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 This discussion deals with the question: What are the criteria that an adequate theory of 

computation has to meet? 

1. Smith's answer: an adequate theory of computation has to meet the empirical criterion – it has to 

do justice to computational practice, the conceptual criterion – it has to explain all the underlying 

concepts and the cognitive criterion – it has to provide solid grounds for computationalism. 

2. Fodor & Pylyshyn's answer: an adequate theory of computation has to meet the semantic level 

criterion – it has to explain the semantics of computation, the symbol level criterion – it has to 

explain the information processing aspect and the physical level criterion – it has to explain the 

underlying physical realization. 

3. Piccinini's answer: an adequate theory of computation has to meet the objectivity criterion – it 

has to identify computation as a matter of fact, the explanation criterion – it has to explain the 

computer's behaviour, the right things compute criterion, the miscomputation criterion – it has to 

account for malfunctions, the taxonomy criterion – it has to distinguish between different classes of 

computers and the empirical criterion. 

4. Von Neumann's answer: an adequate theory of computation has to meet the precision and 

reliability of computers criterion, the single error criterion – it has to address the impacts of errors 

to computation and the distinction between analogue & digital computers criterion. 

5. “Everything” computes answer: an adequate theory of computation has to meet the 

implementation theory criterion – it has to properly explain the notion of implementation. 

 

 There's a widespread tendency to compare minds to computers, but a better understanding of 

computation is required beforehand. I outline some of the competing answers and argue that Smith's 

criteria are inadequate and over demanding. My aim is to show why he's eventually concluded that 

an adequate theory of computation is unlikely. 
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1. Smith's answer 

 According to this answer an adequate theory of computation has to meet the empirical 

criterion, the conceptual criterion and the cognitive criterion (Smith 1996, pp. 14-17; 2002). In his 

view, questions like what computers are or what computation is, require tackling other questions of 

metaphysical nature. He asserts that not only must an adequate account meet the three criteria above 

and include a theory of semantics, it must also include a theory of ontology. It is not just 

intentionality that is at stake, in his view, but so is metaphysics. 

 

The empirical criterion 

 The empirical criterion dictates the need to be compliant with extant computational practice. 

It means that any such a theory should be capable of explaining a program like the Open Office 

Writer. It should account for its construction, maintenance and everyday use (Smith 1996, p. 5; 

2002, p. 24). The empirical criterion “does justice” to computational practice by keeping the 

analysis grounded in real world examples of computers. The computer and the Internet revolutions 

demonstrate again and again computers' ability to evolve, expand and adjust beyond the alleged 

constraints of any computational theory. This criterion serves to question the legitimacy of all 

extant theoretical perspectives. In this context, Silicon Valley is nominated as the gatekeeper to 

decide whether in practice something may be deemed computational. An adequate theory of 

computation must make a substantive empirical claim about what Smith calls computation in the 

wild, which is the body of practices, techniques, machines, networks etc. that revolutionized the last 

decades (Smith 1996: pp. 5-6; 2002: pp. 24-25). 

 

The conceptual criterion 

 The conceptual criterion dictates the need to repay all intellectual debts, in the sense that any 

such theory ought to clearly explain underlying concepts like: compiler, interpreter, algorithm, 

semantics etc. With that in mind, we should understand what the theory says, its origins and its 

implications (Smith 2002: p. 24). The conceptual criterion, which is no more than a meta-theoretical 

constraint on any theory, is especially crucial in the computational case for two main reasons. The 

first reason is that many candidate theories of computation rely on important notions such as 

interpretation, representation and semantics with no proper explanation of these notions. The 

second is that there's a widespread tendency to resort to computation as a possible theory of exactly 

those very “disobedient” notions. The end result is thus a conceptual circularity that deprives 

candidate theories of their explanatory power (ibid). 
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The cognitive criterion 

 The cognitive criterion dictates the need to provide solid grounds for the computational 

theory of mind, often known as computationalism, the thesis that regulates the traditional fields of 

artificial intelligence and cognitive science (ibid). The cognitive criterion is also a meta-theoretical 

constraint on the form of any candidate theory of computation. In the present context, 

computationalism has potential epistemological consequences depending on the theory of 

computation one chooses to endorse. If the computational theory of mind were true, then a theory of 

computation would apply not only to computing in general, but also at the meta level to the process 

of theorizing. In other words the theory's claims about the nature of computation would apply to the 

theory itself. So if computationalism was true, then upon judging a candidate theory of computation 

and finding it to be adequate or not, there will be supposedly no reason to trust the conclusion. The 

reason for that is that the presumed meta-theory is conceptually inadequate.  

