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Abstract

We propose a conceptual framework for understanding the relationship between
observables and operators in mechanics. To do so, we introduce a postulate that
establishes a correspondence between the objective properties permitting to identify
physical states and the symmetry transformations that modify their gauge depen-
dant properties. We show that the uncertainty principle results from a faithful –or
equivariant– realization of this correspondence. It is a consequence of the proposed
postulate that the quantum notion of objective physical states is not incomplete,
but rather that the classical notion is overdetermined.
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1 Introduction

It is commonly stated that quantum mechanics differs from classical mechan-
ics in its use of operators acting on physical states. According to this descrip-
tion, the transition from classical to quantum mechanics can be understood
as a substitution of a commutative algebra of functions –relative to pointwise
multiplication– by a non-commutative algebra of operators. Nevertheless, the
use of operators acting on physical states is also an essential feature of clas-
sical mechanics. In fact, classical observables play two fundamental roles in
mechanics, namely they are functions that can be evaluated on states –and
used for identifying them– and they define hamiltonian vector fields that act
on states by means of infinitesimal canonical transformations (see Refs.[1], [2],
[5], [10], [11], [14]). For example, the temporal evolution of classical systems is
given by the integration of the infinitesimal classical action generated by the
hamiltonian vector field vH associated to the Hamiltonian function H(q, p).
Nevertheless, the Poisson algebra of classical observables and the Lie algebra
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of classical operators (under the Lie bracket of vector fields) are not isomor-
phic (given that the corresponding map is not injective). This means that
classical mechanics fails to establish a faithful correspondence between the
two fundamental roles played by classical observables. According to Dirac’s
quantization conditions [4], quantum mechanics can be partially deduced by
forcing an isomorphism between the algebraic structures associated to these
two roles, namely between a subalgebra of the Poisson algebra of classical ob-
servables and the commutator algebra of induced operators. In the framework
of the geometric quantization program, this task can be achieved by extend-

ing classical operators vf –hamiltonian vector fields associated to observables
f– to quantum operators v̂f , such that the commutator algebra of the latter
is isomorphic to the Poisson algebra of classical observables. This quantum
correction of classical operators can be performed by defining a complex line
bundle L→M over the phase space M , endowed with a hermitian connection
such that its curvature is given by the symplectic form on M . The polarized
sections of this complex line bundle define the corresponding quantum states
(see Refs.[3], [9], [13], [14], [16]).

The fact that quantum mechanics can be deduced by establishing a faith-
ful correspondence between observables and operators suggests that a deeper
analysis of the conceptual meaning of this correspondence could shed some
new light on the rational necessity of quantum mechanics. In what follows,
we will propose a conceptual framework for understanding this correlation be-
tween observables and operators. We will argue that this correspondence can
be understood in terms of the relation between the objective properties that de-
fine physical states and the symmetry transformations that interchange their
gauge dependant properties. To do so, we will show that, even tough it remains
valid, the standard characterization of objective properties as the invariants
under symmetry transformations does not suffice for properly understanding
the correlation between observables and operators. Therefore, we will propose
a postulate that specifies the lacking fundamental aspect of their relation.
Roughly speaking, we will argue that the objective properties of a physical
state play a twofold role, namely 1) they permit to distinguish the physical
state, and 2) they generate the state’s “aspects” or “modes of appearance”
relative to different coordinate systems. 1 From a conceptual point of view,
we will then show that the proposed postulate implies the necessity of an
uncertainty principle. According to this postulate, the quantum description

1 This characterization, far from leading us away from a familiar notion of objec-
tivity, matches a certain usual conception about physical objects. According to this
conception, a physical object is constituted by (what we will call) an eidos that
defines both its specificity as a singular object and the structured sheaf of its as-
pects relative to different possible points of view. As we will show, it is quantum
mechanics, and not classical mechanics, the theory that implements this “classical”
conception.
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of a physical state is not underdetermined, but rather the classical descrip-
tion is overdetermined. This implies that quantum mechanics should not be
considered an obstruction to the validity of a well-defined classical notion
of objectivity, but rather as a consistent theory of physical objectivity that
overcomes the classical impasses. The quantum uncertainty principle can be
considered the signature of this achievement.

In this work we analyze the rational necessity of quantum mechanics by
proposing a new interpretation of one of its fundamental features, namely
the uncertainty principle. In Sect. 2, we propose a postulate –not satisfied by
classical mechanics– in order to understand the fundamental correspondence
between observables and operators. In Sect. 3, we show that this postulate can
be further clarified and justified by giving a precise definition to the notion of
physical states’s possible predicates. To do so, we consider the so-called mo-

mentum map as well as its equivariance properties. We show that the classical
failure to establish a faithful correspondence between observables and oper-
ators is manifested through the non-equivariance of the relevant momentum
map. We then consider how quantum mechanics can be obtained by forcing
such an equivariance. In Sect. 4, we consider a dual version of this last result
by using the geometric quantization formalism. In Sect. 5, we summarize and
discuss the main results.

2 Objective physical states

In general, the relevant variables allowing us to specify a physical state depend
on the arbitrary election of a coordinate system. The objective properties of
the state are then identified with the invariants under the symmetry transfor-
mations that modify the coordinate systems. In this section, we argue that this
standard characterization of objective properties does not suffice for under-
standing the fundamental role played by symmetries in classical and quantum
mechanics.

