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The Arrow of Time in Classical Electrodynamics

Fritz Rohrlich
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The reason for the arrow of time in classical electromagnetic radiation is explicated.  That radiation is emitted by accelerated charges whose motion is determined by differential equations.  These fully account for that emission.  But they are not invariant under time reversal transformations.  Their particular symmetry is specified.  The Maxwell equations that describe the radiation are time reversal invariant.  The emitted radiation cannot be time reversed because that reversal requires initial conditions on the Maxwell equations that cannot be realized in actual situations.  This implies a de facto arrow of time for electromagnetic radiation.  There do exist very special systems that provide exceptions.   Light rays offer an example.  A previous paper on radiation irreversibility (Rohrlich 2000) recently criticized by Rovelli (2004) is discussed.

I. Introduction


The argument for an arrow of time in the case of electromagnetic radiation has engaged physicists and philosophers of science for a long time.  The following are samples of a vast literature: Davies (1977), Price (1996), Zeh (1999).  Nevertheless, the reason for this arrow of time is conceptually a very simple argument.  Since this reason refers to mathematically describable phenomena, it must be supported by the pertinent equations.  I shall therefore very briefly present the necessary equations in increasingly better approximation.  The presentation will follow the historical development of the theory.

2. Nonrelativistic Description 

In the simplest case, Newton’s equation describes an object (for example, a particle) of mass m and velocity v subject to a known external force Fext ,
                  mdv/dt  =  Fext[x(t)] .   



       (1)

Since v = dx(t)/dt, this is an ordinary differential equation of second order.  It has a unique solution provided initial conditions x(t) and v(t) at t = ti are given and Fext is a sufficiently well behaved function.  But if this object is electrically charged, Maxwell’s equations tell us that it will radiate whenever it is accelerated. And since electromagnetic radiation has both, momentum and energy, conservation laws require that radiation must be emitted at the cost of the external force.  Since eq. (1) makes no reference to radiation emission, it cannot be correct for charged objects.

The equation of motion (1) can be improved by adding an appropriate term.  If a point mass m has charge q, eq. (1) reads

            mdv/dt  =  Fext +  m0 d2v/dt2,                                           (2)

where 0 =2q2/(3c3) is a constant and c is the speed of light.  The new term was first added by Lorentz in his 1906 lectures (Lorentz 1909).  But it is known as the Schott term.  It accounts for the radiated electromagnetic energy (Jackson 1999, p.748) but still does not account for the momentum of the emitted radiation.


Equation (2) also suffers from the serious difficulty that it is of third order in the derivative of position, x(t), and thus requires three initial conditions: not only the initial position and velocity but also the initial acceleration must be given at t = ti .  This violates Newtonian mechanics and leads to unphysical solutions: for example, a particle can accelerate from rest in the absence of a force.


The reason for these difficulties of the above equations lies in the inherent inconsistency between Newtonian mechanics (on which eq. (1) is based) and Maxwellian electrodynamics (which describes radiation).  The symmetry properties of the former (Galilean covariance) contradict those of the latter (Lorentz invariance).  In fact, Galilean invariance is only the low velocity limit of Lorentz invariance.  A full account of radiation emitted by an accelerated charge therefore requires a fully relativistic treatment (based on special relativity).  Newtonian mechanics must be generalized to the Lorentz covariant relativistic mechanics.

3. Relativistic Description

We must switch from the Newtonian three-space, x ( R3 and universal time, t, to four-dimensional Minkowski space-time with metric (we choose it with diagonal elements (-1, 1, 1, 1)).  The electromagnetic field is now given by the anti-symmetric tensor FF0k = Ek ,  Fkl = klmBlm), and the motion of a point particle of rest mass m and charge q is described by a velocity v that is a four-vector.  It depends on the proper (invariant) time .  The fields with such sources satisfy the Maxwell-Lorentz equations.