 

Asking too much and too little 

 Smith rightly asks that a candidate theory does justice to computational practices or to what 

he calls computation in the wild. Elsewhere he claims that there's a big gap between the theory and 

the practice, which the theory won't be able to overcome (Smith forthcoming). Smith calls it the 

explanatory gap. True, any such theory has to account to some extent for the computer practices that 

have penetrated every aspect of our lives in recent years. Indeed, a candidate theory shouldn't be 

fully abstract and detached from computation in the wild. The technological gap, which is boosted 

by the computer and the Internet revolutions, doesn't force us to give up in advance just because the 

theory is supposedly left far behind. An adequate account needn't capture and explain all the aspects 

of every existing technological breakthrough in computer science, artificial intelligence, molecular 

computers etc.  

 Computation is a highly diversified and fluid concept, which may not be fully explained by 

a strict and definite theory. Instead a more flexible – context based account should be sought. 

Rather than looking for one essential core to account for all the computational practices and 

defining a clear boundary, a disjunctive account can be given. A candidate theory can account for 

Turing machines, desktop computers, the Open Office Writer program and a compiler. This theory 

can be limited to do justice to the basic computing devices only or be extended to account for more 

complex devices such as parallel and distributed computers, high speed network elements, expert 

systems, molecular computers etc.. This however isn't to say that such a theory would be so loose as 

to accept any device, since this may result in an account that attributes computation to any physical 

system. 

 Eventually, Smith (2002, p. 51) makes the strong claim that it's not only that we don't 
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currently have any satisfactory theory of computation, but also that we'll always fail to provide an 

adequate theory. I believe that this assertion is a bit hasty. The empirical criterion may be indeed 

hard to meet, but insufficient to dismiss any attempt to provide an adequate theory. There's nothing 

that prevents us from refuting a particular theory of computation, and providing a new account, 

which addresses the weaknesses of its predecessor. When an existing theory of computation is 

falsified, its weakness should be addressed by a new candidate theory. 

 Smith's cognitive criterion is no more convincing than his empirical criterion. Regardless of 

the very critical debate regarding the legitimacy of computationalism, its claims needn't dictate any 

meta level constraints on the characteristics of the theory of computation. If anything it should 

rather be the other way around. Any proponent of computationalism has to show why minds work 

the same way that computers do. Smith accurately claims that if computationalism were found to be 

true, there would be significant epistemological consequences for the process of theorizing. But if 

we take his view seriously, then computationalism itself can't be an adequate theory. To put it 

simply, according to computationalism, the mind is a kind of computer. Smith (2002, p. 51) argues 

that we'll always fail to provide an adequate theory of computers. From these 2 premises it follows 

that proponents of computationalism will always fail to provide an adequate computational theory 

of the mind. 

 Smith argues that if computationalism were true, then a theory of computation would apply 

not only to computing, but also to the process of theorizing. So unless one nails down the reflexive 

implications of the candidate theory of computation on theorizing itself, and examines this theory 

from a reflexively consistent standpoint, one will be incapable of judging whether it's adequate. If 

computationalism were false, then this criterion would become irrelevant anyway. But if it was true, 

then the cognitive criterion would a-priori pre-empt any attempt to produce a theory of 

computation. The result would be that a theory, which deals with computers, is reflexive and deals 

with minds as well. The cognitive process of theorizing itself may thus be said to be computational. 

The best approach to deal with Smith's argument will be to simply avoid the trap. The burden of 

addressing the supposedly reflexive characteristic of the theory lies on computationalism rather on 

any theory of computation.  

 It appears to me that Smith is asking too much and too little with regard to potential theories 

of computation. The foregoing criteria constrain any candidate theory and leave very slim chances 

of providing an adequate theory. At the same time, I believe that he has overlooked other essential 

criteria, which should be seriously considered. For instance, the miscomputation criterion and what 

I call the “dichotomy criterion”. The former criterion dictates that any theory of computation has to 

explain miscomputation as an inevitable feature of computation. I shall elaborate more on this 

criterion in the answers that follow. The latter criterion dictates that things that compute should be 
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clearly distinguished from things that don't. 

 It may be argued that the dichotomy criterion is too strong since computation is a graded 

concept. According to this line of argument, different devices and mechanisms range at different 

points on the scale. Some paradigmatic examples like UTMs, digital computers, multiple-

processing computers etc. clearly perform computations and are located at one extreme end of the 

scale. Other examples like digestive systems, buckets of water, walls, toasters etc. don't perform 

computations, and are located at the opposite end of the scale. Whereas in the middle ground one 

may find mechanisms such as lookup tables, Ethernet cards etc. that aren't always clear cut cases. 

