies insofar as they
are enmattered objects—not merely the science of the strength of materials.’
The distinction is fine but important. As I will argue, by viewing Galileo’s
science as an instance of mixed mathematics we can see that the subject of
that science is natural kind—matter. Labeling the science as “the science
of matter” makes this fact explicit in a way that “strength of material”
simply does not. More importantly, and without reliance on mixed mathe-
matics as an analytical tool, it is clear that Galileo does not present
the study of the strength of materials as a free-standing enterprise, but
bases it on considerations regarding the nature of matter. In doing so
he replaces the received Aristotelian conception of matter with a radically
new one—one on which matter itself can have formal, mathematical
properties. Thus, although the moniker “strength of materials” accurately
represents the contents of Galileo’s new science, it fails to capture the
significance of his approach to it.

4. In other contexts Galileo does not focus on similar properties. In the Letters on Sun-
spots, for example, he is happy to examine sunspots by comparing their properties to those
of vapors in a pan, with no regard to the properties’ necessity and immutability.

5. The description of the first new science as one concerning the “strength of materials”
can be found in, for example, Wisan (1978, pp. 37-8), Segre (1989, p. 228) and the trans-
lation of Crew and de Salvio (Galilei {16381 1952, pp. 109, 245). This description seems
to have originated with the Elzevirs, who in their original table of contents for the Discorsi
described the first science as one “concerning the resistance of solid bodies to separation”
(Discorsi, p. 9 [471). The Elzevirs were also responsible for describing the contents of the
second day as a “science” both in the table of contents and the title of the entire work, but
with some justification: in the Discorsi Galileo himself referred to the contents of the sec-
ond day as a science (Discorsi, pp. 15 [541, 143).
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The plan of the work is as follows. In the following section (§2) I exam-
ine the main obstacle offered by Galileo to the mathematical treatment of
matter. It is only against this backdrop that we can understand the radical
nature of Galileo’s project in the first and the second days. In section 3 I
show that the law of the lever is the mathematical principle grounding the
science of the second day and in section 4 I argue that the very application
of this law depends on the contents of the first day. In Section 5 I will sug-
gest that the first new science and Galileo’s arguments for it embody the
conceptual structure of the subalternate sciences. I will provide reasons for
conceiving of Galileo’s new science as the science of matter in both §2 and
§5. I now turn to the first pages of the Discorsi, wherein Galileo sets out
his plan for the next two days.

2. The Obstacle to the New Science

The announced purpose of the Discorsi’s first two days is the investigation
of the disproportionate relation between the absolute size of machines and
their ability to function properly, particularly their ability to resist frac-
ture.® According to Galileo, the principal difficulty in investigating this
relation is that Euclidian proportion theory (Galileo’s main demonstrative
tool in the investigation of mechanical problems) is indifferent to absolute
magnitudes and concerns only ratios.” Galileo puts this difficulty in the
mouth of Sagredo, who holds that since machines are at root geometrical,
and since in geometry only proportions play an essential role, machines
themselves cannot be sensitive to absolute size. At this point in the dia-
logue, the conversation concerns the breaking of scaffoldings:

[What we [are discussing] . . . is something commonly said and
believed, despite which I hold it to be completely idle, as are many

6. A wide range of size-sensitive phenomena were well known since antiquity, and at-
tempts to explain them can be found in the pseudo-Aristotelian Mechanica as well as the
tracts of several of Galileo’s predecessors. The very first question of the Mechanica deals with
the size-dependence of machines by asking why larger balances are more accurate than
smaller ones. Commentaries on the Mechanica consequently tackle the problem of size-
sensitivity in this context; see, e.g., Niccold Tartaglia’s Quesiti et inventioni diverse (1546)
and Giovanni Battista Benedetti’s Diversarum speculationum mathematicarum et physicarum liber
(1585), translated in Drake and Drabkin (1969, pp. 106ff., 180ff.). Similarly, the Discorsi
states that larger clocks are more accurate than smaller ones before tacking the problem
(Discorsi, p. 12 [501). As Renn and Valleriani (mss.) convincingly argue, Galileo’s was in-
spired to confront the problem of size-sensitivity not because of any desire to engage with
the commentary tradition, but because of his involvement with Venetian ship-building
efforts.

7. The very definition of “proportion” was under scrutiny by Galileo and his contempo-
raries, but in ways that do not impact on this problem; see Palmerino (2001) and refer-
ences therein.
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things that come from the lips of persons of little learning . . .
[This is that} one cannot reason from the small to the large, because
many mechanical devices succeed on a small scale that cannot exist
in great size. Now, all reasonings about mechanics have their foun-
dations in geometry, in which I do not see that largeness and small-
ness make large circles, triangles, cylinders, cones or any other
figures [or} solids subject to properties {passioni} different from
those of small ones; hence if the large scaffolding is built with every
member proportional to its counterpart in the smaller one, and if
the smaller is sound and stable under the use of which it is de-
signed, T fail to see why the larger should not also be proof against
adverse and destructive shocks that it may encounter (Discorsi,

pp. 11-12 [49-50D).

