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Abstract
We present a logical calculus for reasoning about information flow in quan-
tum programs. In particular we introduce a dynamic logic that is capable of
dealing with quantum measurements, unitary evolutions and entanglements
in compound quantum systems. We give a syntax and a relational seman-
tics in which we abstract away from phases and probabilities. We present a
sound proof system for this logic, and we show how to characterize by logical
means various forms of entanglement (e.g. the Bell states) and various linear
operators. As an example we sketch an analysis of the teleportation protocol.

1 Introduction

In this paper we elaborate on the ideas presented in [2, 3, 9] and give a full-
fledgeddynamic Logic for Quantum Progrands) P. It is well-known thatP D L
(Propositional Dynamic Logic) and its fragment the Hoare Logic are among the
main logical formalisms used iprogram verificatiorfor classical programs, i.e.

in checking that a given (classical) program meets the required specification. It
is natural to ask for guantumversion of PDL, to be used in the verification

of quantum programs. In our past work [3], we presented several such logical
systems, starting withlagic of quantum measuremerit§) M for single quantum
systems, and later extending this system into a dynamic [b@ie of quantum
actions(i.e. compositions of measurements and unitary evolutions). In this paper,
we extendLQ A into a logic forcompoundjuantum systems. We present a self-
contained version aEQ P such that no knowledge dfQ A or LQ M is necessary

to understand the basic concepts. Note the difference between our logic and the
approach with a similar name in [4]: our dynamic logic goes much further in
capturing essential properties of quantum systems and quantum programs, as well
as in recovering the ideas of traditional quantum logic [6, 7].

2 Quantum Frames

In this section we introduce quantum frames for single quantum systems and quan-
tum frames for compound quantum systems; in the later case we restrict our at-
tention ton compound qubits.

1oxford University Computing Laboratory, baltag@comlab.ox.ac.uk
2vrrije Universiteit Brussel, Flanders’ Fund for Scientific Research Post-Doc, sonsmets@vub.ac.be



2.1 Single System Quantum Frames

A modal framas a set oktatestogether with a family obinary relationsbetween

states. A (generalized)DL frameis a modal framgX, {g}sa, {S}aen),

in which the relations on the set of statgsare of two types: the first, called
testsand denoted by'?, are labelled with subseis of ¥, coming from a given
family £ C P(X) of sets, calledestable propertieghe others, calledctions are
labelled with action labels from a given setd. Given aP DL frame, there exists

a standard way to give a semantics to the usual languggepbsitional dynamic
logic. ClassicalP DL can be considered as a special case of such a logic, in which

tests are given byglassical testss 5% ¢ifand only if s = ¢t € S. Observe that
classical tests, if executable, do not change the current.state

In the context of quantum systems, a natural idea is to replace classical tests
by “quantum tests”, given bguantum measurement$ a given property. Such
tests will obviously change the state of the system. To model them, we intro-
duce a special kind oPDL frames: quantum frames The “tests” are essen-
tially given by projectorsin a Hilbert space. In [3], we considerdelD L with
the above-mentioned standard semantics, having the same clauses in the classical
case, but interpreted in quantum frames. What we obtainedjisaatum PDL.
whose negation-free part with dynamic modalities for quantum tests is equivalent
to what is traditionally called “(orthomodular) quantum logic” [6, 7]. In this paper,
we extend the syntax of this logic to deal with unitary evolutions, entanglements
and some quantum protocols.

Definition 1. (Quantum Frame)
Given a Hilbert spac@{, the following steps construct@uantum (PDL) Frame

S(H) = (E A ser {2 bvew)

1. LetX be the set obne dimensional subspacekH, called the set oftates
We denote a state = 7 of H using any of the non-zero vectorse H
that generate them. Note that any two vectors that differ onphase(i.e.
x = Ay, with A € C with |A\| = 1) will generate the same state=7 € X.

2. Calltwo states andt in X orthogonaland writes L ¢, ifand only ifvVz € s
andVy € ¢: zis orthogonal tay, i.e. if (z | y) = 0. Or, equivalently we
can state that L ¢ ifand only if 3z € s,y € t with z # 0, y # 0 and
(r|y)=0.WeputS+:={teX |t L sfor allsec S}; and we denote
by S = S++ := (S+)* the biorthogonal closure &f. In particular, for
a singleton{z}, we just writez for {z}, which agrees with the notatian
used above to denote the state generated by



3. A set of statesS C X is called a(quantum) testable propertyf it is
biorthogonally closedi.e. if if S = S. (Note thatS C S is always the
case.) We denote bg C P(X) the family of all quantum testable proper-
ties. All theothersetsS € P(X) \ £ are callechon-testable properties

4. There is a natural bijective correspondence between the fatndy all
testable properties and the famity of all closed linear subspacé® of H,
bijection given byS — Wg =: JS. Observe that, under this correspon-
dence, the image of the biorthogonal closdref any arbitrary sef C &
is the closed linear subspateS C H generated by the unidp S of alll
states inS.

5. For each testable propetyc L, there exists a partial m&§y? on %, called
aquantum testif W = Wg = (J S is the corresponding subspace7ef
then the quantum test is the map induced on states lprdlfector Py, onto
the subspac®’. In other words, it's given by:

52(z) Py(z) e, ifT ¢ S* (ie.if Py (x) #0)
S?(T) undefined, otherwise.