However, this criterion has to be methodically followed by any candidate theory of computation. 

Setting the goal high enough regarding what constitutes "performing computation" and what doesn't 

may achieve better results. A theory of computation, which clarifies a larger number of computing 

mechanisms, is Ceteris Paribus better than one that accounts for fewer. This approach has a better 

chance of producing a broader version of a theory of computation.  

 Smith concentrates so much on “doing justice” to computation in the wild and to 

computationalism, that he neglects essential meta-theoretical constraints. And these latter 

constraints are the ones, which are necessary to providing an adequate theory of computation. The 

following answers can be examined as alternatives to Smith's criteria, and illuminate what he has 

overlooked. 

 

2. Fodor & Pylyshyn's answer 

 The view advocated by Fodor (1975) and Pylyshyn (1984; 1989) is applicable to both 

computers and cognition. According to the second answer an adequate theory of computation has to 

meet the semantic level criterion, the symbol level criterion and the physical level criterion. These 

criteria are essentially distinct levels of organization in what Pylyshyn (1989: pp. 58-59) calls “the 

classical view of computing and cognition”. This explanation framework of complex systems can 

be traced back to the influential analysis of David Marr, who proposed three levels of explanation in 

his work on a computational theory of vision: the computational, the algorithmic and the physical 

(Staines et al 2001: pp. 209-212). 
 

The semantic level criterion 

 At the semantic level we explain why appropriately programmed computers, do certain 

things by saying what their goals are, and by showing that these are connected in certain meaningful 

ways. Symbolic expressions are transformed in the computer in a way that is very important. This is 

because these expressions mean something. Hence, the transformations of these expressions are 
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designed to coherently maintain their meaning and to ensure that the expressions continue to "make 

sense" when semantically interpreted (1989: pp. 58-60). 

 

The symbol level criterion 

 The symbol level is required to account for questions like why some tasks take longer to 

process than others, or why some tasks result in more errors than others. Computers can operate at 

the semantic level only because of the underlying symbol level. At this level the system operates in 

terms of representations and information processing operations on these representations. The 

semantic content of "knowledge" and goals is encoded by symbolic expressions. If one wishes to 

explain why it takes more time to compute answers to some problems, one has to refer to the way 

“objects” are symbolically encoded and to the sequences of transformation of these symbolic 

expressions (1989: pp. 59, 63). 
 

The physical level criterion 

 For the entire system to run, it has to be realized in some physical form. The structure and 

the principles by which the physical object functions correspond to the physical level. Due to our 

experience with a narrow range of architectures, we are accustomed to associate computation and 

algorithms with a limited class of algorithms that can be executed on specific architectures. But this 

leads to an inevitable mistake since different architectures permit different algorithms to be 

executed (1989: pp. 59, 63). 

 

3. Piccinini's answer 

 Piccinini (forthcoming) offers an account of computation without representation. In contrast 

to the semantic view of computation advocated by Fodor and Pylyshyn, he maintains that 

computation has to be explained in functional terns in a way that is analogous to engineering and 

biology. He proposes a mechanistic account of computation, which doesn't presuppose semantic 

content of computational states and processes. Rather, it states that the capacities of a computing 

mechanism are attributed to the organization of its sub components and their corresponding 

functions. This account appeals to functional explanations, and endorses the distinction between 

successful computations and miscomputations.  

 

The objectivity criterion 

The objectivity criterion dictates that an adequate theory of computation ought to identify 

computations as a matter of fact. Piccinini asserts that some philosophers like Searle and Putnam 

have suggested that computational descriptions are vacuous, because any system may be described 
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as performing any computation. So allegedly there is no further fact of the matter as to whether one 

computational description is more accurate than another (ibid).  

 Computer practitioners appeal to empirical facts about the systems they study, design and 

implement to determine which computations are performed by which mechanisms. They apply 

computational descriptions to concrete mechanisms in a way entirely analogous to other credible 

scientific descriptions (ibid). 

 

The explanation criterion 

 The explanation criterion dictates that an adequate theory of computation should explain the 

behaviour of computing mechanisms. It ought to explain how program execution relates to the 

general notion of computation. Inner computations may explain outer behaviours of computers.  

Traditionally, computational explanations have been translated or reduced to explanations by 

program execution. Piccinni (ibid) however resists this one to one translation and gives music boxes 

as examples of mechanisms, which operate by executing programs, but do not perform 

computations.                                           

 

The right things compute criterion 

 The right things compute criterion dictates that a candidate theory of computation need to 

only encapsulate the mechanisms and devices that actually compute (ibid). Such a theory should 

entail that paradigmatic examples like digital computers, Turing machines, and finite state 

automata, compute. At the same time, an adequate theory of computation ought to exclude non-

computing mechanisms and systems like planetary systems, digestive systems, Hinck's pail and 

Searle's wall.  

