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The paradoxes of the double-slit experiment with an electron are shown to originate in the implicit
assumption that the electron is always located in the classical space. It is demonstrated that there
exists a natural substitute for this assumption that provides a method of resolving the paradoxes.
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Two physical experiments have captured the paradox-
ical nature of quantum mechanics in an elementary yet
essentially complete way: the double-slit experiment and
the EPR experiment. Few experiments in the history
of science have generated so many ferocious debates,
prompted so many controversial interpretations and at
the end left us with such a deep feeling of discomfort
with the current state of affairs. Recall the mysterious
notions of the “wave-particle duality” and of “quantum
non-locality” originating in the experiments.

The double-slit and the EPR experiments are essen-
tially similar. In fact, in both of them one deals with su-
perpositions of the classically meaningful states and those
superpositions are the source of all controversies in the
theory. Accordingly, there is essentially only one mystery
in quantum mechanics: the existence of superpositions of
classically meaningful states. So, to understand quantum
mechanics is to understand superpositions of states.

In particular, the electron in the double-slit experi-
ment is in a superposition of states that describe electron
passing through one of the slits. There are three logical
possibilities for such an electron:

(A) the electron passes through both slits

(B) the electron passes through only one of the slits

(C) the electron does not pass through the slits at all

Which of these possibilities is realized?
The most common answer within the quantum com-

munity is (A). Namely, one says that the electron in the
given state behaves like a wave, rather than a particle.
The wave passes through both slits at once causing an
interference pattern behind the slits. One goes on to say
that the wave function gives a complete quantum descrip-
tion of the electron’s state. Namely, it yields the proba-
bility of finding the electron at an arbitrary spatial point
(Born’s rule). It is normally assumed that the electron
itself is real (physical), while the wave function is not.
The sketched position is due primarily to Bohr and it
serves a basis for the famous Copenhagen interpretation.

In this approach the electron in the given state has no
definite position. In particular, it cannot be near a single
slit as otherwise the wave function would be concentrated
at that slit. Paradoxically, the fact that the wave function

vanishes away from the slits indicates that the electron
must be near the pair of the slits. It follows that the
electron splits somehow into two parts. The density of
the resulting “electron cloud” coincides with the square
of the modulus of the wave function. This relationship of
the wave function with the physically meaningful density
contradicts its earlier mentioned non-physicality.

However, whenever necessary, the Copenhagen inter-
pretation distances itself from such problematic conclu-
sions and logical contradictions. Instead, it retreats to
the view that one should only be concerned with mea-
surements, in which no electron parts can ever be ob-
served and no need for a physical wave function ever
arises. This runaway argument may indeed eliminate the
problem, but it leaves one with a feeling of guilt for the
ostrich-like behavior.

Einstein on the other hand maintained that the possi-
bility (B) is realized. That is, the electron in the experi-
ment goes through only one of the slits, but the standard
quantum mechanics does not tell us the whole story. His
famous question“Do you really think the moon isn’t there
if you aren’t looking at it?” pushed for the development
of the more detailed, “hidden variables” theories. How-
ever, as well known after Bell, those theories can only be
reconciled with experiment if they admit some form of
“action at a distance” i.e., nonlocality. Ironically, one of
the main motivations for Einstein to promote that type
of approach was to eliminate nonlocality from the theory.

Following Bohr and Einstein, the possibilities (A) and
(B) were extensively explored and various more advanced
interpretations of these possibilities were considered. On
the other hand, the possibility (C) has not been seriously
investigated. If realized, this possibility would mean that
the electron disappears somehow between the source and
the screen with the slits and then reappears on the other
side of the screen, when absorbed by the particle detec-
tor. The goal of the Letter is to explore this radical
scenario in detail. At the end we will see that (C) offers
a possible way out of the major conceptual difficulties
of quantum mechanics. The paper analyzes the possibil-
ity (C) within the context of the double-slit experiment.
The upcoming, more technical publication [2] will do the
same in the context of the EPR experiment.

To begin with, one needs a positive statement consis-
tent with (C). Indeed, as stated, the possibility (C) can-
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not be used in a constructive way. In such a form (C) is
in fact consistent with a stronger form of the Copenhagen
interpretation that denies existence of the electron before
it is absorbed by a particle detector. The exact opposite
position will be taken here. Namely, it will be assumed
that the electron in the double-slit experiment exists (in
some physical form) throughout the entire experiment.