Although with characteristic rhetorical zeal Galileo initially presents this
opinion as natural and self-evident, the first and second days of the Discorsi
go to show that Sagredo is wrong; that is, that machines are sensitive to
size and that this sensitivity can be demonstrated geometrically. The pos-
sibility of such a demonstration was of the utmost importance to Galileo,
given his own methodological commitment to necessarily true, conclu-
sions. If his solution to the problem of the size-sensitivity of machines
could not be demonstrated with geometrical necessity, then, by his own
lights, it would not amount to a science. It is for this reason that Galileo re-
jected any non-geometrical explanation of size-sensitivity. For example, he
rejected the opinions of:

[Stome persons of good understanding when, to explain the occur-
rence in large machines of effects not in agreement with pure and
abstract geometrical demonstration, they assign the cause of this to
the imperfection of matter, which is subject to many variations and
defects. Here I do not know whether I can declare, without risking
reproach for arrogance, that even recourse to imperfections of mat-
ter, capable of contaminating the purest mathematical demonstra-
tions, still does not suffice to excuse the misbehavior of machines in
the concrete as compared with their abstract ideal counterparts.
Nevertheless I do say just that . . . (Discorsz, p. 12 {50-51}).

Galileo was not attacking imagined opponents here. Niccold Tartaglia,
for example, a translator into the vernacular of Euclid and Archimedes
and a mechanician in his own right, offered the view in his Quesiti er
inventioni diverse (1546). In his comment on the first question of the
pseudo-Aristotelian Mechanica, Tartaglia explained the size-sensitivity of
balances in terms of virtual displacements. He held that a larger balance is
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more sensitive than a smaller one because a given weight generates a
greater motion in a larger balance. Because Tartaglia did not consider
the time of motion (or, more accurately, he treated motion in differently
sized balances as taking place in the same time), he equated a balance’s
displacement from the equilibrium position with the strength of its mo-
tion. Since the extremities of a larger balance cover a greater distance than
the extremities of a smaller one when the two go out of equilibrium,
Tartaglia concluded that a larger balance is more sensitive. However, he
also noted that a consideration of the phenomena “according to reason, all

matter being abstracted—as . . . Euclid was accustomed to do” often con-
tradicts “[a} test {of} that statement materially and with physical argu-
ments . . . by the sense of sight and with a material balance” (Drake and

Drabkin 1969, p. 106). Tartaglia believed there was an obvious reason for
this: “[Tthe cause of this contradiction stems simply from matter; for
things constructed or fabricated thereof can never be made as perfectly as
they can be imagined apart from matter, which sometimes may cause in
them effects quite contrary to reason” (Drake and Drabkin 1969, p. 106).
That is, Tartaglia believed that embodiment in matter invalidates geo-
metrical reasoning. Clearly at work in this passage is a conception of mat-
ter as that which resists formal, mathematical treatment. Tartaglia makes
no allusions to the philosophical underpinning of the conception, but it
was a basic tenet of the larger framework of scholastic and renaissance hylo-
morphism.® This framework is crucial for understanding Galileo’s view.
Galileo certainly rejected any appeal to matter akin to Tartaglia’s in
the explanation of the size-sensitivity of machines. But this is not to say
that Galileo thought the matter of machines was unrelated to their size-
sensitivity. Rather, it is to say that his response to Sagredo—and with it
his solution to the seeming mismatch between abstract arguments and
concrete machines—involved a rejection of the very conception of matter
with which it was intertwined. By rejecting this conception, Galileo was
also rejecting the very idea that embodiment in matter invalidates geo-
metrical reasoning. He held that matter as such—not the accidental varia-

8. Although Tartaglia himself was not educated at a university and made sparse contact
with the philosophical tradition of his time, a conception of matter similar to the one he
invokes can be traced through the philosophical tradition back to the works of Aristotle
(e.g., Physics 11.8, 199A11, De Generatione Animalium IV.3, 767b13ff, 769b10ff. and IV.4).
See also Meli (1992) for the differing attitudes of Tartaglia and his predecessors to the Aris-
totelian tradition. It is interesting to note that Tartaglia believed that the mismatch be-
tween mathematical arguments and real machines can be minimized by building machines
that are as uniform as possible, but did not believe the mismatch can be entirely elimi-
nated (Drake and Drabkin 1969, pp. 108-109).
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tions that account for its resistance to formal treatment—was responsible
for the size-sensitivity of machines. In the first day of the Discorsi, Galileo
hypothesized that matter’s tendency to cohere and finite capacity to resist
breaking forces are responsible for fracture phenomena. Moreover, he held
that these can be successfully submitted to mathematical analysis. Offer-
ing a full-blown anti-scholastic, single-element theory of matter, Galileo
wrote:

I affirm that abstracting all imperfections of matter, and assuming
it to be quite perfect and inalterable and free from all accidental
change, still rhe mere fact that it is material makes the larger frame-
work, fabricated from the same material and in the same propor-
tions as the smaller, correspond in every way to it except in
strength and resistance against violent shocks; and the larger the
structure is, the weaker in proportion it will be. And since I am
assuming matter to be inalterable—that is, always the same—it is
evident that for this {condition} as for any other eternal and necessary
property, purely mathematical demonstrations can be produced
that are no less rigorous than any others (Discorsi, pp. 12—13 {511,
emphasis added).

In other words, in order to treat fracture mathematically, Galileo sub-
stitutes the conception of matter inspired by hylomorphism with a con-
ception more amenable to finding the cause of fracture in the formal, geo-
metrical character of matter. In this light, we can see that Sagredo’s worry
about the limits of abstract geometrical reasoning is a worry about the
very constitution of matter. Galileo addresses it head-on by rejecting the
conception of matter that leads to the dichotomy between abstract and
concrete machines. He rejects the idea that abstraction from the imperfec-
tions of matter amounts to “[an} abstraction from «// matter” (to use
Tartaglia’s words). Rather, he holds that such an abstraction allows us to
arrive at those properties of matter that are “always the same” and belong
to matter by “the mere fact” that it is matter.” These properties can be
treated mathematically because, like purely mathematical properties, they
are inalterable, eternal, and necessary.