In classical mechanics, the transformations of the canonical variables used for
specifying a physical state are defined by means of canonical transformations.
In particular, we are interested in considering infinitesimal canonical trans-
formations induced by classical observables. In fact, the symplectic structure
ω of the phase space M permits to pass from an observable f ∈ C∞(M) to
the symplectic diffeomorphism φ

f
λ : M → M generated by the hamiltonian

vector field vf induced by f . The relation between the observable and the
induced hamiltonian vector field is given by the expression ivf

ω = df , where
ivf
ω denotes the contraction of the 2-form ω with the vector vf . Therefore, the

classical observables f ∈ C∞(M) play a twofold role. Not only do they define
local coordinates on the phase space M –which can be used for identifying
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classical states–, but they also induce infinitesimal canonical transformations.
In principle, these transformations might be equivalently interpreted either as
passive transformations of the coordinate system or as active transformations
of physical states [5]. The formal equivalence between these two interpretations
constitutes the so-called Leibniz equivalence. In general relativity, the invari-
ance under the group of general diffeomorphisms of space-time implies that –if
Leibniz equivalence is accepted– localization on space-time is pure gauge. In
principle, we might think that the invariance of classical mechanics under the
group of simplectic diffeomorphisms can be interpreted in an analogous way.
However, such is not the case. If Leibniz equivalence were valid, we would be
forced to accept that localization on M is pure gauge. But, in that case the
very notion of a space that parameterizes physically distinct states would be
lost. Consequently, infinitesimal canonical transformations induced by classi-
cal observables are interpreted as active transformations between physically
distinct states. For example, the canonical transformations induced by the
Hamiltonian function H(q, p) ∈ C∞(M) generates the temporal evolution of
physical states, i.e. their effective physical change in time. In other words, “[...]
the motion of a mechanical system corresponds to the continuous evolution or

unfolding of a canonical transformation.” [5]. More generally, through its in-
duced hamiltonian vector field vp = ∂q, a momentum p generates canonical
transformations of the conjugated coordinate q. Since H generates temporal

evolutions of any observable and p generates canonical transformations of q,
the temporal evolution of q is given by the dependance of H on p (through
the Hamilton’s equation q̇ = ∂H

∂p
). 2 Since the temporal evolution of q is con-

sidered an effective physical change, general transformations generated by p

should also be interpreted as active changes of the state. 3

Classical mechanics is thus characterized by its denial of Leibniz equivalence:
states related by canonical transformations induced by classical observables
are considered to be physically distinct states. In what follows we argue that,
in order to improve the comprehension of the foundations of mechanics, it
is necessary to partially maintain the validity of Leibniz equivalence. More-
over, quantum mechanics is the formalism required to satisfy this prescription.
According to this interpretative scheme, we will consider states connected
through certain canonical transformations induced by physical observables,
to be gauge equivalent. This implies that the particular value of the coor-
dinate affected by the canonical transformation is not an objective property
of the state. In other words, localization in the orbit of the corresponding
symplectic diffeomorphism is pure gauge. We will call objective reduction the

2 This remark explains the fundamental conceptual difference between q̇ (the in-
finitesimal temporal evolution of q) and p (the observable that generates infinitesi-
mal canonical transformations of q).
3 For instance, the uniform rotation generated by a conserved angular momentum
L is an effective physical transformation of the system.
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identification of states by means of certain infinitesimal canonical transforma-
tions.

As we have seen, if we considered all possible infinitesimal canonical transfor-
mations as symmetry transformations, all states in M would be gauge equiv-
alent. It is then necessary to specify the particular subset of infinitesimal
canonical transformations that should be considered for performing the objec-
tive reduction of each state. To do so, we propose the following fundamental
postulate:

‡ The objective properties of a physical state define the only generators of

symmetry transformations accepted for its objective reduction.

A set of objective properties that, according to this postulate, defines both the
specificity of an objective physical state s and the correct symmetry transfor-
mations needed for its reduction, will be called eidos εs of the physical state s.
In this way, the eidos that identifies a particular physical state also specifies
which possible predicates should not be considered as objective properties but
as “aspects” that depend on the coordinate system.

In classical mechanics the set of objective properties of a physical state is given
by the 2n local coordinates (qi, pi)i=1,...,n of the phase space M (in what follows
we will restrict the analyses to the case M = R2n; for the consideration of
more general cases see Ref.[7]). According to postulate ‡, objective properties
are in correspondence with the generators of the symmetry transformations
required for the objective reduction of the state. In classical mechanics, this
correspondence is provided by the map f 7→ vf between classical observables
f ∈ C∞(M) and hamiltonian vector fields vf ∈ HM . In particular, the mo-
mentum p defines the generator vp = ∂q of infinitesimal translations of the
conjugated coordinate q (Lievp

q = vp(q) = {q, p} = 1) and viceversa. Since in
classical mechanics both q and p are used for identifying the state, postulate ‡
demands that both vq and vp should be used for the objective reduction of the
corresponding state. But this implies that both q and p are gauged out, which
is contradictory with the assumption that they define objective properties of
the state (since by definition objective properties have to be invariant under
symmetry transformations). In other words, the action defined by both vq and
vp reduces the phase space M to a single point {∗} or, equivalently, the group
G of translations in both position and momentum acts transitively on M (i.e.
M is a single G-orbit). Clearly, this is a reductio ad absurdum. We began by
supposing that a physical state is identified by means of the 2n coordinates of
the phase space M (i.e. that each point in M defines a different physical state).
We nevertheless found, guided by postulate ‡, that there is only one possible
physical state {∗}. We can thus conclude that objective physical states defined
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by an eidos that satisfies postulate ‡ cannot be identified with classical states
in M .

This classical failure to implement postulate ‡ is a direct consequence of the
fact that classical states are specified by means of too many variables. We will
refer to this fact as the classical overdetermination of the eidos. According to
postulate ‡, an objective property f ∈ εs of the physical state s has to be
invariant under the infinitesimal canonical transformations generated by the
whole set of objective properties in εs. This implies that vgf = {f, g} = 0
for all f, g ∈ εs. Therefore, the set of observables in the eidos εs have to
define a commutative Poisson algebra. Hence, an eidos that completely spec-
ifies an objective physical state is given by the maximal number of mutually
commuting observables (i.e. by a complete set of commuting observables). In
order to satisfy postulate ‡ it is then necessary to reduce the eidos to half
the number of components. Therefore, an acceptance of the proposed postu-
late implies that the quantum notion of objective physical states is neither
underdetermined nor incomplete (when compared to a hypothetical complete
classical description), but rather that the classical notion is overdetermined.
As a consequence of this overdetermination of classical states, the relationship
established between objective properties and symmetry transformations by
postulate ‡ cannot be elucidated within the framework of classical mechan-
ics. In fact, the assumption of postulate ‡ implies what we could call the a

priori necessity of an uncertainty principle. If an objective physical state is
identified by means of an eidos composed of n components, there should be
n other possible predicates that are gauged out. This means that the values
of the latter have no objective physical meaning. For example, the momen-
tum p of a system with a well-defined position q is completely gauged out
by the objective property q. Hence, the momentum p is necessarily undeter-
mined. Therefore, the possible predicates of an objective physical state s can
be separated into two sets: the n objective properties {xi}i=1,...n belonging to
the eidos εs, and the n predicates {xj}j=n+1,...,2n that are gauged out by the
symmetry transformations defined by the former. The fact that there is an
even number of possible predicates is a direct consequence of this intertwining
between objective and non-objective properties. Therefore, the set of possible
predicates has what we will tendentiously call a symplectic structure, i.e. it is
given by a twofold set of 2n intertwined possible predicates.