 

The miscomputation criterion 

 The miscomputation criterion dictates the requirement that an account of computation 

addresses the fact that a mechanism can miscompute, i.e. a computation may go wrong. A 

mechanism M is said to be miscomputing in case computing a function F on input I, where F(I) = 

O¹, but M outputs O², where O¹ ≠ O². An adequate theory of computation should explain how it’s 

possible for a physical system to miscompute. This requirement plays an important role in computer 

science and in computation in the wild. Computer science practitioners devote a large portion of 

their time and efforts to avoid miscomputations and coming up with the appropriate ways to prevent 

them (ibid). 
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The taxonomy criterion 

The taxonomy criterion dictates the requirement that any adequate theory of computation 

distinguishes between capacities of different classes of computing mechanisms. For instance, logic 

gates, which are a very low level component in computers, can only perform trivial operations on 

pairs of bits (ibid). Ordinary digital computers can in-principle compute any function on any input 

until they run out of memory.  

 

The empirical criterion 

 The empirical criterion dictates the need to account for computational practice and existing 

computational systems and applications. Piccinini emphasizes the importance that computational 

practice plays in an adequate account of computation, is a way similar to Smith's empirical 

criterion. However, Smith asserts that this criterion questions the legitimacy of all the theoretical 

perspectives and nominates Silicon Valley to decide whether in practice something can be deemed 

computational. Piccinini is only implicitly committed to a narrower conception of doing justice to 

the body of practices. He claims that the existing computational practice, computing applications, 

computing systems etc. need to be properly taken into account (ibid). 

 

An adequate alternative 

 Though some of Piccinini's criteria require some fine-tuning, I believe that they serve as an 

adequate alternative to those argued by Smith. The criteria above deal with essential characteristics 

of computation and address the need to account for miscomputation as well. Performing 

computation is an empirical fact similar to the functional role of the heart to pump blood or the 

photosynthesis process in plants. It is likewise crucial for such a candidate theory to show why 

certain systems perform computations whereas others simply don't. Some philosophers assert that 

almost any system, which is complicated enough, realizes a function etc., can be deemed 

computational. In my opinion, views like these trivialize the notion of computation and 

consequently theories of computation become trivial. If everything can be deemed a computer, then 

computational explanations become pointless and lose any philosophical interest. It is sometimes 

the case that computational models are confused with computational explanations.  

 The miscomputation criterion is yet another important feature of any adequate theory of 

computation. Computational systems are susceptible to miscomputations that result in an abnormal 

behaviour, which generally speaking may end up in one of two ways. The system can “handle” the 

miscomputation and resume its normal functioning (while may be losing some output in the 

process), in best-case scenario. Or it can malfunction and stop functioning completely, in worst-
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case scenario. 

 

4. Von Neumann's answer 

 Back in the late 40's Von Neumann (1948) claimed that we were very far from possessing a 

proper logical – mathematical theory of automata. He was correct then and to some extent his claim 

is still resonating today.  

 

The precision and reliability criterion 

The result of complex computation performed by computing mechanisms may depend on a 

sequence of a billion steps and has the characteristic that every step actually matters or, at least, 

may matter with a considerable probability. This is the most specific and most difficult 

characteristic of computing mechanisms (ibid, pp. 291-292). In dealing with modern logic the 

important thing is whether a result can be achieved in a finite number of elementary steps or not. 

The number of steps, which are required, is hardly ever a concern. But, when it comes to computing 

mechanisms the thing, which matters, is not only whether it can reach a certain result in a finite 

number of steps at all, but also how many such steps are needed.  

 

The single error criterion 

 Von Neumann compares the error handling of computing mechanisms to that of living 

organisms. He asserts that any malfunction, which occurs in an organism, is corrected by the 

organism itself without any significant external intervention. Error handling in computing 

mechanisms on the other hand is treated entirely different. In actual practice every effort is made to 

detect any error as soon as it occurs. An attempt is then made to isolate the erroneous component as 

fast as possible.  

 A computing mechanism could be designed so that it's able to operate almost normally in 

spite of a limited number of errors. However, as soon as the mechanism has begun to malfunction it 

will most likely go from bad to worse and only rarely restore itself. The error-diagnosing 

techniques, which are employed in practice, are based on the assumption that the computing 

mechanism contains only one faulty component (ibid, pp. 305-306). 