Interestingly, although Galileo’s statements regarding the limits of
geometrical reasoning are given pride of place at the beginning of the
Discorsi, they do not occupy much space in the work. There are few argu-
ments, like the one above, appealing to broad philosophical and method-

9. For a similar problem and approach in relation to Galileo’s study of motion, see
Koertge (1977).
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ological principles in the style of I/ Saggiatore and they are passed over
quickly. Rather, Galileo spends most of the first day establishing that the
particular properties of matter responsible for the force of cohesion are
amenable to treatment by a specific mathematical device, namely the law
of the lever. This is perhaps the hallmark of the Galilean approach to the
mathematization of nature. Unlike his close contemporaries Descartes and
Hobbes, who attempted to justify the mathematical treatment of nature
through broad philosophical systems, Galileo’s approach was piecemeal,
involving the solution to particular problems in particular contexts.

However, and this is the main point of the present section, Galileo’s so-
lution to the particular problem of cohesion was nevertheless based on a
general conception of matter. That is, it was based on the idea that matter
itself possesses a certain structure and this structure (to which T'll recurn
in §4) has “eternal and necessary” properties that can submit to mathe-
matical analysis. Galileo’s science was profoundly new for precisely this
reason: it was a science that not only treated physical bodies mathemati-
cally, it treated their very physicality, their matter, mathematically. To put
matters more suggestively, if less accurately, Galileo’s first science was
truly revolutionary because it provided a formal treatment of the material
causes of fracture phenomena. This would have been an outright impossi-
bility on the Aristotelian conception of matter. In the next two sections I
will show how this formal treatment is based on the law of the lever, how
the law comes to gain its foundational status, and how its application to
cohesion requires that matter’s force of cohesion exemplify particular
mathematical properties, namely continuity, uniformity, and finitude.
These are the properties of matter which Galileo believes are immutable
and belong to matter necessarily.

3. The Foundation of the New Science

That Galileo aimed to base his new science on secure foundational princi-
ples is clear. Early in the Discorsi he notes his dissatisfaction with the lack
of clear foundations in mechanical treatises and promises to correct their
failure. In the mouth of Salviati, he writes:

I cannot refuse to be of service, provided that memory serves me in
bringing back what I once leaned from our Academician {Galileo}
who made many speculations about this subject, all geometrically
demonstrated, according to his custom, in such a way that not
without reason this could be called a new science. For though some
of the conclusions have been noted by others, and first of all by Ar-
istotle, those are not prettiest; and what is more important, they
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were not proved by necessary demonstration from their primary and
unquestionable foundations. Since . . . I want to prove these to you
demonstratively, and not just persuade you of them by probably ar-
guments, I assume that you have that knowledge of the basic me-
chanical conclusions that have been treated by others up to the
present which will be necessary for our purpose. First of all, we
must consider what effect is at work in the breaking of a stick, or of
some other solid whose parts are firmly attached together; for this is
the primary concept {la prima nozionel, and it contains the first simple
principle {1l primo e semplice principil that must be assumed as known
(Discorsi, pp. 15—16 {541, emphasis added).

We can learn three things from this passage. First, the fundamental
principle of the new science concerns “what effect is at work in the break-
ing of a stick.” Second, this fundamental principle is well known and, in
some sense, taken for granted. Third, this principle relates to features of
mechanics that are also supposed to be well known. Although the relation
between the “first simple principle” and mechanics is not explicated here,
other passages suggest that that the principle is a mechanical principle. For
instance, in the opening to the second day, Galileo writes that: “In such
speculations I take as a known principle one which is demonstrated in me-
chanics about the properties of the rod which we call the lever: that in us-
ing a lever, the force is to the resistance in the inverse ratio of the distances
from the fulcrum to the force and to the resistance” (Discorsi, p. 151
[152}). Since this is the oz/y non-purely-geometrical principle Galileo as-
sumes at the beginning of the second day, it must be the very principle re-
ferred to in the above quotation.!® The ubiquity of the law of the lever in
mechanical treatises also explains why Galileo claimed it was a “known”
principle related to known mechanical facts. However, questions still re-
main: first, what is the “primary concept” exemplified “in the breaking of
a stick”? and, second, what does the law of the lever have to do with this
primary concept?

Consider the “primary concept” first. After stating that it is necessary
to consider what happens when a piece of solid is broken, Galileo describes
a solid column from which a weight is suspended:

To clarify this, let us draw the cylinder or prism AB, of wood or
other solid and coherent material, fastened above at A, and hanging

10. In truth, Galileo does not assume the law of the lever, but derives it by considering
the behavior of weights suspended from a balance in equilibrium. I will return to this
shortly.
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plumb; at the other end, B, let the weight C be attached. It is man-
ifest that whatever may be the tenacity and the mutual coherence of
the parts of this solid, provided only that that is not infinite{ly
strongl, it can be overcome by the force of the pulling weight C, of
which the heaviness {gravita} can be increased as much as we please
and that this solid will finally break, just like a rope (See Fig.1)
(Discorsi, p. 16 {54-55}).

Since after this passage the topic of discussion turns to the cause of the
cohesion of ropes, it seems that the “fundamental concept” Galileo has in
mind is simply that for any given solid, there is a weight which will break
the solid when applied longitudinally; or in other words, that for all in-
tents and purposes the “tenacity and mutual coherence of the parts of this
solid” has a finite strength that can be overcome by a sufficiently strong
counteracting force. Galileo later dubs this the “absolute resistance” of a
body to fracture.!!