Since general canonical transformations mix canonical variables, it should be
possible to have predicates which are neither objective properties nor aspects,
but a mixture of both. In fact, the flexibility of quantum mechanics’s formalism
enables the consideration of intermediate physical states where neither q nor
p are sharp objective properties. If for example q is an unsharp objective
property of a physical state, the conjugated momentum p is not completly
gauged out. Hence p is in turn an unsharp objective property that partially
gauges the coordinate q. This means that, for a given physical state, a certain
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predicate can be partially considered as an unsharp objective property (that
partially gauges the conjugated variable) and partially as a gauged variable.
The resulting subtle equilibrium between unsharp objective properties and
induced partial objective reductions are formally governed by the uncertainty
principle.

3 From universal symmetry transformations to objective proper-

ties

Postulate ‡ establishes a conceptual correspondence between the objective
properties of a physical state and the induced symmetry transformations that
connect its gauge dependant “aspects”. In this section we will justify the
necessity of such a correspondence by giving a precise meaning to the notion
of physical state’s possible properties. To do so, we will consider the transition
from a group of symmetry transformations acting on states to the definition
of certain quantities (the momenta) that define their possible predicates. This
relation is provided by the so-called momentum map (see Refs.[10], [11], [12]).
The momentum map permits to obtain the objective properties of a physical
state by specifying the particular way in which the physical state realizes

certain universal operations. In other words, instead of going from objective
properties to (realized) symmetry transformations, we will go from (universal)
symmetry transformations to objective properties.

The action Φ : G×M →M of a Lie group G on a manifold M defines a map
ι between Lie algebra elements ξ ∈ g and fundamental vector fields vξ on M .
This map is defined by means of the expression vξ(x) = d

dλ
(exp(−λξ) · x)|λ=0

(for x ∈ M). This action is said to be symplectic if G acts on M by means
of symplectic diffeomorphisms, i.e. if Φ∗

gω = ω for all g ∈ G (where Φg :=
Φ(g, ·) : M → M). The relevant question is whether it is possible to obtain
the fundamental vector field vξ as a hamiltonian vector field corresponding to
a function hξ ∈ C∞(M). If this is the case, the fundamental vector field vξ
has to satisfy the equation ivξ

ω = dhξ. A symplectic G-action is said to be
hamiltonian if there exists a map

µ̃ : g → C∞(M)

ξ 7→ hξ

(called co-momentum) such that the following diagram commutes

0 // R // C∞(M) π //HM
// 0

g

ι

OO

µ̃

ddJ
J

J

J

J

J

J

J

J

J
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where the short sequence is exact. 4 The co-momentum map µ̃ is defined up
to a constant, i.e. the function µ̃′(ξ) = hξ + k (with k ∈ R) has also vξ as its
induced hamiltonian vector field. The corresponding momentum map is the
map

µ : M → g∗,

defined by

〈µ(x), ξ〉 = µ̃(ξ)(x) = hξ(x),

with ξ ∈ g and 〈·, ·〉 : g∗×g → R the natural duality pairing. The ambiguity in
the co-momentum map induces an ambiguity in the corresponding momentum
map. The modified momentum map µ′ has to satisfy 〈µ′(x), ξ〉 = µ̃′(ξ)(x) =
µ̃(ξ)(x) + k. If one defines µ′(x) = µ(x) + a with a ∈ g∗ such that a(ξ) = k,
this relation is satisfied. This means that the momentum map is defined up
to a constant in g∗.

These maps can be interpreted as follows. At each x ∈ M , the fundamen-
tal vector field vξ generates the infinitesimal transformation of the classical
state x defined by the universal Lie algebra element ξ ∈ g. We will say that
vξ(x) ∈ TxM is the realization by the particular state x of the universal in-
finitesimal generator ξ. Thanks to the momentum map, it is possible to define
a quantity µ(x) that characterizes how the classical state x realizes different
universal operations defined by elements in g. In fact, µ(x) for a fixed x is
an element in g∗ that takes on each infinitesimal generator ξ ∈ g a certain
value 〈µ(x), ξ〉 ∈ R that depends, by definition, on the state x. The quantity
〈µ(x), ξ〉 can then be used for identifying –at least partially– the state x. This
state is such that its realization of the universal generator ξ is specified by the
value 〈µ(x), ξ〉. 5 In other words, the map µ(x) : g → R (for a given x) speci-
fies how each universal generator in g is realized by the state x. By considering
how different states realize the same universal generator, this information can
be used to distinguish between states. To do so, one can fix a universal gener-
ator ξ ∈ g and compare its different realizations for different states x. In fact,
each element ξ ∈ g defines a function hξ : M → R (called a momentum) given
by hξ(x) = 〈µ(x), ξ〉. By construction, the hamiltonian vector field associated
to the momentum hξ is the fundamental vector field vξ that realizes the uni-
versal transformation ξ. For example, the angular momentum of a particle in
Euclidean space is given by the momentum map µ(q,p) := L(q,p) = q × p.
The angular momentum L(q,p) = q×p specifies how the state (q,p) realizes
universal infinitesimal rotations (which are not yet specified) . If one selects a

4 The exactness of this sequence simply means that the image of the inclusion
R → C∞(M) –the constant functions f = k ∈ R in C∞(M)– coincides with the
kernel of the projection π. In other terms, vf=k = 0.
5 Roughly speaking, we could say that a certain physical state can be character-
ized by the way in which it rotates, translates, evolves, etc., i.e. by the particular
way in which it realizes the universal operations called “rotations”, “translations”,
“temporal evolutions”, etc.
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particular element ξ ∈ g = R3, the value 〈µ(q,p), ξ〉 := Lξ(q,p) = ξ · (q× p)
specifies how the state (q,p) rotates around the axis defined by ξ. The mo-
mentum Lξ : M → R defines in this way a possible predicate of classical states
in M .