We denote by‘ﬂg 3} x X the binary relation corresponding to the partial
mapS?, i.e. given by:s 5% ¢if and only if S?(s) = t. So we have family
of binary relations indexed by the testable properttes L.

6. For each unitary transformati@hon, consider the corresponding binary
relation 5C ¥ x %, given by: s Y tif and only if U(z) = y for some
non-zero vectors € s,y € t. So we obtaira family of binary relations
indexed by the unitary transformatiobse U (wherel{ is the set of unitary
transformations oftt).

So a quantum frame is justiAD L frame built on top of a given Hilbert space

‘H, using projectors as “tests” and unitary evolutions as “actions”. Our notion of
“state” in this paper is closely connected to the way quantum logicians approach
guantum systems; i.e., contrary to identifying states with unitary vectors (as cus-
tomary in quantum computation), we took them todpe dimensional subspaces
generated by these vectors. This imposes some limits to our approach, mainly
that we will not be able to expregbhaserelated properties. While it is possible to
build up a quantum frame starting from unitary vectors as the states, the resulting
logical system will be much more compfgxand so we do not elaborate on it in
this paper.

31t would require the introduction of a propositioriehsoroperator.



Operators on states, adjoints and generalized test3o generalize our notations
introduced earlier, observe that evdiyear operator ' : H — H induces a
partial mapF' : ¥ — 3 on states (i.e. subspaces), givenB{r) = F(x), if
F(z) # 0 (and undefined, in rest). (Note tHatearity ensures that this map on
states is well-defined.) In particular, every m&p > — 3 obtained in this way
has amadjoint F'' : ¥ — ¥, defined as the map on states induced by the adjoint
(“Hermitian conjugate”) of the linear operatét on H. Observe that, for unitary
transformationd/, the adjoint is the invers&: = U~! Also, one can naturally
generalizguantum testt arbitrary, possiblyion-testable properties C ¥, by
putting: S? := S?. So we identify a test of a “non-testable” propeftywith the
quantum test of its biorthogonal closure. Observe #tdt= S? (since projectors
are self-adjoint).

Definition 2. (Non-orthogonality, or Measurement, Relatiorfjor all s,¢ € X,

lets — tif and only if s 5% ¢ for some propertys € L. In other wordss — ¢
means that one can reach staby doingsome measuremeoh states.

An important observation is thdhe measurement relation is the same as non-
orthogonality s — ¢t iff s Y ¢. The non-orthogonality relation has indeed
been used to introduce an accessibility relation in the orthoframe semantics within
guantum logic [7].

Definition 3. (Dynamic Modalities and Measurement Modalitie§por any prop-
erty T C ¥ and any partial mag’ : ¥ — ¥ induced on states by a linear
operatorF, let [F]T := F~Y(T) = {s € ¥ : F(s) € T,ifdefined} and
(YT .= S\([F](Z\T)). Similarly, putOT := {s € ¥ : Vi(s -t =t € T)}
and OT = X\ (O(X\T)).

Observe thafF'|T expresses theveakest preconditiofor the “program”F and
post-conditionT". In particular,[S?|T expresses the weakest precondition ensur-
ing the satisfaction of property in any state after the system passes a quantum
test of propertyS. Similarly, (S?)T means that one can perform a quantum test
of property.S on the current state, ending up in a state having progeértygT
means that property will hold afterany measurement (quantum test) performed
on the current state. Finallg;7T means that property is potentially satisfiedin

the sense that one can do some quantum test to reach a state with pfaperty

Lemmal. For every propertyS C ¥, we haveS+ = [S?]) = X\ ¢S and
S =008.



Proposition 1. For every propertyS C %, if T' € L (i.e. is testable), then
as, S+, [S?T € L (are testable), and more generall§f]T € L, for every (map
on states induced by a) linear operatbt

Proposition 2. (Testable Properties) A property C X is testable if and only

if any of the following conditions hold: (1§ = S; (2) S = 00S; (3)

3T € ¥ such thatS = T+; (4) 3T € ¥ such thatS = OT. The familyZ

of testable properties is a complete lattice with respect to inclusion, having as its
meet set-intersectiof N 7', and as its join the biorthogonal closure of set-union
SUT := SUT, called the quantum join of andT'. For every states € %,

the singleton{s} € L is testable. For any arbitrary property C %, we have
S=|{{s}:s€ S8} ={T € L:S C T}, sothe biorthogonal closure ¢f is

the strongest testable property implied by (the propesfty)

Theorem 1. In every quantum framE () the following properties for quantum
tests are provable:

1. Partial functionality: Ifs 5 tands 2 v thent = w.

2. Trivial tests: %= ¢ and Z= Ay, whereAy, = {(s,s) : s € X} is the
identity relation on® x 3.

3. Adequacy: It € S thens 5 s

4. Repeatability: IfS € L is testable and 5T ¢ thent € S

5. Compatibility: IfS, T' € £ are testable and?; 7?7 = T7; S7thenS?; T? =
(SNT)?.

6. Self-Adjointness: I§ 57w B tthent 22 v W s, for somev € 3 and
W € L. In other words: ifs 2% w—t thent =% v—s, for somev € ¥.