Galileo returns to this “primary concept” in Proposition I of the second
day. Here, he tries to analyze the resistance of a cantilever in light of what
he takes to be the “absolute resistance” evident in the case of a column.
Galileo’s method for doing so relies on turning the column case—wherein
a weight is applied to a solid longitudinally—into ‘half’ of a balance prob-
lem—wherein a weight is applied transversely to one arm of a balance. The
weight acting transversely on the other arm of the balance—the other
‘half’ of the balance problem—is supplied by the weight of the cantilever.
The shift is important not only because it signals yet another instance of
Galileo’s trademark reliance on the balance,'? but because it explains the
connection between the law of the lever and Galileo’s new science. The law
of the lever is the principle used to establish quantitative relationships in
the balance problem, and thus, by analogy, is the principle used to estab-
lish quantitative relationships between the longitudinal case and the can-
tilever case. Since Galileo explains the size sensitivity of machines by a se-
ries of propositions derived from the cantilever case, the law of lever is the
key for solving the problem framed at the outset of the first day. Moreover,
since the law is a geometrical principle that licenses the demonstrative in-
ferences Galileo seeks, it has good claim for being an adequate foundation
for the new science.

11. It seems Galileo conceives of the case of the column as the “absolute” case because
in it the force responsible for fracture is applied in the same direction as the resulting mo-
tion (Discorsi, p. 115 {156-157). See also Footnote 17.

12. See Machamer (1998b) for a general discussion of Galileo’s extensive use of the bal-
ance as a model for physical problems.
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Fig. 1: Longitudinal pull case.

However, in order to establish the foundational status of the law of the
lever, Galileo must justify the shift from the longitudinal and cantilever
cases to the balance case—the lynchpin of the first two days. The shift
occurs in Proposition I of the second day. I quote it here in full:

Let us imagine the solid prism ABCD fixed into a wall at the part
AB; and at the other end is understood to be the force of the weight
E (assuming always that the wall is vertical and the prism or cylin-
der is fixed into the wall at right angles) {Fig. 2}. It is evident that
if it must break, it will break at the place B, where the niche in the
wall serves as support, BC being the arm of the lever on which the
force is applied. The thickness BA of the solid is the other arm of
this lever, wherein resides the resistance, which consists of the at-
tachment that must exist between the part of the solid outside the
wall and the part that is inside. Now, by what has been said above,
the moment of the force applied at C has, to the moment of the re-
sistance which exists in the thickness of the prism (that is, in the
attachment of the base BA with its contiguous part), the same ratio
that the length CB has to one half of BA {Fig. 31. Hence the abso-
lute resistance to fracture in the prism BD, (being that which it
makes against being pulled {apart} lengthwise, for then the motion
of the mover is equal to that of the moved) has, to the resistance
against breakage by means of the lever BC, the same ratio as that of
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the length BC to one-half of AB, in the prism . . . And let this be
our first proposition (Discorsi, pp. 114-115 {156-1571)."3

The proposition states that an analogy can be constructed between the
cantilever ABCD of Figure 2 and the balance ABC of Figure 3, which I
have constructed from other Galilean drawings to fit Galileo’s description,
but which is not in the Discorsi.

Although Galileo does not spell out the structure of the analogy in any
detail, it is clear that he equates what happens “in the breaking of a stick”
with what happens when a balance goes out of equilibrium. Intuitively, a
piece of solid breaks only when the force of cohesion of its internal parts is
overcome by an external pull. Analogously, a balance goes out of equilib-
rium only when the force on one of its sides is overcome by a force on its
other side. Consequently, if the internal force of cohesion is modeled as the
force on one side of a balance and the external pull is modeled as the force
on the other side, a piece of solid will break only when the (model) balance
tilts to the “external pull side,” i.e., when it goes out of equilibrium in the
appropriate direction. This is precisely the chain of reasoning behind Gali-
leo’s (already quoted) statement that: “It is evident that if it must break, it
will break at the place B, where the niche in the wall serves as support, BC
being the arm of the lever on which the force is applied. The thickness BA
of the solid is the other arm of this lever, wherein resides the resistance,
which consists of the attachment that must exist between the part of the
solid outside the wall an the part that is inside” (Discorsi, pp. 114-115
[156)). The problem with this analogy is that it should to be unclear
where to place the weight hanging from the AB arm of the model balance.
To see the problem, consider the actual case (Fig. 2) and the model case
(Fig. 3). Since in the actual case weight E is /iterally hanging from the
endpoint of one side of a cantilever (Fig. 2), it is rather obvious to “model”
it as a weight hanging from the endpoint of one arm of a balance (Fig. 3).
However, since the resistance at AB acts along the continuous finite line AB,
it is not immediately clear that it can be represented as a weight, W(AB),
hanging ¢ a point of the other balance arm, let alone the mid-point of that

13. Galileo first introduces this scenario at the outset of the first day, but in a strictly
qualitative manner. Not surprisingly, he does so immediately after framing the problem of
the applicability of geometry to fracture problems. See (Discorsi, p. 13 [52]). In modern no-
tation, the proposition states that /(C)//(AB) = 2CB/AB, where f(C) is the force applied to
the cantilever at point C and f(AB) is the force of resistance at AB. Since f(AB) is modeled
as a weight hanging from a balance, I label it in the diagrams as W(AB). The proposition’s
last line further states that W(AB) is equal to the force of a weight that can overcome the
absolute resistance of the column ABCD. I follow Galileo’s treatment by suppresses the
depth of the beam.
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Fig. 3: Balance Case I: The Resistance to fracture in the cantilever case modeled
as a weight applied transversely at the mid-point of balance arm AB.