If the co-momentum map µ̃ is an homomorphism of Lie algebras –i.e. if
µ̃([ξ, η]) = {µ̃(ξ), µ̃(η)}–, the symplectic G-action is said to be strongly hamil-

tonian. It can be shown that this is the case if and only if the momentum map
is infinitesimally equivariant, i.e. if Txµ(vξ(x)) = −ad∗ξµ(x) for all ξ ∈ g, where
Txµ : TxM → Tg∗ ≃ g∗ and ad∗ denotes the coadjoint action of g on g∗ (see
Refs.[11], [12]). 6 The action of a group G on the manifold M is equivariant if
Ad∗g−1 ◦ µ = µ ◦ Φg (where Ad∗ denotes the coadjoint action of G on g∗), i.e.
if the following diagram commutes

M
µ //

Φg

��

g∗

Ad∗
g−1

��
M µ

// g∗.

It can be shown that equivariance implies infinitesimal equivariance and that
the converse is true only if G is connected [11]. For compact Lie groups, one
can always use the fact that momentum maps are defined up to a constant in
g∗ in order to choose them as equivariant [12].

We will now consider the significance of this equivariance property. The im-
portant result is that, for equivariant momentum maps, the dual g∗ of the Lie
algebra g defines a final object in the category of Poisson G-manifolds, the mo-
mentum map µ being the unique morphism from an object in the category (i.e.
a phase space M) to the universal object g∗ [8]. A Poisson G-manifold is a pair
(M, µ̃), where M is a Poisson manifold with a G-action and µ̃M a strong co-
momentum map, i.e. a homomorphism of Lie algebras µ̃M : g → C∞(M). It is
then possible to define the category G of all Poisson G-manifolds, where a mor-
phism α : (M, µ̃M) → (N, µ̃N) is a smooth map from M to N which preserves
the Poisson bracket structure (i.e. which satisfies α∗ {f, g} = {α∗f, α∗g}) and

6 The adjoint representation of a Lie group G on its Lie algebra g is defined by
Adg := TeIg : g → g, where Ig : G→ G is given by Ig(h) = ghg−1. The infinitesimal
adjoint action of g on g is defined by the map adξ : g → g given by adξη = [ξ, η]
with ξ, η ∈ g. The coadjoint action of G on g∗ is defined by using the dual map
Ad∗g : g∗ → g∗ given by 〈Ad∗gµ, ξ〉 = 〈µ,Adg(ξ)〉, with µ ∈ g∗ and ξ ∈ g. The
coadjoint action of G on g∗ is then defined by the map Φ∗ : G × g∗ → g∗ given by
(g, µ) 7→ Ad∗

g−1µ. The infinitesimal coadjoint action of g on g∗ is defined by the map

ad∗ξ : g∗ → g∗ given by the expression ad∗ξ(µ) = 〈µ, [ξ, ·]〉 [11].
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such that the following diagram commutes

C∞(N) α∗ // C∞(M)

g

µ̃N

OO

id // g.

µ̃M

OO

It can be shown that the dual vector space g∗ of the Lie algebra g defines a
final object in this category. The action of G on g∗ is the coadjoint action.
Under this action, g∗ breaks up into so-called coadjoint orbits. 7 The vector
space g∗ has a canonical Poisson bracket structure. This means that g∗ is
a Poisson manifold, with the coadjoint orbits as its symplectic leaves. The
Poisson bracket on C∞(g∗) can be defined as follows. If f, g ∈ C∞(g∗), then
df(x), dg(x) ∈ T ∗

xg∗ ≃ g (for x ∈ g∗). The Poisson bracket can then be defined
as {f, g} (x) = 〈x, [df(x), dg(x)]〉. In the Poisson G-manifold g∗, it is possible
to define a co-momentum map µ̃g∗ : g → C∞(g∗) given by µ̃g∗(ξ)(x) = 〈x, ξ〉. 8

Therefore, the pair (g∗, µ̃g∗) is a Poisson G-manifold. Moreover, it is a final
object in the category G of Poisson G-manifolds, being the strong momentum
map µ : M → g∗ the unique morphism from an object (M, µ̃M) to (g∗, µ̃g∗). In
this way, the momentum map µ : M → g∗ establishes an identification between
states in M and elements of the universal model g∗ for the G-action. 9 Since G
also acts on g∗, this characterization of a mechanical system is valid only if the
momentum map µ : M → g∗ respects the structure defined by the G-action.
In other words, the G-action has to be equivariant. This means that the real-
ization of the universal model established by the momentum map commutes
with the G-action on both M and g∗. The fact that an equivariant momentum
map preserves the relevant structures when passing from the universal model
g∗ to its realization by M is also manifested by the fact that such a map is a
Poisson map, i.e. it satisfies µ∗ {f, g} = {µ∗f, µ∗g}, for f, g ∈ C∞(g∗).

7 The coadjoint orbit through µ ∈ g∗ is the subset of g∗ defined by Oµ ≡ G · µ :=
{

Ad∗
g−1(µ),∀g ∈ G

}

. The fundamental property of coadjoint orbits is that they are

symplectic manifolds. In order to define the corresponding symplectic structures let’s
consider the tangent vectors to coadjoint orbits. If µ(t) = Ad∗

g(t)−1µ is a curve in Oµ

with µ(0) = µ and g(t) = exp(tξ) for ξ ∈ g, it can be shown that µ′(0) = −ad∗ξµ.

