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It is shown, that the geometric phase evolution within M circularly and toroidally arranged virtual
Josephson junctions (coupled discrete impedance system) can be described by the integrable case
of Bäcklund transformations. The phase gradient of a junction is induced by a pseudospherical
curvature. The internal phase difference and external bias is mediated by sine-Gordon solitons that
provide for internal and external coupling. The idealized soliton resonance or feedback condition
corresponds to an oscillator potential (Long Josephson Junction LJJ condition) that can be mapped
by projective geometry to Coulomb coupling. The effective coupling strength is a generalized fine
structure constant that can be iteratively determined, for M = 137 extremely close to measured
values of the Sommerfeld fine structure.
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Introduction. There are some interesting relations
regarding Baecklund and Darboux transformations and
their applications in the theory of integrable systems,
also known as soliton theory [1]. The sine-Gordon equa-
tion (SG) as the only Lorentz-invariant equation with
auto-Baecklund transformations is intimately related
to i.e. the Josephson equations describing the Long
Josephson Junction (LJJ), see i.e. the work and seminars
of Ustinov or [2, 3]. In the previous papers quantum cou-
pling has been defined by geometric phase relationships
[4] comparing the evolution of an input to an output
phase defining a non-linear dynamic impedance, where
the phase is evolving on a curved (pseudospherical)
surface [5]. In the classical picture the phase is evolving
according to the mechanics of the coupled pendula chain.
Any junction, barrier, or boundary can be related to a
fundamental geometric origin in terms of curvature. In
this paper we will analyze the geometric phase evolution
within a circularly arranged system of Josephson junc-
tions, where junction means simply a scalar field phase
gradient. Therefore, the “virtual Josephson junction”
will be defined by curvature and geometric phase gra-
dient, a synonym for an electromagnetic (gauge) field,
characteristic oscillations will be related to a bias voltage.

Topological phase fields. In non-linear optics, the
Bloch equation can be used to describe dipole spin pre-
cession [7, 8]. In this context a scalar field of precession
can be described by a nonlinear and simplified system of
Maxwell-Bloch equations that can be reduced to a sine-
Gordon soliton equation and related topological phase
fields evolving on a pseudospherical surface. In this paper
we will define a special Josephson junction arrangement
allowing for a toroidal configuration of (subloop) spin
currents with precession along the (loop) trajectory, see
fig.1. Topological solitons or skyrmions naturally emerge
with loop and subloob currents (torque strength) related
by Baecklund transformations. The scalar field phase
variable θ will allow for a pure geometrical interpreta-
tion as a precession cone angle of spin (or subloop/loop

combination) or generalized pendulum amplitude. The
Maxwell equations determine the strength of the torque
vector, electromagnetic fields are treated as generalized
precession phase gradients, where a non–trivial Berry
phase and effective Yang-Mills field can emerge from the
toroidal spin currents. Using Baecklund transformations
in this context has some advantages such as

• path integrals are not involved defining geometric
phases on curved surfaces in R3,

• starting from one solution you can get infinitely
many more,

• with integrability (spinning top equations are
single–valued [9]), Lorentz invariance, and stereo-
graphic projection naturally included.

Loop/sub-loop coupling. The curved pseudospherical
surface as a nonlinear impedance will represent in this
paper a “virtual Josephson junction”. The Josephson
junctions will be arranged on a subloop in M -gonal sym-
metry (say M -SQUID), M units of M -SQUIDs will be
arranged in a closed loop geometry on the torus, where
the global phase evolution of two neighboring M -SQUIDs
will be given by Θ, see fig.1. With θ̃ as the input phase
(the reference) and θ the output phase including geo-
metric phase shift we have within the virtual Josephson
junction the two interference terms

• Θ = (θ + θ̃)/2: loop (global phase),

• 4θ = (θ − θ̃)/2: subloop (local phase),

where the (geometric) phase evolution related to pre-
cession is induced by “parallel transport”. Note, that
the usual Berry phase [6] ϕ is related to the preces-
sion semicone angle θ on (pseudo)spherical surfaces by
ϕ ∝ 1 − cos θ. The coupling function g at the junctions
leading to a tunnelling current IJ (ξ) ∝ g(ξ) has the fol-
lowing properties:
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FIG. 1: A coupled chain of M -SQUIDS for M = 8, ana-
logue to the coupled pendula chain. Coupling by helicity
is given by the scattering resonance condition eq.(5). The
junction width (white) depends as usual on frequency and
voltage, the tunnelling current is expected to evolve on chiral
pseudospherical hasimoto surfaces [1]. The local phase evolu-
tion 4θM and the global phase evolution ΘM are related via
∂r4θM = −iM2∂tΘM .