The equation of motion for a ‘point’ charge, i.e. for a charged sphere that is described in the limit of a very small (but not zero) radius, was first derived by Abraham and Lorentz in a series of papers between 1892 and 1905 (see Yaghjian 1992 for this and associated references). Their result is relativistically correct; but at that time, it was not yet written in manifestly covariant form.  More than thirty years later, their equation was rederived by Dirac (Dirac 1939).  He used a covariant notation that I shall adopt here.  Dirac’s derivation (see also Rohrlich 1990, Section 6.5) starts with the fundamental decomposition of the electromagnetic field, 
                                      Fx) = Fin​(x )+ Fret(x).                                           (3)

The field Fin​(x) is a given electromagnetic field that is coming in along the past light cone centered at the particle (though it is generally not uniformly distributed over that cone).  Its source is in the past (in the direction of light-like infinity).  That field provides the external force that accelerates the charge.  The retarded field, Fret(x) in (3), is due to the charge q at its own location (no other charges are present); it acts back on its own ‘source’- the charge thus interacts with itself.  Since the dynamics described here deals with the motion of a single charge only, eq. (3) involves no retarded fields due to any other charges.  

The covariant evaluation of the self-interaction was Dirac’s achievement.  He introduced the advanced field, Fadv(x), and separated the retarded field into a time-symmetric and a time-antisymmetric part.  He showed that the time-antisymmetric part of Fret(x), namely F(x) = [Fret(x) ( Fadv(x)]/2, ​yields a self-force, while the time-symmetric part, F(x) = [Fret(x) + Fadvt(x)]/2, gives a Coulomb field unimportant for the present purpose.  The Lorentz self-force, qFv, is responsible for (the relativistic generalization of) the Schott term as well as for the reaction to radiation emission.  The energy-momentum fourvector of radiation, Pis emitted at the rate 




dP/d vR                       R = m0 (dv/d)(dv /d).               (4)

From here on, the units are so chosen that c = 1.  
The resulting Lorentz-Abraham-Dirac equation (LAD) is the generalization of the above non-relativistic eq. (2).  The electromagnetic field (3) contributes a Lorentz force due to Fin​; but the Lorentz force due to Fret is no longer explicit; it is split up as indicated above, its important contribution being to the self-force.  There is no need to present the LAD equation explicitly.  It is faulty because it is still of third order in the time derivative of the particle position, just as its non-relativistic limit (2) above and   therefore, also suffers from the same difficulties of unphysical solutions.

The problem of the unphysical solutions was finally solved by H. Spohn (2000), a century after Lorentz and Abraham!  He observed that the physical solutions of the LAD equation are restricted to a critical hypersurface.  That restriction is consistent with the applicability domain of classical physics to time intervals much longer than 0 in eq. (4) (Rohrlich 2001).  This is not surprising when it is realized that the largest value of 0 that a charged object can have is about 10-23 sec; that’s its value for an electron.  In the classical domain, the self-force is therefore extremely small and can be safely included only to first order in 0 .  It manifests itself primarily by the existence of radiation.  But when the LAD equation is restricted to its critical hypersurface as suggested by Spohn, there results an equation similar to one first suggested by Landau and Lifshitz (1975).  It provides for the correct relativistic dynamics of a classical “almost-point” particle. The new equation involves the force, F in = qFinvas well as its time derivative,
              
                 mdv/d = F,in +0 dFin/d (  vR
                              (5)                          

where R is given in (4).  To first order in 0, (5) is the same as the Landau-Lifshitz equation.  The last two terms in (5) are entirely due to the self-interaction.  These terms need not to be corrected by further terms of order 0; such terms would not be physically meaningful.  The second term in (5) is the relativistic generalization of the Schott term; the third term is the radiation reaction term.   That last term is just the negative of the rate of radiated energy-momentum (4). 

Note on external forces: it follows from Dirac’s derivation of the self-interaction that the forces on the charge are entirely of electromagnetic nature.  Thus, non-electromagnetic forces are here excluded.  This is consistent with the present framework: it is a classical (rather than quantum mechanical) theory, and it is fundamental in the sense that no phenomenological forces are included.  Gravitational interactions are thus excluded, so that classically there exist only electromagnetic interactions.

4.  Symmetry and Invariance under Time Reversal.


The mathematical operation of time reversal, t ( t’ = ( t results in the transformations:  x(t)( x’(t’) = x(( t),   v(t) (  v’(t’) = ( v(t).  If the form of an equation is unchanged under this operation, it is called ‘time-reversal invariant’. If in Newton’s equation (1) the external force is invariant under time reversal, so will be the equation.

In the relativistic case, with the above choice of metric, the time reversal trans-formation, ( ’ = (results in:x(( x’(’) = x   v) ( v’’) = (  v) (see Rohrlich 1990, Section 9-2b).  Thus, every world line that is traversed in the positive time direction is now traversed in the negative one. 