Thus TµOµ =
{

ad∗ξµ, ξ ∈ g
}

. The symplectic structure on Oµ can be defined as

ωOµ(µ)(−ad∗ξµ,−ad
∗
ηµ) = 〈µ, [ξ, η]〉. It can be shown that the map Ad∗

g−1 : Oµ → Oµ

preserves ωOµ (see Ref.[11] for more details).
8 It can be verified that the corresponding momentum map is the identity. Using
that 〈µg∗(x), ξ〉 = µ̃g∗(ξ)(x) = 〈x, ξ〉, it follows that µg∗(x) = x.
9 In particular, a coadjoint orbit can be considered as the universal model for the
orbits of the G-action. It can be shown that the image of µ is a union of coadjoint
orbits. In particular, if G acts transitively on M , then the momentum map is a
covering of a unique coadjoint orbit.
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To sum up, we can say that universal operators in g act on concrete states in
M by means of realized operators in HM (fundamental or hamiltonian vector
fields). This realization is mediated by classical observables by means of the co-
momentum map µ̃ : g → C∞(M). Since by definition the Lie algebra g acts on
its dual g∗, it is natural to discover that g∗ constitues a universal model of the
phase space M . This means that g∗ is a final object in the category of Poisson
G-manifolds. The identification between the universal model and its concrete
realizations is given by the momentum map µ : M → g∗. This correspondence
is valid only if the maps respect the relevant algebraic structures. This means
that the G-action on both M and g∗ and the Poisson structures have to be
preserved by the relevant maps.

We will now consider a potential obstruction to the momentum map’s in-
finitesimal equivariance. This obstruction measures the extent to which the
co-momentum map µ̃ : g → C∞(M) fails to be an homomorphism of Lie
algebras. It is then given by the map

Σ : g × g → R

defined by

Σ(ξ, η) = µ̃([ξ, η]) − {µ̃(ξ), µ̃(η)} .

By using Jacobi’s identity in both {·, ·} and [·, ·], it can be shown that Σ
satisfies

Σ(ξ, [η, ζ]) + Σ(η, [ζ, ξ]) + Σ(ζ, [ξ, η]) = 0.

This means that Σ defines a 2-cocycle in the Lie algebra cohomology H∗(g,R)
of g with values in R. 10 The corresponding cohomology class [Σ] ∈ H2(g,R)
is the obstruction to the infinitesimal equivariance of the momentum map.
The cocycle Σ is a coboundary if there exists a 1-cochain λ : g → R such
that Σ(ξ, η) = (δgλ)(ξ, η) = −λ([ξ, η]). Two co-momentum maps differing in
a constant element λ ∈ g∗ have associated cocycles differing in a coboundary:
Σλ(ξ, η) = Σ(ξ, η) + λ([ξ, η]). This means that they belong to the same co-
homology class: [Σλ] = [Σ]. If the cohomology class is trivial –i.e. if [Σ] = 0

10 Let Ck(g,R) = {α : gk → R} be the set of R-valued k-cochains (where the maps
α are skew k-linear maps). Let’s define the differential δg : Ck(g,R) → Ck+1(g,R)
as

(δgα)(ξ0, ..., ξk) =
∑

0≤i<j≤k

(−1)i+jα([ξi, ξj ], ξ0, ..., ξ̂i, ..., ξ̂j , ..., ξk),

where ξ̂i means that ξi has been suppressed. It can be shown that δ2g = 0. The cor-
responding cohomology H∗(g,R) = ker(δ∗g)/im(δ∗−1

g ) is the Lie algebra cohomology
of g with values in R. In our case, the element Σ is a skew bilinear map that satisfies
(δgΣ)(η, ξ, ζ) = −(Σ([η, ξ], ζ) + Σ([ζ, η], ξ) + Σ([ξ, ζ], η)) = 0, i.e. it is a 2-cocycle in
H2(g,R).
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or equivalently Σ(ξ, η) = −λ([ξ, η])–, then the momentum map can be mod-
ified so as to be infinitesimally equivariant. In fact, the new map µ̃′ = µ̃ + λ

is an infinitesimally equivariant co-momentum map. 11 In particular, if g is
semisimple, then the Second Whitehead Lemma states that H2(g,R) = 0.

When the cohomology class of Σ is not trivial, the momentum map can still
be adjusted to be infinitesimally equivariant by enlarging g to the central
extension g′ = g + R defined by Σ. The bracket in g′ is defined by

[(ξ, a), (η, b)] = ([ξ, η],Σ(ξ, η)).

The Lie algebra g′ acts on M by ρ(ξ, a)(x) = vξ(x). The induced momentum
and co-momentum maps

µ′ : M → (g′)∗ = g∗ ⊕ R

µ̃′ : g′ = g + R → C∞(M)

satisfy
vh(ξ,a)

= vhξ
,

where h(ξ,a) = µ̃′(ξ, a) and hξ = µ̃(ξ). This implies that h(ξ,a) − hξ = ̺(ξ, a),
with ̺(ξ, a) constant. The obstruction to the infinitesimal equivariance of µ̃′

is

Σ′((ξ, a), (η, b)) = µ̃′([(ξ, a), (η, b)]) − {µ̃′(ξ, a), µ̃′(η, b)} =

= µ̃′([ξ, η],Σ(ξ, η)) − {µ̃(ξ) + ̺(ξ, a), µ̃(η) + ̺(η, b)}

= µ̃([ξ, η]) + ̺([ξ, η],Σ(ξ, η)) − {µ̃(ξ), µ̃(η)}

= Σ(ξ, η) + ̺([ξ, η],Σ(ξ, η)).