From this assumption, (C) and the topology of the
space R3 divided by the screen with the slits, one con-
cludes that between emission and absorption the electron
lives outside R3. So the only way to reconcile the above
statements is by giving up the common perception that
the electron is “attached” to the classical space. Instead,
this space itself must be a “part” of a physical space of
more dimensions, into which the electron can escape.

To develop this thought, recall that the electron’s state
in quantum mechanics is captured by the wave function.
In the case when one is interested only in the electron’s
position, this is a complex-valued function of spatial co-
ordinates. The evolution of the electron in the double-
slit experiment is given by a path ϕt with values in a
Hilbert space H of such functions. This path originates
at a point ϕt1

, given by the wave function of the electron
that is about to be emitted by the source. If the source
is located at a ∈ R3, the corresponding point ϕt1

in H is
ideally the Dirac delta function δ3(x − a) [7]. The end-
point ϕt2

of the path is given by the wave function of the
electron absorbed by the particle detector. If the electron
was detected at b ∈ R3, then ϕt2

(x) = δ3(x − b).

Assuming H contains the set M3 of all delta functions
δ3(x−u) with u ∈ R3, one can identify the classical Eu-
clidean space R3 with the set M3. Indeed, there is an
obvious one-to-one correspondence between R3 and M3

via the map ω : u −→ δ3(x− u). This correspondence is
physically meaningful: if the electron is located at a point
u ∈ R3, then the electron’s wave function is the eigen-
state δ3(x−u) of the position operator x̂ and vice versa
[8]. Moreover, for an appropriately chosen Hilbert space
H the map ω is an isometric embedding which means that
R3 and M3 are identical manifolds with a metric. As a
result, the classical Euclidean space R3 can be identified
in a physically meaningful way with the submanifold M3

of a Hilbert space H of wave functions [9]. Accordingly,
the following statement will be accepted:

(S) The classical space arena in physics is a part of a
larger, Hilbert space arena. Physical processes with
an electron on the classical space R3 are particular
cases of physical processes on the Hilbert space H
of the electron’s states. More precisely, the classical
space R3 can be physically identified with the man-
ifold M3 of the wave functions δ3(x − u), u ∈ R3

of the electron. The evolution of the electron is a
path ϕt in the space H. Whenever the electron is
detected at a point a in R3, the electron’s path ϕt

passes through the point δ3(x − a) in M3.

How does the statement (S) help interpret the double-
slit experiment? It answers the question of what happens
to the electron between its emission and absorption. Re-
call that the initial and the terminal points of the elec-
tron’s path ϕt are in the classical space R3 (identified
with the manifold M3). However, between these points
the electron is in a superposition of the delta-like states.
Such a superposition is not given by a delta function and
therefore is not a point in the classical space. So the
electron’s path begins at a point in the classical space,
then leaves this submanifold while staying in the space
of states, passes over the screen with the slits (located in
classical space) and then returns to the classical space as
it is absorbed by the detector.

A specific form of the path ϕt depends on details of in-
teraction of the electron with the source, the detector and
the screen with the slits. However, any such path con-
sists of the same basic segments: propagation from the
source toward the screen with the slits, passing “through”
the slits, propagation behind the screen toward the de-
tector, and “collapse” on the detector. The first three
of these segments are shown in Fig. 1. In the figure,

FIG. 1: Passing through the slits as a refraction of ϕt

the horizontal segments represent the propagation of the
electron toward and away from the screen with the slits.
The middle segment represents the motion of the elec-
tron “through” the slits when the initial electron’s wave
packet “splits” into a superposition of two wave packets.

Whatever the actual form of the path in Fig. 1 may
be, it is clearly single-valued and continuous, i.e., it is a
path in the mathematical sense. In particular, for each
value of the parameter t there is only one point ϕt in H.
The screen with the slits simply causes a refraction of the
electron’s path. Notice the stunning difference between
Fig. 1 and the standard picturing of the double-slit ex-
periment shown in Fig. 2. In the figure, ξ, χ are the wave