balance arm.'* To see this, consider as an intermediary another figure I
have constructed from Galilean drawings, but that is not supplied in the
Discorsi, Figure 4. In Figure 4, the force of resistance at AB (Fig. 2) is rep-
resented as a weight W(AB) that hangs from every point of one arm of a
balance. This is the proper analogue of Figure 2. Is it reducible to the

14. I am assuming with Galileo that the resistance of the cantilever can be treated as
if localized in AB. In both the longitudinal and the cantilever cases, Galileo believes
that the resistance to fracture can be treated if acting along a single cross-section of the
body. This assumption is false. See Truesdell (1968, pp. 200-3) and Timoshenko (1953,
p. 12).
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mid-point case (Fig. 3)? It turns out that it is, but only under some strict
assumptions. These assumptions are implicit in Galileo’s proof of the law
of the lever.

Galileo’s proof of the law of the lever need not concern us in its entirety
here. It begins by asking the reader to imagine a beam of material AB
hanging by its end-points from a balance in equilibrium HI; i.e., hanging
by threads at HA and IB (Fig. 5). Clearly, Galileo writes, if the beam were
to be cut at any point (say, D) and a thread ED attached from the balance
to that point, “[tlhere is no question that since there has been no change of
place on the part of the prism with respect to the balance HI, it will re-
main in the previous state of equilibrium” (Discorsi, p. 111 {1531). Even
while ignoring the remainder of the proof, it is clear that the only way to
guarantee that D can be chosen arbitrarily is to assume that the weight of
the beam is continuously distributed along the segment AB; that is, that
the beam has no gaps.!> Moreover, the only way to guarantee that the
beam will maintain its original configuration after the cut, given that D
may be chosen arbitrarily, is to assume that the weight is distributed uni-
formly. With these assumptions—continuity and uniformity—and the
law of the lever itself is easy to show that W(AB) in Figure 4 can be re-
duced to W(AB) in Figure 3. Although Galileo does not make these as-
sumptions explicit, it seems they must support his (already quoted) claim
that: “{Tthe moment of the force applied at C has, to the moment of the
resistance which exists in the thickness of the prism (that is, in the attach-
ment of the base BA with its contiguous part), the same ratio that the
length CB has to one-half of BA” (Discorsi, p. 115 {156}). What is
additionally important about these assumptions (as well as the whole of
the balance analogy) is that they make clear that Galileo treats the force of
resistance at AB as a weight, uniformly and continously distributed
through a beam.'®

But the proposition does not end here. Its aim, recall, is to relate the
cantilever case to the case of “absolute resistance”; i.e., the longitudinal
case. Once again, Galileo does not make any intermediary reasoning ex-
plicit, but merely notes after the quote above that: “Hence the absolute re-
sistance to fracture in the prism BD, (being that which it makes against
being pulled [apart} lengthwise, . . .) has, to the resistance against break-
age by means of the lever BC, the same ratio as that of the length BC to

15. I will discuss Galileo’s conception of the continuum in the following section.

16. In truth, the stress distribution along the cantilever section AB is not uniform at
the time of fracture (Timoshenko 1953, p. 12). However, I will assume with Galileo that it
is and that the analogy with weight stands.
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Fig. 4: Balance Case II: Resistance to fracture in the cantilever case modelled as a
weight applied transversely and continuously along balance arm AB.

Fig. 5: Galileo’s proof of the law of the lever: A continuously and uniformly dis-
tributed weight hanging from a balance.

one-half of AB, in the prism . . . ” (Discorsi, pp. 114-115 [156-157}).
However, the move to absolute resistance requires another crucial assump-
tion; namely, that the force of resistance at AB to a longitudinal pull along
ABCD is equivalent to the force of resistance at AB to a transverse pull
across ABCD. Although this is false, it explains how the “primary notion”
enters into Galileo’s new science.!” Galileo believes that all fracture cases
can ultimately be related to the longitudinal fracture of a column. The
“primary concept” in the longitudinal case was that for any given solid,

17. Although it is an open question why Galileo endorses this assumption to begin
with, I can offer the following hypothesis: Galileo conceives of fracture as the motion of
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there is a finite weight that can cause it to fracture. Since all cases of frac-
ture can be understood in terms of the longitudinal case, in all cases the
force of resistance can be overcome by a sufficiently large, finite weight.
That is, the force of resistance to fracture is itself always finite.

By this chain of reasoning, Proposition I establishes the relationship
between the case of absolute resistance and the case of the cantilever. What
the proposition demands, however, is that the assumptions made regard-
ing the figures above are physically plausible; that is, that the force of co-
hesion is finite and can be unproblematically described as acting uni-
formly and continuously along line segment AB of Figure 2, just as a
finite weight can be described as being uniformly and continuously dis-
tributed along the hanging beam AB of Figure 5.