The 2-cocycle Σ′((ξ, a), (η, b)) belongs to the trivial class if it is a coboundary,
i.e. if Σ′((ξ, a), (η, b)) = −λ([(ξ, a), (η, b)]) = −λ([ξ, η],Σ(ξ, η)). Let’s define
the 1-cochain τ : g′ → R given by τ(ξ, a) = a. Then Σ(ξ, η) = τ([ξ, η],Σ(ξ, η))
and thus

Σ′((ξ, a), (η, b)) = (τ + ̺)([ξ, η],Σ(ξ, η))

11 The obstruction associated to the co-momentum map µ̃′ = µ̃+ λ is

Σ′(ξ, η) = µ̃′([ξ, η]) −
{

µ̃′(ξ), µ̃′(η)
}

= µ̃([ξ, η]) + λ([ξ, η]) − {µ̃(ξ) + λ(ξ), µ̃(η) + λ(η)}

= µ̃([ξ, η]) + λ([ξ, η]) − {µ̃(ξ), µ̃(η)}

= Σ(ξ, η) + λ([ξ, η])

= 0.
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= (τ + ̺)([(ξ, a), (η, b)])

= −λ([(ξ, a), (η, b)]),

with τ + ̺ = −λ. Therefore, the co-comentum map µ̃′ can be adjusted to
be infinitesimally equivariant by choosing ̺(ξ, a) = −a. The resulting co-
momentum map is then

µ̃′(ξ, a) = µ̃(ξ) − a.

We will now consider the action of g = R2 = {(a, b)} on M = R2 = {(q, p)}
given by Φ(a,b)(q, p) = (q+a, p+ b). The realization of the Lie algebra element
ξ = (a, b) is given by the fundamental vector field vξ = a∂q + b∂p. This vector
field is the hamiltonian vector field corresponding to the function hξ(q, p) =
ap− bq. The co-momentum map is then

µ̃ : g → C∞(M)

(a, b) 7→ hξ(q, p) = ap− bq.

This co-momentum map is not infinitesimally equivariant. This means that it
is not a homomorphism of Lie algebras. The obstruction Σ is given by

Σ((a1, b1), (a2, b2)) = µ̃([(a1, b1), (a2, b2)]) − {µ̃(a1, b1), µ̃(a2, b2)}

= b1a2 − a1b2.

Since [g, g] = 0, the only coboundary is zero. This means that Σ belongs
to a non-trivial cohomology class. In particular let’s consider the Lie algebra
elements ξq = (1, 0) and ξp = (0, 1). These elements induce on M the fun-
damental vector fields vξq = ∂q and vξp = ∂p respectively. In this case the
obstruction is

Σ(ξq, ξp) = µ̃([ξq, ξp]) − {µ̃(ξq), µ̃(ξp)}

= µ̃(0) − {p,−q}

= −1.

Since the action of g = R2 on M = R2 is not infinitesimally equivariant,
classical mechanics on M is not a satisfactory realization of the universal
model g∗ for the G-action. It is worth noting that the non-equivariance of
µ̃ is a consequence of the fact that the algebraic structure of G does not
reflect the symplectic intertwining between possible predicates. In other words,
[ξq, ξp] = 0 even if {q, p} = 1. The infinitesimally equivariant co-momentum
map is obtained through the central extension of g = R2 defined by Σ. It is
given by

µ̃′ : g′ = R2 ⊕ R → C∞(M)

((a, b), c) 7→ h(a,b) − c = ap− bq − c.

13



The central extension g′ = R2 ⊕R is called Heisenberg algebra and the corre-
sponding connected and simply-connected Lie group is the Heisenberg group

H. The underlying manifold is H = R2 × S1 (where R2 is considered as an
additive Lie group), with multiplication given by the expression

(g1, e
iθ1) · (g2, e

iθ2) = (g1 + g2, e
i[θ1+θ2+ 1

2
Σ(g1,g2)]),

with identity (0, 1) and inverse (g, eiθ)−1 = (−g, e−iθ).

As we have argued above, adopting postulate ‡ makes it impossible to identify
the space of states with the phase space M (since classical states x ∈ M

are overdetermined). We will now provide some heuristic justifications for
the election of a new space of states. To do so, we will recapitulate what
we have discussed thus far. Thanks to the momentum map, it is possible to
give a precise meaning to the notion of a states’s possible predicate. Each
possible predicate is defined as a momentum hξ : M → R specifying how
classical states realize universal generators ξ ∈ g of infinitesimal canonical
transformations by means of hamiltonian vector fields. This characterization
of possible predicates explains why the correspondence between observables
and operators is a necessary feature of mechanics. Possible predicates hξ induce
infinitesimal canonical transformations –through the map π : C∞(M) → HM–
because hξ are in turn defined by specifying how the universal generators ξ ∈ g
are realized by different states in M –through the map µ̃ : g → C∞(M)–. In
other words, the realization –as hamiltonian vector fields in HM– of universal
symmetry transformations in g is factorized through possible predicates in
C∞(M) which can be used for identifying the state. The following diagram
encompasses both sides of the relationship between observables and operators:

g µ̃ //

ι

##
C∞(M) π //HM .

Each momentum (i.e. each possible predicate) defines a realization of a uni-
versal infinitesimal canonical transformation that acts on another possible
predicate. The phase space M is then characterized by a set of 2n simplec-
tically intertwined possible predicates. In particular, we have considered the
transitive action of the translation group R2 on M = R2. The problem we
found is that this group does not reflect the symplectic intertwining between
possible predicates in M (since [ξq, ξp] = 0). This fact is manifested through
the non-equivariance of the corresponding momentum map (i.e. it does not
preserve the relevant algebraic structures). In order to guarantee the equivari-
ance of the momentum map, the translation group R2 has to be extended to
the Heisenberg group H = R2 × S1. Nevertheless, even if the corresponding
Heisenberg algebra reflects the symplectic intertwining between conjugated
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possible predicates –[(ξq, 0), (ξp, 0)] = ([ξq, ξp],Σ(ξq, ξp)) = (0,−1)–, its action
on M is still given by classical operators, i.e. by hamiltonian vector fields
((ξ, a) ∈ g′ acts on M by ρ(ξ, a)(x) = vξ(x)). As we will see in the next
section, the Lie algebra of hamiltonian vector fields is not isomorphic to the
Poisson algebra. This means that it does not reflect the intertwining between
coordinates q and momenta p. If one wants to keep the definition of possible
predicates as the momenta specifying the equivariant realization of universal
operations, this realization must be faithful. This means that non-commuting
universal operators should map to non-commuting realized operators. More-
over, it is also necessary to consider the following important factor. Since (q, p)
is a complete set of observables –every function that commutes with both q