7. Universal Accessibility: For alk,t € X, there exists a states € . such
thats - w — ¢

Proofs Partial functionalityfollows from the fact that projectors correspond to
partially defined maps if{. Trivial testsfollows from the fact that projecting

on the empty space yields the empty space and that projecting on the total space
doesn’t change anythind\dequacyollows from the fact that for every € W we

have thatPy, (z) = z. Repeatabilityfollows from the fact thaPPy, (z) € W for
everyx € H. Compatibilityfollows from the fact that if two projectors commute,



i.e. Py o Py = Py o Py, thenPy o Py = Pyy. Self-Adjointnes$ollows

from the more general Adjointness theorem stated below, together with the fact
S?1 = §?. Universal Accessibilitcan be proved by cases: 4f £ ¢, i.e. let

s —t,thenw=s=s—>s—t Ifs Ltie lets A tthenlets=Z,t=7

with z,y € H. Take the superposition + y € H of x andy and note that

x +y # 0(since fromx +y = 0 = x = —y = s = t which contradicts [ t).

Next observe that / (r+y) (Indeed, suppose L (z+y)then(z |z+y) =0

and then(z | z) + (x | y) = 0; butz L y implies{(z | ) = 0. So from

(z | ) = 0 follows thatz = 0, which yields a contradiction). Similarly, we get

y L (z +y). Taking noww = x + y, we can see that € %, s — w andw — t.

Theorem 2. In every quantum framE(H) the following properties for unitary
transformations (stated for all, Ut € i/) are provable:

1. Functionality: For every state € > we havedlt : s A

T f
2. Inverse-adjoint (bijectivity):s Y% w impliess = w. Similarly, s g
t % impliess = w
Proofs Functionalityfollows from the fact that unitary transformations are well-
defined on all states, i.e. the kernell of the linear map encoding the transformation
is (. Inverse-adjoinfollows from the fact that unitary operators on a Hilbert space
have the property thdft = U 1.
Theorem 3. (Adjointness) Lef" be a linear transformation and let w,t € X
T

be states: It - w—t then there exists some state ¥ such thatt = v—s.

F
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o

Proof. To prove this theorem we use the definition of adjointness in a Hilbert
space:(Fx | y) = (z | FTy). From this, we get the equivalenc&z | 3) = 0

iff (x, Fty) = 0; or, otherwise stated;z L y iff 2 L F'y. Taking the negation

of both sides and using the fact that the measurement relatienis the same

as non-orthogonalitg / ¢, we obtain the equivalencedw(z Lo — y) iff

Fu(y il v — T). This proves the adjointness property.



As a consequence:
Corollary 1. For every property? C ¥ and every linear mag’ we have:

P C [F]Oo(FYyoP

2.2 Compound System Quantum Frames

In this subsection we like to extend the quantum frame presented above for single
systems into a quantum frame for compound systemsHLe¢ a Hilbert space of
dimensiore with basis{| 0), | 1) }. We fix a natural numbet > 2 (although later

we will restrict to the case > 4), and we putv = {1,2,...,n}. A compound-
system quantum franvell be the quantum fram&(H,,) build on a Hilbert space
H,=H*"=H®H®..®H(n times).

Notation. In fact, we consider all the copies of H as distinct (although iso-
morphic) and denote byZ (V) the i-th component of the tensdi®”. Also, for

any set of indiced C N, we putH; = H®! = ®,_, H". (So, in partic-
ular, Hy = H, = H.) We denote by; : H — H® the canonical isomor-
phism betweert{ and H( . This notation can be extended to séts N of
indices of lengthI| = k, by puttinge; : H®* — H; to be the canonical iso-
morphism between these spaces. Similarly, for eac set N, we denote by

pr = Hr ® Hy\; — H the canonical isomorphism between these two spaces.
For any vectott z) € H, we denote by z)®7 = &;cr | ) the corresponding
vector inH; (obtained by tensoring/| copies of| z) ). Given asetl C N, we

say that a state € ¥(H) has itsI-qubits in states’inX(H;), and writes; = s/,

if there exist vectorg € s, v’ € Hyandy” € Hy\; suchthat) = (¢’ @1y").
Note that the statey, if it exists, then it is uniquénhaving the above property). In
particular, when/ = {i}, we say that state has as itsi-th coordinatethe state

si € Hypy = H®,

We will further denote the vector 0)+ | 1) by | +), and similarly denote

| 0)— | 1) by | —). For the states generated by the vectors in a two dimensional
Hilbert space we introduce the following abbreviatiors:= [ +), — := | —) ,
0:=]0),1:=|1). Inorder to refer to the state corresponding to a pair of qubits,
we similarly delete the Dirac notation, e@) := | 00) = | 0)® | 0).

The Bell states will be abbreviated as followiy := | 00)+ | 11),

Bo1 := | 01)+ | 10), B0 := | 00)— [ 11), 811 = | 01)— | 10) and

v :=]00)+ | 01)+ | 11)+ | 10).




The following two results are well-known:

Proposition 3. Let H*) and HY) be two Hilbert spaces. There exists a bijec-
tive correspondence between the linear maps : HY — HU) and the states

of H®) @ HU). Given the basee’},, and {Eg)}ﬁ of these spaces, the corre-
spondence) is given by the mapping’ = .3 mag (e,@f) | —>.e£_,j) into the state
1/)(F) = Eag Mag .Gg) (24 Egj).