4. Justifying the Foundation

We come now to the question with which this essay began: what is the
role of the first day of the Discorsi? I claim that the first day shows that in
all formal, geometrical respects, matter’s force of resistance to fracture is
like the force of a uniformly distributed, continuous, and finite weight
hanging from a balance. In other words, the first day establishes that the
mathematical properties necessary for the balance analogy to be applied
are true of the force of cohesion. Galileo’s physical explanation of the force
of resistance is important to keep in mind here. Galileo hypothesizes that
this force is caused by indivisibly small vacua that are interspersed among
the indivisibly small particles of matter. Because of the horror vacui, these
vacua pull together the particles of matter; that is, they resist the particles’
separation. In essence, Galileo explains the cohesion of matter through na-
ture’s abhorrence of a vacuum and his peculiar conception of the structure
of matter. However, his main task is to show that this structure has the
mathematical properties discussed in the previous sections. Although I
cannot examine the first day in detail here, a sampling of its contents and a
brief description of their relation to the day’s larger purpose are sufficient
to make my case.

one part of a body away from another. In the cantilever case, he believes fracture occurs
along cross-section AB. Consequently, he believes that the force responsible for fracture is
equal to the force required to move the portion of the cantilever to the right of AB away
from the part embedded in the wall. In the longitudinal case, he also believes fracture oc-
curs along a single cross-section. Consequently, he believes that the force responsible for
fracture is equal the force required to move the portion of the column below the breaking
point away from the portion of the column above that point. If the prism and cantilever are
constructed to have appropriately similar dimensions, the resulting motions will only be
different in orientation. It stands to reason that the forces responsible for them would be
identical in all but orientation.
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First, resistance to fracture must be finite. This is not only because rea-
soning concerning an infinite quantity would be impossible by Galileo’s
lights, but because in order to model resistance on weight, it should be
possible to correlate any given measure of resistance to a measure of
weight. Among others, Galileo’s “hanging bucket” experiment is meant
to show that such a correlation is possible (Discorsi, p. 23 {62]). In this ex-
periment, Galileo asks the reader to imagine a piston inserted into a cylin-
drical cavity that has been evacuated of air and turned such that its open
end is pointing downwards. Galileo holds that the piston will be held in
place by the force of the vacuum within the cylinder and that this force
could be overcome by hanging a bucket on the piston and placing within
it a sufficiently large weight. Since in this experiment resistance is not
simply correlated to weight, but is directly measured by it, the experiment al-
lows for a straightforward substitution of a weight-magnitude for a resis-
tance-magnitude—precisely as done in Proposition I. Also in support of
the claim that the force of resistance is finite is Galileo’s well-known dis-
cussion of Aristotle’s wheel—the centerpiece of the first day (Discorsi,
pp- 25-58, {68-971).!8 Galileo explains by means of Aristotle’s wheel how
an infinite number of indivisibles can sum to a finite quantity. The first
day’s remaining discussions on the nature of infinity, the continuum, and
indivisibles go to support Galileo’s treatment of Aristotle’s wheel and bol-
ster his argument that, despite his unique explanation of cohesion by an
infinity of indivisible vacua, on a macroscopic level the force of cohesion
can be treated as finite and measurable.

Second, the force of resistance must act continuously and uniformly
through any given cross-section of a body. Continuity and uniformity are
perhaps the most important properties of resistance, since without them
Galileo would not be able to make the analogy between the force of resis-
tance along line segment AB (Fig. 2) and a weight hanging from a balance
arm (Fig. 4). Continuity and uniformity are established primarily through
Galileo’s discussion of Aristotle’s wheel. There, Galileo shows that his
physical explanation of cohesion is such that regardless of the density of a
material, the distribution of indivisible vacua and material particles will
always be its uniform. Thus, the force of resistance to fracture will always
be uniform. Moreover, Galileo provides an extended discussion of the na-
ture of the continuum meant to show that the continuum is comprised of
an infinite set of indivisible full and empty points (Discorsi, pp. 28-58
[68-971). Of course, Galileo’s theory of the continuum is subtle and mer-

18. For Galileo’s treatment of Aristotle’s wheel see Drabkin (1950), Wallace (1989),
and Palmerino (2001).
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its an extended discussion, which I cannot provide here. Suffice it to say
that the theory supports Galileo’s account of cohesion and illustrates that
it is mathematically tractable.!?

The remaining portions of the first day go to make the physical proper-
ties of cohesion plausible in themselves and immune to objections from
the study of motion. Particularly, since Galileo argues that cohesion is due
to the horror vacui, he must argue that a vacuum is physically possible
(Discorsi, pp. 2628 {66—-671). It is to this end that he cites the example
of two blocks of marble that slide easily across one another but can only
be separated by a great force. The example provides experimental verifica-
tion that a vacuum can be found in nature, if only briefly (Discorsi,
pp- 19-20 {591), as does the aforementioned “hanging-bucket” experi-
ment. It is also to this end that Galileo undertakes the long discussion of
bodies falling in resistive media—a discussion that takes up more than
half of the first day. The discussion is necessary since the impossibility of
motion in a vacuum was traditionally taken as evidence against its exis-
tence. In order to show that a vacuum can exist, Galileo must therefore
frame a new theory of motion.?°

Although extremely sketchy, I take this brief roster to suggests that
there exists a connection between the discussions of the first day and the
application of the law of the lever in the first proposition of the second
day. Given this connection, however, more could be said about the seem-
ingly disparate character of the discussions, particularly the fact that some
seem purely mathematical (e.g., the nature of the continuum), while oth-
ers seem to involve a good deal of physical reasoning (e.g., the explanation
of condensation and rarefaction). Clarifying the nature of these problems
will lead us back to one of this essay’s original concerns and the more pre-
cise reason Galileo’s first new science is best understood as the science of
matter. This reason concerns the nature of reasoning in the subalternate,
middle, or mixed sciences.