and p is necessarily constant–, the induced operators v̂q and v̂p must also be a
complete set. This means that any operator commuting with both v̂q and v̂p is
necessarily a multiple of the identity. This conditions amounts to demand that
the operators v̂q and v̂p act irreducibly on the space of states. 12 To sum up,
the searched space of states has to be endowed with an irreducible action of
operators v̂q and v̂p, such that their commutator algebra is isomorphic to the
Poisson algebra. In the case M = R2n, the Stone-Von Neumann theorem guar-
antees all irreducible representations of the Heisenberg algebra to be unitary
equivalents to the Schrödinger representation (for a fixed value of Planck’s
constant). In this representation, operators associated to the observables q
and p act on functions in L2(Rn) by means of the expressions v̂qψ(q) = qψ(q)

and v̂pψ(q) = −i~∂ψ(q)
∂q

. It is worth noting that the resulting quantum states
satisfy postulate ‡ by construction. For example, if a quantum state has a
well defined position –|ψ〉 = |q〉–, the transformation generated by the oper-
ator v̂q (multiplication by q in the coordinate representation) should not be
considered as an active transformation between physically distinct states, but
as a symmetry transformation that does not modify the physical state. In
fact, the transformed state eiv̂qk|q〉 = eiqk|q〉 is gauge equivalent to |q〉. On the
other hand, since the observable p is not an objective property of the state
|q〉, transformations generated by v̂p –translations in position– should not be
considered symmetry transformations, but rather active transformations be-
tween physically different states. This is consistent with the fact that eiv̂pk|q〉
is not gauge equivalent to |q〉.

4 From objective properties to realized symmetry transformations

We will now consider the results described in the preceding section from a
dual point of view. We have seen that in order to define an equivariant co-
momentum map between universal operators and observables it is necessary

12 Irreducibility means that every closed subspace of the space of states which is
invariant under the action of this set is either {0} or the whole space of states.
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to enlarge the translation group that acts on M by adding an extra S1-degree
of freedom (defining in this way the Heisenberg group). Conversely, the pre-

quantization formalism shows that in order to define a faithful correspondence
between observables and realized operators it is necessary to enlarge the sym-
plectic manifold M by adding an extra S1-degree of freedom ([3], [9], [13], [14],
[16]).

A fundamental feature of classical mechanics is that the surjective Lie alge-
bra homomorphism C∞(M) → HM (defined by the symplectic structure ω)
between classical observables f ∈ C∞(M) and classical operators vf ∈ HM is
not injective, being its kernel the set of constant functions f = k ∈ R. These
properties of the map C∞(M) → HM can be summed up by saying that the
short sequence

0 // R
i // C∞(M) π //HM

// 0

is exact. In other words, the image of the injection i –the constant functions
in C∞(M)– is the kernel of the projection π (vf=k = 0). This means that,
as Lie algebras, the Poisson algebra of classical observables C∞(M) and the
Lie algebra HM of hamiltonian vector fields are not isomorphic. Consequently,
while for exemple the infinitesimal transformation of q generated by p is given
by Lievp

q = {q, p} = 1, the same infinitesimal action applied to vq yields
Lievp

vq = [vp, vq] = 0. In other words, the classical differential operator vp
acts non-trivially on q and trivially on vq. This means that classical mechanics
fails to establish a faithful correspondence between observables and opera-
tors: a transformation of an observable f is not necessarily reflected at the
level of the induced operator vf . Nevertheless, the definition of a possible
predicate as a momentum that specifies a particular realization of a universal
canonical transformation is consistent only if a change in the momentum is
faithfully reflected in the realized canonical transformation. It is worth noting
that [vp, vq] = 0 (while {q, p} = 1) is the dual version of the fact –considered in
the preceding section– that [ξp, ξq] = 0 (while {µ̃(ξp), µ̃(ξq)} = {q, p} = 1). In
other words, both the universal operator algebra g and the realized operator
algebra HM fail to reflect the symplectic intertwining defined by the Poisson
algebra between possible predicates that are canonically conjugated.

The geometric arena of classical mechanics is insufficient for establishing a
faithful correspondence between observables and operators. As the prequan-
tization formalism shows, in order to define an operator algebra isomorphic
to the Poisson algebra C∞(M), it is necessary to extend classical operators vf
to quantum operators v̂f by adding additional components to the former. To
do so, the symplectic manifold M has to be extended by defining a complex
line bundle over it. The quantum operators v̂f must satisfy the quantization
conditions proposed by Dirac [4]:

• Q1) If f = k ∈ R, then v̂f=k = kI, where I is the identity operator.
• Q2) If {f, g} = h, then [v̂f , v̂g] = −i~v̂h.
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• Q3) If {fi} is a complete set of classical observables, then the Hilbert space
of quantum states has to be irreducible under the action of the set {v̂fi

}.

The prequantization formalism shows that, in order to define an operator
algebra that satisfies Q1 and Q2, it is necessary to define a complex line bundle
L → M over the phase space M with a hermitian connection ∇, such that

its curvature is given by the symplectic form ω. The additional “internal”
dimensions defined by the fibers let us extend the classical operators vf ∈ HM

by means of vertical components ζf tangent to the fibers. By construction,
the extended quantum operators v̂f = vhf + ζf (where vhf is the horizontal lift
of vf defined by the connection) satisfy commutation relations isomorphic to
a subalgebra of classical observables’s Poisson algebra. This guarantees that
[v̂q, v̂p] 6= 0, even if [vq, vp] = 0. By adding an internal “quantum” dimension to
the symplectic manifold M , it is possible to define a quantum operator algebra
isomorphic to the Poisson algebra. It can then be shown that the differential
operators v̂f acts on sections s : M → L by means of the expression [3]

v̂f · s = ∇vf
s− fs.