FIG. 2: The standard picturing of the double-slit experiment

functions of the electron passing through one of the slits
with the second slit closed. They are the (normalized)
components of the superposition ψ = c1ξ+ c2χ that rep-
resents the electron behind the slits. The splitting of the
electron’s path in Fig. 2 is due to attaching the path to
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the classical space and is responsible for the paradox as-
sociated with the experiment. Namely, by insisting that
the electron is in the classical space R3 one is forced to
accept that the electron goes along two different paths in
R3. That is, both components ξ, χ must be real. This by
itself is contradictory. In fact, if the same wave function
is written as a superposition of eigenstates of a different
observable, then, by the same logic, the new components
must be real as well. Since there are many observables,
the notion of reality becomes ill-defined. This is known
as a “preferred basis problem” in quantum mechanics. A
very similar situation arises in classical physics. Namely,
when a physical vector (say, a velocity vector) is writ-
ten in terms of its components in a certain basis, should
we count the components as real? The answer is obvi-
ous: the physical vector itself is real because it is basis
independent. However, relative to the vector, the compo-
nents are just “shadows” of the real thing as they change
with the change of basis, very much like shadows change
when the sources of light are moved around. In quantum
mechanics too, one should say that the state itself is a
“real thing”, while the components are not.

For instance, consider the event of passing through the
slits in one dimension with the X-axis along the screen
with the slits and orthogonal to the slits. If δx1

(x) ≡
δ(x − x1), δx2

(x) ≡ δ(x − x2) are the (idealized) wave
functions of the electron passing through the slits at x =
x1 and x = x2 respectively, then the wave function of the
electron “passing through both slits” is a superposition
c1δx1

+ c2δx2
with c1, c2 6= 0. This superposition is the

actual state of the electron in one dimension right behind
the screen with the slits, so it is a “real thing”. On
the other hand, the components δx1

, δx2
themselves, no

matter how familiar and real they seem to us, are only
secondary and “representation dependent”. So instead
of having two “real” components one has now a single
superposition. Instead of having two “real” electron’s
paths one now has a single path in the space of states.
Instead of passing through both slits at once, the electron
in the experiment does not pass through either of them.

The physical meaning of the superposition ψ = c1δx1
+

c2δx2
in the double-slit experiment is now transparent

and consistent with its mathematical meaning. Namely,
the superposition is the decomposition of the actual state
in a basis. Once again, it is wrong to think that the
components δx1

, δx2
of this decomposition are real, while

the actual state ψ is not. Rather, the exact opposite is
true in the experiment. So, instead of superposing the
“real” states δx1

, δx2
to obtain a state that is not real,

one decomposes the actual state into the components that
do not enjoy an independent existence in the experiment.

More generally, the superposition principle is essen-
tially similar to writing equations of the classical particle
mechanics in components. However, instead of dealing
with the motion of a classical particle along a path xt in
the Euclidean space R3 one deals now with the motion

of the electron along a path ϕt in the space of states H.
Instead of representing xt by its components in an appro-
priate basis, one now does the same for the path ϕt. In
this sense quantum mechanics becomes an extension of
the classical particle mechanics onto the space of states.

One may wonder how this “mechanical” motion may
account for the wave-like properties of the electron. The
answer is simple: these properties follow from the func-
tional nature of the points on the path ϕt. For instance,
when two wave packets are superposed, the square of the
modulus of the resulting state ψ contains the interference
term. So, when ϕt passes through the point ψ, the elec-
tron behaves like a wave. One concludes that the “wave-
particle duality” is completely captured by the electron’s
motion in the space of states. Whenever the path crosses
the classical space M3, we see it as a particle. Whenever
it leaves M3 and passes through the regions represented
by less localized states in H, it behaves like a wave.

The final part of the electron’s evolution in the double-
slit experiment is the collapse on the detector behind the
slits. The collapse is mysterious because of its appar-
ent discontinuity and non-locality. In particular, how
could the electron’s wave function, which is in general
non-vanishing over large distances in R3, instantaneously
“shrink” to a point supported state? Also, how could
finding the electron in one place instantaneously affect
results of measurements at a distant place? This is es-
pecially paradoxical if one thinks of the electron in the
state ϕ(x) as a “cloud” of the density |ϕ(x)|

2
. Once

again, the Copenhagen interpretation discards this prob-
lem by saying that no such cloud can be observed and
no superluminal signaling based on the collapse can be
achieved in experiments. In other words, the Copenhagen
school denies collapse a physical status. However, here
the electron is assumed to exist throughout the entire ex-
periment. Consequently, the collapse in the experiment
must be described both mathematically and physically.