 

The analogue – digital distinction criterion 

 All computing mechanisms fall into two main classes in a way, which is immediately 

obvious. This classification is into analogue and digital machines. An analogue computing 

mechanism is based on the principle that numbers are represented by continuous physical 
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quantities. A digital computing mechanism is based on the method of representing numbers as 

aggregates of digits. Digital computers represent quantities by discrete states, operate serially, and 

have a better accuracy (ibid, pp. 292-293). 

 

5. “Everything” computes answer

  Views like those of Putnam and Searle (1990) imply a very loose notion of computation so 

that  almost everything can be deemed to be computing. Searle's notorious wall and Putnam's 

realization theorem of finite automata suggest that even a rock can be claimed to be computational 

(Chalmers 1996). The fifth answer advocated by Scheutz (1999), Putnam (1992) and others states 

that a satisfactory account of computation is underpinned by an adequate theory of implementation. 

However, existing accounts of computation are inadequate due to lack of a satisfactory theory of 

implementation. Scheutz (1999) asserts that the notion of implementation should be construed as 

realization of functions, rather then the standard concept of physical state to computational state 

correspondence.  

 Scheutz suggests tackling computation from a practical point of view, i.e. by looking at 

existing applications and systems that are designed, implemented and used by people. Rather then 

asking how abstract computations relate to physical systems, it should be the other way around.  

 His theory of implementation implicitly presupposes the empirical criterion. Scheutz (ibid) 

maintains that computation should be defined in terms of an abstraction over the physical properties 

determining the functionality of a physical mechanism. 

 

6. Conclusions 

 At the outset of his paper: “The Foundations of Computing”, Smith (2002: p. 24) asks and I 

quote “Will computers ever be conscious? How will computing affect science? ... For most of my 

life I have been unable to answer these questions, because I have not known what computation is. 

This uncertainty led me to undertake a long-term investigation of the foundations of computer 

science”. What had started as a long endeavour to provide a satisfactory theory of computation 

ended up with a negative conclusion: Computation is not a subject matter. It is not only that we 

currently have no satisfying intellectually theory of computation, but we will never have such a 

theory (ibid: p. 51). 

 Smith claims that computation is intrinsically intentional, which also prompts him to 

formulate the cognitive criterion. He maintains that the misconception of computation as being 

entirely abstract and formal hides the semantic character of computation. Thus, any adequate theory 

of computation has to rely on a solid theory of semantics and intentionality (ibid: pp. 46-50). 
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Computation doesn't constitute a distinct ontological category. What qualifies as computers 

according to Silicon Valley doesn't form a coherent delimited class. By showing that extant theories 

of computation fail to meet the three criteria, Smith claims that any candidate theories are 

condemned to failure. 

 He takes the empirical criterion to the extreme. Not only does a theory of computation has to 

do justice to real life computation by explaining programs like the Open Office Writer, but it should 

give rise to reconstructing computational practice. This doesn't preclude adopting a subtler version 

of the empirical criterion. Piccinini's (forthcoming) implicit empirical criterion implies that existing 

practices, computing applications and other real life examples need to be properly taken into 

account. Scheutz's (1999) implementation theory criterion reflects the computational practice by 

revisiting the standard correlation between computation and implementation. Rather then appealing 

to a top down approach that begins in the abstract level and progresses down to the concrete, 

Scheutz's starting point is real life examples of computers and applications.  

 Smith's cognitive criterion is also too difficult to meet. Whilst proponents of 

computationalism should obviously heed the theory of computation, he believes it should rather be 

the other way around. An adequate theory of computation should apparently be an intelligible 

foundation for the formulation of the computational theory of mind. Moreover, when considering 

this criterion in conjunction with his claim that we will never have an adequate theory of 

computation, the result is surprising. If we take the main claim of computationalism being that 

minds are computational systems, and given that there will never be an adequate theory of 

computation, it follows that there will never be an adequate computational theory mind. 

 Acknowledging the paramount role of theories of computation in computationalism is by no 

means unique to Smith. Fodor and Pylyshyn's answer is applicable both to computers and cognition 

as complex systems. Piccinini (forthcoming) explains that the difference between computing 

mechanisms that execute programs and those that don’t is important not only to computer science, 

but also to theories of mind. Even the earlier view of Von Neumann (1948) emphasizes the 

similarities of computing mechanisms to the human central nervous system. The last answer states 

that a lack of a tenable notion of implementation renders computationalism meaningless.  

Though susceptible to some legitimate criticism, there are adequate alternatives to that of 

Smith's and there's no compelling reason to renounce any attempts to provide a satisfactory theory 

of computation. 
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