Therefore, it might seem natural to identify the sections s : M → L with
the new notion of physical states. Nevertheless, since these sections depend
on the 2n coordinates of the phase space M , they do not correspond to the
usual notion of quantum states, which only depends on n coordinates. In fact,
if quantum states were defined by these sections, they could be localized in
both q and p. This means that both q and p could be objective properties of
the physical state. However, as explained above, such simultaneous localiza-
tion would be contradictory with postulate ‡. The formal counterpart to this
conceptual objection is that the quantum operators associated to a complete
set of classical observables by the prequantification formalism, is not a com-
plete set (they do not act irreducibly on the space of quantum states [8]). 13

This problem can be solved by restricting the space of quantum states. To
do so, it is necessary to perform a second stage in the quantization process
given by the election of a polarization (i.e. a foliation of M by Lagrangian
submanifolds [16]). The resulting polarized quantum states only depend on
the n coordinates of a Lagrangian submanifold of M . This means that they
cannot be localized in both q and p.

In this way the geometric quantization formalism allow us to reobtain the re-

13 For example, the prequantization of the cotangent bundle M = T ∗
R associates to

the complete set of canonical variables q and p the quantum operators v̂q = q+ i~ ∂
∂p

and v̂p = −i~ ∂
∂q

respectively. Let’s consider the subset C∞(R) ⊂ C∞(M) composed
of states of the form ψ(q). The transformed states v̂qψ(q) = qψ(q) and v̂pψ(q) =

−i~∂ψ(q)
∂q

also depend only on q. This means that C∞(R) is a proper subspace of
quantum states invariant under the action of the quantum operators v̂q and v̂p.
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sults described in the preceding section. In order to define possible predicates
by means of an equivariant realization of universal operations, it is necessary
to extend the translation group in M to the Heisenberg group. The Stone-Von
Neumann theorem assures that there is essentially a unique irreducible rep-
resentation of this group, which is given (modulo unitary equivalence) by the
Schrödinger representation. On the other hand, in order to define an operator
algebra that is isomorphic to the Poisson algebra, it is necessary to extend the
symplectic manifold by defining a fiber bundle over it. The corresponding op-
erator algebra acts irreducibly on the space of polarized sections. By choosing
a vertical polarization the Schrödinger representation is recovered [16].

5 Conclusion

Beyond the empirical observation that quantum mechanics is, at least to our
present knowledge, the correct theory of mechanics, it still lacks a satisfac-
tory explanation of the rational necessity of substituting classical mechanics
by quantum mechanics. In this paper we proposed that an analysis of the
relations between objective properties of physical states and symmetry trans-

formations could shed new light on this problem. The twofold role played
by classical observables in mechanics –as functions that can be evaluated on
states and as generators of canonical transformations– is considered here as a
fundamental feature that deserves further attention. Our first observation is
that the classical correspondence between these two roles is not satisfactory.
This can be seen in two ways. On the one hand, the map C∞(M) → HM

between classical observables and hamiltonian vector fields is not injective.
On the other hand, the co-momentum map µ̃ : g → C∞(M) is not equivariant
(where g is the Lie algebra of the translation group in M). This means that
the Lie algebras HM and g do not reflect the symplectic intertwining between
possible predicates. In fact, quantum mechanics can be understood as the
theory of mechanics that bypasses these flaws. Dirac’s quantization conditions
can be considered a formalization of this prescription. The geometric quanti-
zation formalism shows that in order to satisfy Dirac’s conditions (at least for
a certain subalgebra of observables), classical operators (hamiltonian vector
fields) have to be extended by adding new “vertical” components. In order
to define these new components it is necessary to extend the phase space M
by defining a complex line bundle over it (endowed with a hermitian connec-
tion of curvature defined by the symplectic form). Quantum states are then
given by polarized sections of the line bundle. From the dual point of view, in
order to define an equivariant momentum map, the translation group in M

has to be extended to the Heisenberg group. For M = R2n, the Stone-Von
Neumann theorem fixes (modulo unitary equivalence) its unique irreducible
representation.
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These formal results show that, to a certain extent, quantum mechanics can
be recovered by forcing a faithful –or equivariant– correspondence between ob-
servables and operators. Hence, in order to understand the necessity of quan-
tum mechanics, it is necessary to better establish the rational link between
the two roles played by observables. As a means of establishing this rational
link, we proposed postulate ‡. According to this postulate, the infinitesimal
canonical transformations induced by the objective properties of a physical
state should not be considered physically non-trivial transformations between
different physical states –as in classical mechanics-, but as symmetry trans-
formations that do not affect its objective properties, i.e. that do not modify
the physical state. This implies that states connected by these transforma-
tions have to be considered gauge equivalent. Moreover, the momentum map
formalism permits a better understanding of the relationships between observ-
ables and operators. According to this formalism, the objective properties of
a physical state characterize the way it equivariantly realizes certain universal
transformations. Such considerations give a conceptual scope to the correspon-
dence between observables and operators. The eidos of a physical state defines
both the objective properties of the state and its objective reduction through
the induced symmetry transformations. Nevertheless, we showed that classical
mechanics cannot be consistently interpreted by means of postulate ‡. In fact,
a determination of classical states by both q and p is inconsistent with the
interpretation of induced infinitesimal canonical transformations as effective
symmetry transformations. According to the proposed postulate, since each
objective property characterizes the realization of a symmetry transformation
that gauges the canonically conjugated property, not all properties can be con-
sistently attributed to a particular physical state. This implies that classical
states are overdetermined, they are defined by means of too many canonical
variables. On the contrary, the quantum uncertainty principle can be consid-
ered a faithful realization of postulate ‡. The momentum of a state with a
well defined position q is completely gauged out by means of the symmetry
transformation induced by the observable q (considered an objective property
of the state). Therefore, we can conclude that it is not the case that the quan-
tum notion of physical objectivity is underdetermined –when compared to a
hypothetical classical completeness– but that the classical notion is overdeter-
mined. It is a remarkable fact that non-commutativity of quantum operators
is the condition of possibility for a well-defined notion of physical objectiv-
ity. Quantum non-commutativity guarantees that the symplectic intertwining
between possible predicates is faithfully reflected at the level of operators.
Therefore, possible predicates of physical states can be consistently defined
as the quantities that specify faithfully how different states realize different
universal operations.
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