Proposition 4. LetH = H®" and letW = {z® | 0)2"~Y . 2 € H} be
given. Any linear mag’ : ‘H — H induces a linear mag;) : H — H in a

canonical manner: it is defined as the unique maprérsatisfying F{;)(z) =

Py o F(z® | 0)2(»=1), Conversely, any linear ma@ : H — H can be repre-
sented agy = F{,) for some linear mag” : H — H.

Notation. The above results allow us to specify a compound staféihe H )

via some linear map’ on K. Indeed, ifF' : H — H is any such linear map, let
Fuy : H — H be the map in the above proposition; this induces a corresponding
map F((l"g) . H® — HUY, by putting F(ﬁ) = ¢j o F(1) o ¢, ', Whereg; is

the canonical isomorphism introduced above (betwideand thei-th component
H® of H®™). Then we denote by ;; the state

Fuj = 0(F))

given by the above mentioned bijective correspondenbetweend () — HU)
andH @ H), The following result is also known from the literature:

Proposition 5. Let F' : H — H be a linear map. Then the stafqij) is “entan-
gled according taF(y"; i.e. if F(;y(| 2)) =| y) and if the state of a 2-qubit system
is F;jy € HY @ HY), then any measurement of qubitesulting in a stater;
collapses the qubit to statey;.

Notation. The notationf(m can be further extended to define a property (set

of states)F;; C ¥ = X(H), by defining it asthe set of all states having the
{i, j}-qubits in the statd";; :

Fi; = {sex: 57ij} :F(ij)}
{0 @9 19 € Frig) o' € My} C X



wherepy; ; is as above the canonical isomorphism betwagh;; @ Hnn (i ;1 -

In other words F';; is simply the property of an-qubit compound state of having

its i-th andj-th qubits (separated from the others, and) in a state that is “entangled
according toF()”.

Local properties. Given a setl C N, a propertyS C X islocal in I if it
corresponds to a property of the subsystem formed by the qubftsimother
words, if there exists some prope®y C Y:(H;) such that:

SI:{SGZ:SIES/}

or, more explicitly:

S'={m@ey):pes P eHy}

An examplds the propertyF; ;, which is{i, j }-local. The family of local proper-
ties is closed under union, intersection hot under complementation

Local transformations. GivenI C N, a linear mapt' : ‘H — H is I-local if it
“affects only the qubits id”; in other words, if there exists amap: H; — H;
such that:

Four (e = pur (G) @)

AmapF : ¥ — XisI-localifitis the map induced o& by ani-local linear map
onH. Examplesare: all the test$;? of I-local properties; logic gates that affect
only the qubits in/, i.e. (maps or: induced by) unitary transformatiori$; :

H — ‘H such that for alty, ¢’ € H;, we havelU; o ur (v @) = pur(U () @),
for someU : ‘H; — H;. The family of local maps is closed under composition.

Lemma 2. The main lemma in [5] states (in our notation) that, given a quadruple
of distinct indicesi, j, k, 1, let G, H,U,V : H — H be single-qubit linear
maps, then we have:

ijOVkOUj[Fiijkl} Q (HOUTOGOVOF)”

Using the formalism oéntanglement specification networkoduced in [5], this
can be encoded in the following diagrammatic representation:



HoVioeGoUoF

[5] and [1] use this as the main tool in explaining teleportation, quantum gate tele-

portation and many other quantum protocols. We will use this work in our logical

treatment of such protocols, by taking this lemma as one of our main axioms.
Observe that in the above Lemma, the order in which the operdtipaadV;

are applied is in fadtrelevant This is a consequence of the following important

property of local transformations:

Proposition 6. (Compatibility of local transformations affecting different sets of
qubits) IfIN.J = 0, Fy is anI-local map and7 ; is a.J-local map, then we have:

FI o GJ == GJ o FI
Another important property of local maps (state3 is:

Proposition 7. (“Agreement Property”) LetF;,G; : ¥ — X be two/-local
maps on states, having the same dorhainiom(F) = dom(G). Then their
output-states agree on all nahgubits, i.e.:

F(s); =G(s)s

forall s € ¥ and all J such thatl N J = (. (We take this equality to imply in
particular that the right-hand is defined iff the left-hand is also defined.)

Dynamic Characterizations of Main Unitary Transformations.

It is well-known that a linear operator on a vector space in a given Hilbert space
is uniquely determinetdy the values it takes on the vectors of an (orthonormal)
basis. An important observation is that this fact is no longer “literally true” when
we move to “states” as one-dimensional subspaces instead of vectors. The reason
is that “phase”-aspects (or, in particular, the sigas and “—") are not “state”

4The domain of a map is defined bipm(F) = {s € ¥ : F(s)isdefined}. If F’ is the
corresponding linear map dH, this means thadom(F) = {+ : F'(¢) # 0}.

10



properties in our setting. In other words, two vectors that differ only in phase,
i.e x = Ay where) is a complex number with A |= 1, belong to the same
subspaces, so they correspond to the same&tatg.

Example 1. (Counterexample) Consider a 2 dimensional Hilbert space in
which we denote the basis vectors pg) and| 1), a transformatior? is given
by I(«| 0) + 8| 1)) = « | 0) + 8 | 1); and a transformatiol is given by
J(a] 0) + 3| 1)) =« | 0) — G | 1). AlthoughI and.J induce different operators
on states , these operators map the basis states to the same images:

100) =1(10)) =0=J(| 0)) = J(0), I(1) = I(| 1)) =1 == [ 1) = J(| 1)) =
J(1). But of course we do distinguish the subspaces generated by different super-
positions:I(+) = 0)+ | 1) =+ # — =] 0)— | 1) = J(+).