19. Galileo addresses several issues of great importance in the medieval literature on
infinity and infinitesimals; namely, the paradoxes of unequal infinities, the existence of first
and last instants, the nature of the verbs “to begin” and “to cease,” and the problem of
maxima and minima. See Ketzmann (1982).

20. The structure of this portion of the first day can be found in Galileo’s manuscripts
in as early as 1590, see Drake and Drabkin (1969). The first day’s treatment of the nature
of motion in a vacuum can also be understood as showing that weight is a necessary prop-
erty of matter, and that it can be treated mathematically. I have not stressed this in this es-
say since my focus is on those features of the first day that are necessary for the second day,
not for the third and forth days. Palmerino (2001) focuses on the relevance of elements of
the first day to Galileo’s science of local motion.
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5. The Science of Matter
The subalternate, middle, or mixed sciences are sciences in which physical
objects are considered gza mathematical. Mechanics, optics, astronomy
and harmonics were traditionally understood to be such sciences. Their
common appellatives refer either to their middle position in the disciplin-
ary hierarchy (in which they were subordinate to higher, mathematical sci-
ences and superior to lower, purely empirical ones) or to the fact that in
their syllogistic explanations the genus in question—the middle term—
was of a mixed character, i.e., it could be taken both mathematically and
physically.?! My contention in this section is that Galileo’s first new sci-
ence is a mixed science. I do not contend, however, that Galileo saw it as
such, even though I have argued that his purpose in the first day was to es-
tablish those mathematical properties of matter required for the applica-
tion of the law of the lever in the second day.?> My aim is only to show
that the reasoning of the first two days of the Discorsi does in fact fit the
structure of arguments in the mixed sciences. I will use a characterization
of these sciences by Lennox (1986), based on a study of Aristotle’s Posterior
Analytics.?

The goal of a science in the Aristotelian tradition was to supply demon-
strably true claims regarding its subject matter by showing what proper-
ties belong to that subject by virtue of the type of thing it necessarily is,

21. For characterizations of the middle sciences, see McKirahan (1978), Livesay (1982)
and Laird (1983).

22. Although Galileo has been portrayed as a Platonist (e.g., Koyré 1939), a positivist
(e.g., Mach 1960, pp. 151-191), and everything in between, (see Wallace 1992 and
Feldhay 1998 for overviews), in recent years a leading interpretation based mostly on the
work of William Wallace has characterized him as following an Archimedean inspired ver-
sion of the philosophy of science outlined by Aristotle in the Posterior Analytics and elabo-
rated by the Jesuits of Galileo’s time—the same philosophy of science that gave rise to the
notion of the “subalternate sciences.” Of course, there is no overall consensus regarding
Wallace’s interpretation, and disagreements still abound about whether Galieo’s method
constituted proper apodictic scientia, whether it followed the medieval regressus more than
Aristotle’s original proclamations, whether it constituted Galileo’s juvenilia more than his
mature thought, etc.; see Jardine (1976), McMullin (1983), Wallace (1976), McMullin
(1978) and Pitt (1978). For the purposes of this discussion, I put aside these larger histori-
cal questions and take for granted that some light can be shed on Galileo’s work from the
perspective of the tradition of the subalternate sciences. See also the second caveat made in
the introduction to this paper.

23. Although medieval commentators expanded and revised Aristotle’s opinions on the
subalternate sciences, sufficient similarities exist between the two bodies of thought that
no damage is done by using Aristotle’s remarks directly. For an evolution of the philosoph-
ical discussions regarding the subalternate science, see Laird (1983). See also Dear (1995,
ch. 6) for the characterization of the mixed sciences given by the Jesuits of Galileo’s time.
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not by virtue of any accidental features that may be true of it. As Aristotle
writes in the Posterior Analytics 1.9: “We understand a thing nonincident-
ally when we know it in virtue of that according to which it belongs, from
the principles of that thing as that thing. For example, we understand
something’s having angles equal to two right angles when we know that
to which it belongs in virtue of itself, from that thing’s principle” (trans-
lated in Lennox 1986, p. 40, [76a4-8]}). Taking the triangle example, Ar-
istotle holds that we understand a particular isoceles (or any other instance
of) triangle by coming to understand it as belonging to the class of trian-
gles in general (i.e., the genus “triangle”); and by the principles of triangu-
larity (i.e., geometrical principles) we come to understand that @y trian-
gle’s angles are equal to two right angles. We thus come to know that an
isoceles triangle’s (or any other triangle’s) angles are equal to two right an-
gles. Even without explicitly putting the inference in syllogistic form, it
is plain that the middle term here is “triangle”: it serves to connect a pat-
ticular isoceles triangle, through the geometrical features of triangularity,
with the features of all triangles. In the case of the subalternate sciences,
however, the middle term takes on a dual character. The quote above con-
tinues:

Hence if that too [the thing’s principle} belongs in virtue of itself
to what it belongs to, the middle term must be in the same kind. If
this isn’t the case it will be as the harmonical properties are known
through arithmetic. In one sense such properties are demonstrated
in the same way, in another sense differently; for that it is the case
is the subject of one science (for the subject-kind is different), while
the reason why it is so is of a higher science, of which the per se
properties are the subject (translated in Lennox 1986, p. 40,

[76a8-131).