• without phase difference ξ = 0 there is no Joseph-
son current IJ = 0,

• the current is periodic IJ(ξ) = IJ(ξ + 2π),

• the current has symmetry IJ(−ξ) = −IJ (ξ).

There are two types of coupling terms relevant to describe
a closed system arranged in regular M -gonal symmetry:

• the angular momentum or circular flux propor-
tional to the spatial fr(ξ) = ∂r(ξ/π) or temporal
evolution ft(ξ) = i∂t(ξ/π) of θ,

• and the typical spin-spin vector or pendula cou-
pling term g(ξ) = Mg sin(ξ) (in sine-Gordon soliton
theory given by the pseudospherical curvature).

ξ can either be the phase evolution on the loop with phase
Θ or on the subloop with phase 4θ. One 2π subloop
rotation (within M -SQUID junctions) corresponds to a
2π/M loop rotation. The combination that provides for
a closed–loop momentum exchange of orthogonal spatial
(r, loop) and temporal (t, subloop) types of couplings
(r ⊥ it) shows two degrees of freedom:

(r) Mg(4θ) = fr(Θ),
(t) Mft(4θ) = ig(Θ). (1)

(r): On the loop the coupling of M units Mg(4θ) (M
twisted lines) provides for the loop phase evolution fr(Θ).

(t): The total subloop phase evolution in serial
circular arrangement given by −iMft(4θ) provides for
the coupling of neighboring SQUIDS on the loop torus
given by g(Θ).

The resulting self-consistent and integrable coupling
system are the Bäcklund transformations (BT)

(∂r θ̃ + ∂rθ)/M = 2πMg sin[(θ̃ − θ)/2],

−i(∂tθ̃ − ∂tθ)M = 2πMg sin[(θ̃ + θ)/2], (2)

a manifestation of integrability [1, 10]. This has two im-
portant consequences:

• With i.e. ∂t(∂r θ̃) = ∂r(∂tθ̃) the mediator or cou-
pling quanta are soliton solutions of the SG ∂rtθ =
−R sin(θ)/2,

• the internal and external precession phase offset or
potential bias can now be exactly determined.

Note, that the hierarchical loop-subloop system can be
easily extended to a fractal tori junction geometry.

Sine-Gordon soliton. Fixing θ̃ to a special reference
phase evolution given by θ̃ = 4π( 1

2 + n) for simplicity,
the quantum gauge (or spin) dependent winding number
n = 0, 1, 2, ... provides in eq.(2) for the simplification ∂r =
−iM2∂t. Parametrizing ∂2

s = ∂2
r − ∂2

t = (1 + 1/M4)∂2
r

we have

∓
√

M2 + 1/M2∂sθ = 2πMg sin(θ/2). (3)

The nonlinear SG phase field evolves with a pseudospher-
ical curvature constraint. This property is found with
generalized Chebyshev coordinates (x = r, y = it) on a
plane S embedded in R3

ds2 = (dr)2 − (dt)2 + 2i cos θdrdt (4)

with scalar curvature R = 2R1212/ det(gij) [10] of
the generalized Chebyshev metric, θ = π/2 is the
special case of Minkowskian spacetime. There is a clear
geometrical interpretation: the coordinate vector field
is parallel transported along the signal/soliton vector
field with respect to the Levi–Civita connection. A
”privileged” surface of scalar curvature R = −2 is given
i.e. by the Lobachevskian plane. Topological solitons as
solutions to the SG are spatially confined (localized),
non-dispersive and non-singular solution of a non–linear
field theory. In 2+1-dimensional gauge vortex scattering
it follows from purely geometric considerations that
the head-on scattering of M topological solitons (like
monopoles, vortices, skyrmions, ...) distributed symmet-
rically around the point of scattering (relative angular
separations 2π/M) is by an angle π/M , independent of
various details of the scattering [13]. In this case the
initial configuration has the symmetry group of a regular
M -gon, the “moduli space” of M vortices, MM [14].
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Resonance condition. An ideal LJJ Josephson junc-
tion showing sine-Gordon dynamics can support peri-
odic motion of magnetic flux quanta. Singularities in
the current-voltage characteristic of the junction emit
very narrow line width electromagnetic radiation whose
frequency is proportional to the geometric length of
the junction, see i.e. the work of Ustinov, Grauer, or
[2, 3, 11, 12]. This means, that the energy of coupling
induced by the offset bias is inversely proportional to
the distance between start- and endpoint of resonant
transmission on the junction. When an external sig-
nal is applied to the junction a new singularity in the
current-voltage curve appears, known as phase-locking
step: the junction is said to be in resonance with the
external signal [12], essentially the phase-locking of a
long Josephson junction (LJJ) to an external (virtual)
photon. This transmission behavior can effectively be
treated by a stereographic projection of the stationary
dynamics on the two-dimensional (pseudo)sphere with
PSL(2,R) symmetry that connects angular variable and
proper distance s [15]. A parabolic potential V ∝ s2 is
obtained with eq.(3) and the general projective (or rather
scattering) condition

s = ∓2ρ sin(θ/2). (5)