Proposition 8. A linear operator on the state spa¢&#,) of a 2 dimensional

Hilbert space is uniquely determined by its images on the statgs] 1), | +).

Corollary 2. A linear operator on the state spaéyH,,) of the spaceH,, is
uniquely determined by its images on the states:

{lz)1 ®@..@ [ z)n | x)i €{] 1)i,] 0)i, [ +)i}}

In the definition of a quantum frame given above, we introduced thé/szt

the set of unitary transformations for single systems. For compound systems
the setl/ will be extended with the kind of operators that are active on com-
pound systems. Following the quantum computation literature, weltake
{X,Z,H,CNOT, ...} whereX, Z and H are defined by the following table:

|of2]+
X[1]0]+
Z[[o|1]-
H{+|-[0

CNOT [[00 [OL [0+ [11[10 | 1+ | Boo | Bor | 7

11



3 Syntax of LQP

The Basic Language ofLQ P:

To build up the language dfQ P, we are given a natural number and we put
N = {1,2,...,n}. We start from a se@ of propositional variablestogether
with anarity map i.e. everyp € Q has an arityk < n; asetC = {+,1,...} of
propositional constantsand a set/ = {CNOT», X1, Hy, Z1, ...} of constants,
denotingbasic programsto be interpreted asnitary transformationseach such
program comes also with an arity< n. The syntax ofLQP is an extension of
the classical syntax foP DL, with a set of propositiondlormulasand a set of
programs defined by mutual induction:

o == pr | a | Ty | e | ene | Iy
T ou= T | ¢? | U | o | 7un | mm | «

*

Here, we takd to denote sequents of distinct indiceshh= {1,2,...,n}. In

the above syntaxp; andU; are well-formed terms iff the arity of p, or of U,
matches the length of the sequence,k.e= |I|. In the semantics we will interpret

p to be a physical property of a system|df qubits, and the sentenge as saying

that the qubits with indices ih have the property consisting ofc =| I | relevant

basic states which are specifically the ones labeled corresponding to the numbers
in the subsef. Similarly, in the semantics it will become clear that every member

of U encodes a specific quantum logical gate and the subdciipt/; will then
indicate on which qubits the gate is active. When the arity of a varialiden,

then we skip the subscript, and simply writénstead ofp,,.

For a given propositional constant C, we interpret the sentenegas saying
that “the i-th-qubit is in the statec)”. Note thatl as a logical constant (character-
izing the qubit| 1)) is different from the propositional formula (verun) which
we formally introduce later in this section, to denote the “top” element of the
lattice of properties. This, in its turn, is also different from fregram T, intro-
duced in the syntax above, which will simply denote the trivial program, relating
any two states.

Extending the Basic Language of.Q P:

We extend our language by defining the operations fdassical disjunctiorand
aclassical implicationin the usual way, i.ep V ¢ := =(-p A =), ¢ — P =
—p V1. We introduce constanterumT := 1, V-1, andfalsumL := 1; A—1;.
We define theclassical dualof [7]p in the usual way agr)p = —[n]—p ; the
measurement modalities and < that are known in the quantum logic literature
can be defined Ik QP by putting<$p := (?) T andOyp := =O—¢. Theortho-
complements defined asv ¢ := O-, or equivalently as- ¢ := [p?]L. By

12



means of the orthocomplement we define new propositional con$tants- 1,
and—; :=~ +;, and a binary operation fguantum joinpLiy) :=~ (~ @A ~ ).
This expressesuperpositionsy LI 1 is true at any state which is a superposition
of states satisfying or ¢). We can also define thguantum duabf a modality
(7] as(r~)y =~ [r] ~ 9. Finally, we put(r)~1y = ((#7)~). As we'll
see, this captures ttgtrongest post-conditioensured by applying programon

a state satisfying (a precondition)

Testable formulas We call a programr deterministidf = is constructed without

the use of choice’ or iterationx. Next we define the set ééstable formulag,

of LQP to be a subset of the above given language, constructed by induction in
the following way:

pr = Lol e | Ty | wenee | [mle

wherer is anydeterministic program Observe that the construction nfmight
involve non-testable formulas. In particular, for an arbitrary (not necessarily
testable) formula, remark thafy?]v, is a testable formula.

Proposition 9. For any formulap in LQ P, ~ ¢ andO are testable formulas.

Local formulas and local programs We would like to isolatdocal formulas

and programs, i.e. the ones that “affect only the qubits in a giverd setN".

These formulas will express local properties (in the sense defined above). When
we want to stress that a formula or program is local, we denote themayitr

7. The definition is:

or u= pyr | e | T | erVer | erA—er | erANmrer
mr = it | Uy | wmpmr | wmpUnmp | 7y

with i, j € I, J C I. Observe that local formulas are not closed under negation:
this is because the complement of a local property is not necessarily a local prop-
erty. But instead they are closed under set-theoretic difference, disjunction, and
also conjunction: this is becaugen v is equivalent tap A —(p A —1).

Relabeling local formulas and programs When we label a local formula;

or a local programr; with a sequence of indice§ we can of course take any
other sequencd of indices, with|.J| = ||, and substitute all thé indices in

our formula (program) with the correspondidgndices; we denote by ;, and
respectivelyr ;, the corresponding formula, or program.