Aristotle outlines two cases: one in which the thing studied and the
principles used to study it are of “the same kind” and one in which they
are not, as in the subalternate science of harmonics. In the latter case, the
thing studied is natural, and the principles used to study it are mathemat-
ical. The middle-term in these cases, as Lennox writes, “picks out the de-
scription of the natural object in virtue of which it has a certain mathe-
matical property; that property is a per se property of a natural kind qua
being a mathematical kind” (Lennox 1986, p. 41). In other words, in a
subalternate science natural objects must be described in a way that at-
tributes to them via their (natural, physical) genus mathematical proper-
ties, which they have simply in virtue of being described mathematically.
This is the essential feature of a subalternate science.

We can see that the first two days of the Discosi fit the mold of a
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subalternate science. In the first day, a natural kind—matter—is described
in a way that attributes to it mathematical properties that belong to it by
its very structure, simply because of the kind of thing it is. As argued
above, the uniformity, continuity and finitude of matter’s force of cohesion
are such properties. The overall task of the Discorsi’s first two days is to ar-
gue 1) that bodies fracture because they are en-mattered (not because of
their accidental properties), 2) that because they are enmattered they pos-
sess certain physical properties that can be described mathematically, and
that these mathematical properties entail additional mathematical proper-
ties of fracture. The first of these is accomplished by Galileo’s rejection of
the Aristotelian conception of matter and his framing of a new conception
on which fracture occurs even when matter is “free from all accidental
change” and because of “the mere fact that it is material” (Discorsi, p. 12
[511). The second of these is accomplished throughout the first day, as
Galileo establishes that his conception of matter entails that matter can be
described mathematically and treated geometrically. Galileo’s physical ar-
guments in support of his new conception show that the mathematical
properties of matter are in fact properties of a natural, physical kind that is
“always the same” (Discorsi, p. 12 [511). It is for this reason that the first
day seems to oscillate between purely mathematical considerations (e.g.,
regarding infinity and indivisibles) and purely physical ones (e.g., regard-
ing condensation and rarefaction). The third of these is accomplished by
the second day. In the first proposition of the second day, the law of the
lever is applied to the phenomena of fracture given the mathematical
properties of matter justified by the first day. The remainder of the second
day draws out the implications of the first proposition and establishes the
theory of fracture.

A further clue to the character of Galileo’s first new science is supplied
by the fact that the question with which the first day begins—why large
machines are different than small ones—is solved only in Propositions VI
and VII of the second day (Discorsi, pp. 12, 120-124 {50, 163-166)). In
the first day, only the facr itself is mentioned, and it is noted as a known
mechanical fact. The explanation of the fact—"the reason why it is so”—is
delayed until the second day. In other words, although Galileo began the
first day with the promise that “it can be demonstrated geometrically that
the larger [machines and structures} are always proportionately less resis-
tant than the small” (Discorsz, p. 13 [511), it is only at the closing of Prop-
osition VI of the second day that he admits the desired demonstration had
been reached:

Szmp This proposition strikes me as not only new but surpris-
ing . . . I should have thought it certain that their moments [i.e.,
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the moments of large and smaller cylinders and prisms} against
their own resistances would be in the same ratio [as their sizes}.

Sagr. This demonstrates the proposition which, as I said at the be-
ginning of our discussions, seemed then to reveal itself to me through
shadows (Discorsi, p. 122, {164}, emphasis added).

The proof is not available until the second day because Galileo had first
to establish the relevant mathematical properties of matter on which
the mathematical demonstrations of the second day rest. In this sense, the
convoluted discussions of the first day enable the transition between the
mere fact of fracture and the reasoned fact concerning it. It is crucial to note
that only the second day, as a series of propositions, properly constitutes
Galileo’s new science, but its formulation depends on the deliberations of
the first day. The expository structure of this new science fits well with Ar-
istotle’s statement that “that it is the case is the subject of one science . . . ,
while the reason why it is so is of a higher science” (translated in Lennox
1986, p 40). In this case, Galileo’s higher science is used to explain facts
about fracture that are known from mechanical practice. The higher sci-
ence is a geometrical science based on the law of the lever, but its subjects
are the “eternal and necessary” properties of matter. Since this science is
framed in response to worries about the applicability of geometrical rea-
soning to matter and since it is concerned with objects insofar as they are
enmattered, it should be understood as the science of matter as such.

6. Conclusion

Although I have spent the bulk of this essay making narrow points con-
cerning the mathematical assumptions underlying Galileo’s first new sci-
ence and the nature of reasoning in the subalternate sciences, my main
point is rather general. It is that the first day of the Discorsi frames a new
theory of matter in order for the second day to expand the limits of mathe-
matical reasoning to include the phenomena of fracture. Until we recog-
nize the central role of Galileo’s new conception of matter in justifying his
new science, we will not be able to properly place him in the context of
the early modern transformation of natural-philosophy. Particularly, his
relation to the mechanical philosophy will be obfuscated unless we can see
how in the Discorss’s four days he offered a truly mechanical model of expla-
nation; that is, a model of explanation based on the twin pillars of marter
and motion.

Moreover, until we recognize the central role of Galileo’s new concep-
tion of matter in justifying his new science, we will not be able to under-
stand the Discosi as a whole. Galileo authored masterfully argued and care-
fully structured treatises throughout his life, even suppressing the
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publication of treatises he considered incomplete. Thus, before we resign
to consider the Discorsi’s first day as the ramblings of an old man, intent on
publishing whatever is left in his arsenal of researches, we ought to look
for his plan in writing it. Although I have not offered any direct evidence
regarding Galileo’s intention, I hope my analysis will prompt others to
formulate more historical theses.
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