In fig.1 the helical phase evolution on the torus surface
is shown. Eq.(5) is the projection that maps the lo-
cal oscillator potential to the non–local Coulomb poten-
tial under stereographic projection given by the conven-
tional Bohlin transformation sc → s2 [15]. This relates
the Coulomb system (coupling energy inversely propor-
tional to distance) to the resonance oscillator potential
and maps with eq.(3) and eq.(5) the square of the phase
gradient to the potential

2πsc = ρ2∂sθ → 4π2s2 = ρ4(∂sθ)2. (6)

Applying the Euler-Lagrange equation to the SG soliton
Lagrangian and correspondent Hamiltonian, the poten-
tial for a stationary solution is with ∂2

sθ ∝ ∂θV and
V ∝ (∂sθ)2 in accordance with eq.(6) having parabolic
shape providing for resonant coupling by oscillations.

a. Self-energy and coupling energy. The potential is
given by

2V (θ) = (∂sθ/M)2 (7)
= 2π2M2

g (1− cos θ), (8)

where cos θ = 1 − 2 sin2(θ/2). From eq.(8) the θ-
independent self-energy term can be identified as a con-
stant Riemann curvature scalar R = −2/ρ2, with the SG
πMgρ = 1. Therefore, it is plausible to decompose en-
ergy in eq.(8) into at least two terms: a self-energy term
π2M2

g and a dynamic coupling term π2M2
g cos θ that ac-

counts for the field evolution based on the BT. Integrat-
ing eq.(6) provides for θ ∝ s2 + c, where the integration
constant c can be obtained by comparing the correspon-
dent parts in eq.(8) and eq.(5). These relations provide

for a dynamic coupling term ∓πMg

√
M2 + 1/M2θ that

can be combined with a self-energy term and integration
constant to

V (θ) = π2M2
g ∓ πMgθ

√
M2 + 1/M2. (9)

With eq.(8) and eq.(9) we immediately obtain an iter-
ative equation for the external phase offset θM in reso-
nance

θM

√
M2 + 1/M2 = ±πMg cos θM , θM = πMgαM

(10)
where the coupling allows for two possible signs. Con-
sequently, a mutual resonant coupling of two identical
junction systems via Coulomb mapping [4] is propor-
tional to θ and α. The iteration eq.(10) is invariant with
respect to the inversion and duality M ↔ 1/M . The
relations between the electric and magnetic monopole
charge (2ge)2 = 1 with (2g/e)2 = M2, and also between
group and phase velocity of a wave packet in the ground
state vgvp = 1 with vp/vg = M2 = ∂4θM/∂ΘM could
explain the role of M . The coupling constant and
special θ-value or oscillation range is iteratively obtained
in eq.(10), where M = 137 or M = 1/137 from the
Dirac theory of magnetic monopoles [16] (generater
of the Berry phase [6]) provides with Mg = 1 for
1/α = 137.03600960 that fits within some ppb’s to
the Sommerfeld fine structure constant obtained from
frequency-voltage relations of a Josephson junction or
in neutron interferometry. The meaning of the number
137 remains unclear. Eq.(10) is an chaotic algorithm,
bifurcation starts above a special values of Mg, the
coupling strength of the external field.

Experimental tests. The author suggests to investi-
gate local Josephson currents induced in junctions ar-
ranged in regular M -gonal symmetry and eventually the
toroidal coupling of M devices. To excite the projec-
tive resonance the hierarchial (fractal) parameter relating
loop and subloop radii should be given by ρl/ρs = M ,
see fig.1. αM can be obtained by comparing the oscil-
lator frequency of the subloop to the bias voltage and
frequency equivalent given by θM on the loop, similar
to a typical Josephson junction fine-structure constant
measurement. MgαM ≤ 1/M includes relativistic and
geometric phase effects already included in the Bäcklund
transformations. A positive outcome (resonant coupling
and lossless energy transfer) could model and enhance
energy propagation by SIT (self-induced transparency)
and other supra effects depending on the solid state sym-
metry and geometry, more illustration can be found i.e.
in [4, 5]. Applications of such a resonant device could
be on a broad scale starting with energy storage, signal
processing (i.e. ring–oscillators for dynamic carrier fre-
quencies and antennas), or fullerene design for special
nano-electronic purposes.
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