Notation. The unary map induced by a prograie want to capture in our syntax
the constructior¥{;), by which a linear mag” on H®™ was used to describe a
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unary mapF(;y on H. For this, we put.0;! := 0;7 U (1,?; X;), and0;! :=
0,105,505, wherel = (i1,i2,...,i;). This maps any qubit id to 0.
Similarly, we put;0;? := (0;, A0, A--- A0, )7. Finally we define:

Ty 2= On\ iy s 75 O 4y ?

This is the map we need (which encodes a single qubit transformation). In fact,
we shall only user(;) in the rest of this paper.

4 Semantics ofLQ) P

An L@ P-modelis aqguantum frame equipped with a valuation functiorapping

each propositional variable of arity & into a set|| p || X(H®F) of k-qubit
states. Given a sequenfef lengthi of indices, lete be the canonical isomor-
phism betweerd/ ®* and H®!.

We will use the valuation map to give an interpretatipny ||C X to all our
formulas, in terms of properties of ourqubit system, i.e. sets of statesdn=

Y(H). In the same time, we give an interpretatignr || C 3 x X to all our
programs, in terms of binary relations between states. The two interpretations are
defined bymutual recursion

Interpretation of the Programs: The basic program&;, with |I| = k, come
from a list of corresponding-bit unitary transformation& : H®* — H®k We
take|| Uy || to be the (map on states induced by the) unique linear mé&p such
that:

1 UL || opr (0 ®@4)) = pr(eroUoer () @ ¥)

for everyy € Hy, ¢ € Hy\ ;. Here, recall that; is the canonical isomorphism
betweenH ®* and’H;, andy; is the canonical isomorphism betwekin QH1
andH.

As for the others:

Tl = EUxX el = llell?
lmum |l = (lm f[Ullm]l (7] = =
|| 70572 || = lmllellm |l , IIUf] = (U]t
INCalal = = s A rm) Il = | ]
I (muUm)t | = [[(@)TU@E)T ], | @) = [ (=H)*

whereR* is the reflexive-transitive closure of relatidh Note thatdeterministic
programsz have as interpretatiorjs 7 || (maps on states which are induced by)
linear mapsonH.

14



The interpretatiori| = || allows us to extend the notatioh to all programs, by
putting: s = ¢ iff (s,t) €| 7 |

Interpretation of the Formulas: We give the interpretation here first for all ex-
cept propositional variablgs and entangled state formulas;:

leAdll = dlellnllell 5 -l = Z\|lell
L3 ] = 1 sl =
andfinally ||[r]e || = {s€X|Vt:s St=tc]| o]}

The last clause obviously defindise weakest preconditiofr]¢ ensuring that
(postcondition)y will be satisfied after executing program As for the proposi-
tional variables, we put:

lprll = {seH:srealllplh}
= A{p(es(@) @) €l pll, ¥ € Hyr}

wheree; and iy are the above-mentioned canonical isomorphisms sanisl (as
defined above) the state of the qubitd irSo the meaning qf; is that the system
of qubits with indices in/ is separated from (i.e. non-entangled with) the rest of
the system, and that moreover this system has the property expressed by

The interpretation ofr;;, for deterministic programs, is given by the con-
structionF;; above. Since the interpretatidnr || of a deterministic program is
a linear map ort, we know, by the results mentioned above, that the #ap
can be used to specify a set of compound statgsC H. This is our intended
interpretation fofr; ;:

7 [l= 11w 1135

For the progranT, we put:|| T ||:= {s € £ : s, ;; is defined = {up (Y @ ¥)

Y € Hi 3, Y € Ha\(i,51 ) 1-€. the property of having thig, j}-qubits in a sep-
arated state from the others. This can be extended to other programs in the natural
way, by putting e.g|| m U n’;; ||:=|| 7i; Ui || ete.

Proposition 10. The interpretation of any testable formula is a testable property.
The interpretation of ard-local formula (or deterministic program) is aflocal
formula (or linear map on states).

Lemmas3. ||~ ¢ [[=[l ¢ |I*, || e lI= [T 7T [l [ Be ll=0 [l ¢ ]
Lo [l =[ OCe ||
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Proposition 11. The following are equivalent, for every formuja
1. || ¢ || is testable
2. pis semantically equivalent o<
3. is semantically equivalent to some formaila
4. @is equivalent to some formula ¢

5 Axioms for LQP

First, we admitall the axioms and rulesf classical PDL, except for the one
concerning tests?. In particular, we have a basic axiom and rule for sentences
involving modalities|r], stated for elementary sentences and basic programs:
Kripke Axiom. + [7](p — q) — ([7]p — [7]q)

Necessitation Rule. if F pthent [x]p

Consideringdp, we introduce the following axioms:

Test Generalization Rule. if p — [¢?]r forallq, then p — Or

Testability Axiom. + Op — [¢7]p

Testability can be stated in its dual form by meangg@fyp — <p or equiva-
lently as(¢?)p — (p?)T. This dual formulation of Testability allows us to give a
straightforward interpretation: if the property associateg ¢an be actualized by
a measurement (yielding an output state satisfgln¢ghen we can directly test the
propertyp (by doing a measurement fpy. The Test Generalization Rule encodes
the fact thatd is a universal quantifier over all possible measurements.