Consider once again the wave function ψ = c1δx1
+

c2δx2
of the electron right behind the slits in one dimen-

sion. Suppose that under a measurement this function
collapses into δx1

. In this case the electron is assumed
to pass through the first slit. The paradox of collapse
resides once again in thinking that both terms of ψ rep-
resent a reality. That is, that the electron is in both
places at once. Because of that the process of collapse
seems to require an instantaneous transfer of the electron
from x2 to x1. However, the electron in the state ψ is at
neither of these two places. Rather, it is at the point ψ
in H which is not on the classical space submanifold of
H. The collapse is not a process on the classical space.
It does not collect the electron’s pieces into a particle.
Indeed, there are no pieces to collect! Rather, the elec-
tron is represented by a single point in the space of states
and collapse is a motion ϕt that connects that point to
a point in the classical space. The fact that the electron
was found at x1 does not mean that it has passed through
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the first slit. Instead, provided both slits were open, the
electron did not pass through either of them!

This resolves the paradox of the delayed-choice experi-
ment, when the decision to determine “which slit the elec-
tron went through” is made after the electron interacted
with the slits. Such a delayed measurement is known
to destroy the interference pattern on the photographic
plate. The paradox is: how could the pattern disappear if
the measurement occurred after the electron has already
“made up its mind” and “passed through both slits”?
The answer is now obvious: whether or not the measure-
ment occurred, the electron in the experiment did not
pass through the slits and the segments of the electron’s
path in Fig. 1 did not change. If the measurement (de-
layed or not) occurred, the collapse segment is added to
the path. This transforms the superposition into a single
concentrated packet and destroys the interference.

One can see that collapse is in a way opposite to the
process of passing “through” the slits. Namely, whereas
the screen with the slits “splits” a wave packet into a su-
perposition of two packets, the collapse reduces the su-
perposition into a single packet. Whereas the slits “push”
the electron away from the classical space, the collapse
returns it back to that space. In this respect collapse on
the detector is another refraction of the electron’s path
in the space of states. The full path of the electron in
the double-slit experiment is shown in Fig. 3.

FIG. 3: Double-slit experiment with collapse as a path in H

The collapse segment of the path in Fig. 3 is shown to
be continuous. This seems to contradict the known dis-
continuous, nonlocal character of collapse. For instance,
how could a continuous process account for the instan-
taneous effect that finding the electron at x1 has on the
wave function and measurements at a possibly distant
point x2? Recall however that collapse is happening on
the space of states. So, instead of worrying about the dis-
tance between x1 and x2 in the classical space, one should
worry about the distance between the points c1δx1

+c2δx2

and δx1
in the space of states. Instead of asking about

the speed of collapse in the classical space, one should
ask about the speed of the evolution ϕt in the space of
states. This shift allows one to model the discontinuous,
non-local process of collapse on the classical space by a
continuous, local process on the space of states.

In fact, the distance between c1δx1
+ c2δx2

and δx1
can

be small even if the distance between x1 and x2 is large
[2]. Namely, the correspondence ω allows one to identify
the classical space with a spiral-like submanifold M3 of
an arbitrarily small sphere SH in the space of states H
(see Fig. 4). Under the embedding, the infinite “size” of

the Euclidean space R3 has its counterpart in the infinite
dimensionality of SH rather than its radius [3].

FIG. 4: R3 as a submanifold of the sphere SH

Take the radius of the sphere SH to be, say, one Planck
unit of length (≈ 1.6 · 10−35m). Then the distance be-
tween any two states on SH is at most π Planck units.
Assume that collapse is the motion along a geodesic ϕt

between the initial and the terminal states on SH [6].
Since geodesics are continuous curves, the path ϕt is con-
tinuous. Also, because the equation of geodesics is a dif-
ferential equation, the metric on a small neighborhood of
a point is sufficient to find the path ϕt near that point.
In other words, collapse is modeled by a continuous local
process on the sphere of states. Suppose now that the
speed of collapse on the sphere of states is equal to the
speed of light. Then the collapse from c1δx1

+ c2δx2
onto

δx1
happens in less than 10−43s for all values of x1 and

x2! The same process identified with a propagation from
x1 to x2 in the classical space would require an infinite
speed and would be a discontinuous action at a distance.

So, does this resolve the paradox of the double-slit ex-
periment? Not quite. The presented analysis of the ex-
periment was kinematical. The collapse process was as-
sumed to be a geodesic motion on the sphere of states,
but that assumption was not developed (see [6] for results
in this direction). Despite of this, the provided analysis
addresses the questions that normally appear in any dis-
cussion of the double-slit experiment (see for example the
famous treatment by Feynman [1]). The analysis demon-
strates that the paradigm shift from the classical space
to the space of states resolves the paradox in principle.
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