Other LQ P-axioms are:

Partial Functionality. =[p?lg — [p?]—q
Adequacy. pAqg— (pl)q
Repeatability. [¢:7)¢;  for all testableformulas ¢,

Universal Accessibility. (m)00p — [']p

Unitary Functionality. =[U]q < [U]—~q
Unitary Bijectivity 1. p— [U;Up
Unitary Bijectivity 2. p— [ULUlp

T T T T T T T T

Adjointness. p — [7]O(xT)YOp
Substitution Rule. From - © infer F ©[p;/¢j]
Compatibility Rule . For alltestableformulasy, ¢ and every variable ¢ ¢, v

From F (p797)p — (W75 97)p infer F (p297)p — ((p Ap)?)p

Proposition 12. (Quantum Logic, Weak Modularity or Quantum Modus Ponens)
All the axioms and rules of traditional Quantum Logic are satisfied by our testable
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formulas. In particular, from our axioms one can prove “Quantum Modus Po-
nens™® o A [p?]1) = 9. Inits turn, this rule is equivalent to the condition known in
quantum logic as Weak Modularity, stated as folloysh (~ o L (¢ A1) F 1.

Theorem 4. (Soundness, Expressivity, Completeness of the above axioms with
respect to PDL frames) In the presence of (axioms of classical logic, plus) Kripke’s
Axiom, Necessitation, Test Generalization, Testability and Substitution Rule, all
the other axioms above are sound and expressive with respect to the corresponding
semantic conditions mentioned in the Section 2 above. More precisely: any of
these axioms is valid on a PDL frame iff the corresponding semantic condition is
satisfied by the frame. Moreover, the system given by the above axioms is complete
for the class of PDL frames satisfying all the corresponding semantic conditions.

Proposition 13. The formula< 7 >~! ¢ expresses the strongest testable post-
condition ensured by executing programnon any state satisfying (precondition)
. In other words: for every testablg, the following are equivalent:

LbE<r>to—1
2. F o —nly

Moreover, in the context of the other axioms, this equivalence is itself equivalent
to the Adjointness Axiom.

Basic Axioms for constants (, 1, +, —).

The first axiom says that’s are “states” in the i-th part of the system, i.e. they
are atomic properties, which determine completely whether any other property is
jointly satisfied. We state inweak as well as irstrongerversion:

Atomicity (weak version). Foralt € {0,1,+,—}: F¢; Ap; — 0O0(¢; — p;)
Atomicity (strong version). Foralt € {0,1,+, —}:

F Nierci Apr — O0(N;ep i = pr)

The following axioms state that; and—; are proper superpositions @f and1;:
Proper Superposition Axioms: F +; — <$0; A O1; and F —; — 0; A O1,.

Next two axioms assert thatand+ aretestableproperties:

Constants are testable.- O0¢1; — 1; and - O0+; — +;.
Determinacy Axiom of Deterministic Programs. For deterministic programs
w7

5This explains why the weakest preconditiigrt |1 has been taken as the basic implicational con-
nective in traditional Quantum Logic, under the name of “Sasaki hook”, denotend%yw.
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.... cnetorp (M7 A A ) o (@)D AL A D))
= ((mp < (7')p)

This expresses the above-mentioned property of linear operatdrs arbeing
uniquely determined by their values on all the stdtes); ® --- | z),, with

| 2)i € {1 0)i,| 1)i, | +)i}-

Agreement Axiom. If two I-local programsr, 7’ have the same domain, then
their output states agree on all némubits: i.e. if7 N.J = @) then
DO((m)T < (7)) T) = (7r)ps < (77)pJ)

Compatibility of programs affecting different sets of qubits. If In.J = () then
Flrrmalp < [mrmlp

Entanglement Rule From  p; — [mq)]q infer F 75 — [pi?]q;
Entanglement Composition Axiom For distinct indices;, j, k, [, programs
m, 7'« and local{1}-programss, p; we have:

F(DDA&MV

7 A T — 03 pk;ﬁjk?](ﬂ; oy p]i; )
Trivial Entanglement. + p; ; — T, This says that separation of thej-qubits
implies their trivial entanglement.

Theorem 5. (Teleportation Property). lf; is a1-local testable property and if
- w1 — [’/T(l); 0'(1)}(]1, thent p1 Nogg — [f12?]q;3.

Proof. We apply the Entanglement Composition Axiom, taking 4,j =1,k =

2,1 = 3, and substituting the programisfor r, o for 7/, = for "/, 17 for o1, and

id; = Xq; X, for p1- We obtaini ?41/\523 — [301?; ida; ﬁlg?](—r; P17 ZdJ{, 0')43.
On the other hand, we have: o1 A @2z — [04!](p1 A Ta1 ATa3) (sincely! is
4-local and has the same domainids, so by Agreement Axiom it agrees with
id4 on non-4 qubits, thus preservigg anda,s; but alsok [04!]04 and using the
Trivial Entanglement Axiom, we get the conclusion). From these two together, we
obtain:k o1 ATa3 — [04!][T127](T; gpl?;w;idl;a)%. But on the other hand, we
havel- (T;gp{?;w;icﬂ;a)43 — [047]gs3. (This is because we assumedy; —
[7(1); 7(1)lq1, from which it follows that- 01 — [T;¢17; m1); z‘d{; o(1ylq1, using

the fact thatid" = id and [p,?]¢1, by Repeatability axiom and the testability
of ¢1. Apply now Entanglement Rule, obtaining the above conclusion.) From
these two, we get that: p; A Ta3 — [04!;7127;047]gs. The desired conclusion
follows from the Agreement Axiom and the fact thiat; 7127; 047 and7,? are

{1, 2, 4}-local programs with the same domain.
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Characteristic Formulas. In order to formulate our next axioms (dealing with
special logic gates), we give some characteristic formulas for binary states, con-
sidering two qubits indexed hyandj:

States Characteristic Formulas
| 00)i; = 0);® | 0); (0;7)0; A[1;7] L
Bell states:

vo = 10i@ [y + (=D [1)i@d); | (0:7)y; A (LG5 A (+2)(=)F
with0=1andl =0, z,y € {0,1} where(—)* = —ifx =1
and(—)* =+ifz=0

17 = g + i =
[ 00)s;+ [ 0L)ij+ [ 10)i;+ | 11)i; (0:7) +5 A(Li?) +5 A+

Characteristic Axioms for Quantum Gates X and Z.

In general, for all unitary transformatioris € U, we have as aonsequencef

the previous axioms that: px — [U;]pk, for IN K = ().

In addition to this, we require fokK, Z, H:

B0 — [Zi]0; oL — [Zi o+ — (2]
B0 — [Hil+: Bl — [Hi=io; F o+ — [H;]0;

Notation. Forz,y € {0, 1} and distinct indices, j € N, we make the following

abbreviations for “Bell formulas™gy, := (Z7; XY{),;-

Proposition 14. The Bell stateﬁjgzj are characterized by the logic Bell formulas
B;J.;/. In other words, a state satisfies one of these formulas iff it coincides with the
corresponding Bell state.

Proof. It is enough to check that the formulﬁ% imply the corresponding char-
acteristic formulas in the above table. For this, we use the Entanglement Ax-
iom and the following (easily checked) theorents: 0, —< Z7; X7 > vy,

F o< ZE XY >0, B4+ =< 27X > ()7

Characteristic Axioms for CNOT. With the above notations, we put:

H 01 N Cj — [CNOT'”]CJ N = 11 A Oj — [CNOE]]lj
F o +i A+ = [CNOT,; Y9 where 49 =(0;7) +; ALi?) +5 A(+:7)+;

19



Proposition 15. For all z,y € {0,1}: & (x; A y;) — [H;; CNOT; ;152

Corollary. If 4, 7, k are all distinct then

F(CNOTy;; Hy; (x5 A y;)"pr < (B2 7)pr. Proof. From the above andl T =
H, CNOT' = CNOT, we get+ By, — [CNOT; j; Hi] (i A y;), and so -
(ONOTj; Hys (zi A yj)1)T = (B,7)T. The conclusion follows from this,
together with the Agreement Axiom.

6 Correctness of the Teleportation Protocol

Following [8], quantum teleportation is the name of a technique that makes it pos-
sible to teleport the state of a quantum system without using a channel that allows
for guantum communication, but with a channel that allows for classical commu-
nication. We are working irf ® H ® H, with H being the two-dimensional
(qubit) space, and so = 3. We assume two agents, Alice and Bob who are sepa-
rated in space and each has one qubit of an entangled EPR pair that is represented
by 55 € H® @ H®). Alice holds in addition to her part of the EPR pair also

a qubitg; € H® in an unknown state;. Alice “teleports” this state to Bob,

i.e. she performs a program that will output a state satisfyingTo do this, she

first entangles; with her partg, of the EPR pair (i.e. she performsavOT »

gate on the two qubits and then a Hadamard transformafioon the first com-
ponent). Bob’s qubit has suffered during the actions of Alice and when Alice will
measure her qubits she will destroy the entanglement of the EPR pair that she
shares with Bob. The initial state of Bob’s qubit is known and we can calculate
which changes it has gone through when we know the result that Alice obtains
from the two measurements. Moreover, the result that Alice obtains from the two
measurements indicate the actions that Bob has to perform in order to transfer his
qubit into g3 into the statey; was before the protocol. It is enough for Alice to
send Bob two classical bits encoding the reayltof the first measurement and

the resulty, of the second measurement. This means that Bob will have to apply
y times theX -gate followed byr times theZ gate, if he wants to force his qubit

qs into the stateps.

In our syntax, the quantum program described here is:

m= |J ONOTw;Hy; (21 Ay2)?; XY 23
z,y€{0,1}

and the validity expressing the correctness of teleportation is

F o1 A o’ — [mles
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for all testablel-local formulasy,. To show this, observe that by applying the
above Corollary (at the end of the last section) in which we fakel, j = 2 k =

3 and then substitutg; with [X; Z%]¢3, we obtain that the validity above (to be
proved) is equivalent tor- 1 A By — [B1.27)[XY; Z3]ps.

Replacing the logical Bell formulas with their definitiofi§, := (Z7’; X7);; we
obtain the following equivalent validityt- o1 Aidas — [(Z7; X7), .71 XY Z5 s
whereid = Z9; X{ is the identity. This last validity follows from applying the
Teleportation Property and the validity ¢, — [Z7; X7; X{; Z{]¢1 (due to
X-t=X,7"1=2).

Note. This proof of correctness can be easily adapted to cover logic-gate telepor-

tation. Moreover, the whole range of quantum programs covered by the “entan-
glement networks” in [5] can be similarly treated using our logic.
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