The time-reversal transformations of the electromagnetic fields are as follows:


        E(x, t) ( E(x, t),   B(x, t) ( ( B(x, t),   F(x) ( ( F(x)                   (6a)                         
      Fin (x) ( ( Fout(x),
Fret(x) ( ( Fadv(x),      Fadv(x) ( ( Fret(x).      (6b)

Here, the out-field leaves the charge along the negative light cone along which the in-field arrived. From(6a) follows that the Maxwell-Lorentz equations without boundary/ initial conditions are invariant under time reversal. These equations are just the Maxwell equations but without dielectric or magnetic media).  However, the retarded and advanced solutions of these equations are not time reversal invariant; they transform according to (6b); they are ​time reversal symmetric.  A second time reversal transformation maps them back to their original form.


Since the force in the equation of motion (5) transforms under time reversal as

                 
            
  Fin​()( Fout(),                                                           (7)

Eq. (5) becomes under time reversal

                            mdv/d = Fout (  0 dFoutdvR

A comparison of (5) and (8) shows that time reversal does not leave the equations of motion invariant.  Rather, time reversal results in a ‘change of roles’ in the equations (see the following Section 5).  There is a certain symmetry of the fields in (6), and the same (with opposite sign changes) for the corresponding forces in (7)).  But in the equations of motion, (5) and (8), there is a sign change of the self-interaction terms, the last two terms in (8) that accompanies the change (7).  One notes that Newton’s first law (generalized) holds for both, (5) and (8): if the in-force (out-force) and its time derivative vanish, the acceleration vanishes.  (The proof requires the identity  vdv/d
This time reversal ‘symmetry’ can of course be seen from the very beginning of the derivation of the LAD equation that starts with Fin​ +  Fret = Fout + Fadv .  Since the inertial term, the left side of (8), is invariant, this ‘symmetry’ of the starting equation follows from (3).  Eq. (8) retrodicts rather than predicts the motion.  Of course, this retrodiction requires suitable initial conditions specified at timef of the original motionratherthan at time i.  But in addition to the initial conditions, the forces for the retrodicting motion must also be given for all times i <  < f.   These forces are the inverted self-interaction resulting from the absorption of the incoming radiation.  Only then can a retrodiction be made, and only then can the unknown radiation emitted into the past (now called Fout being misleadingly hidden in Fout!) be determined.  Physically, in the time-reversed case, the force is the reversed radiation that was emitted in the original case, while the produced radiation field is hidden in the reversed ‘force’ of the original case.  A role reversal takes place: the electromagnetic field that produces the driving force in the original motion, in the time-reversed case is the emitted radiation.  Physically, one would have to solve (8) for  Fout, given the (inverse) radiation rate, R.
Having established this kind of ‘time symmetry’ of the equations of motion, one may wonder what became of the irreversibility of radiation.  The answer is very simple: we are dealing with an open system.  During the motion of the charge forward in time, radiation is emitted and lost along the future light cone at every point of the world line of the charge at which there is acceleration.  That light cone intersects the hyperplane ‘t = constant’  in a sphere.  And as the charge moves from ti to tf , that intersection, summed over all ti < t < tf becomes a three-dimensional region through which radiation passes. 

If we want to reverse that radiation, we must reverse it so that it converges back to the points on the world line where it was emitted.  That such a construction is impossible in an actual situation is fairly obvious.  It would require initial conditions for the Maxwell equations at t = tf, that cannot possibly be prepared in an actual situation.  Thus, radiation emission from an accelerated charge cannot be reversed.  An arrow of time is established.

One might be tempted to surround the charge with a perfectly reflecting surface so that all radiation is reflected back to the charge, and so that each light cone converges exactly on the correct point of the world line.  But that would require these reflections to take place for each light sphere at a different instant.  Such conditions are impossible to prepare in actuality.

 Consider another physical system that has some similarity to the present one.  It is sometimes cited as somewhat analogous. A stone thrown into a pond will produce circular waves concentric to the location where the stone hit the water.   Can these waves be reversed exactly so that they converge to the center?  One would have to have a very precisely circular pond and throw the stone exactly into the center in order to obtain such reflected waves. The slightest irregularity would spoil it.  The analogous electromagnetic boundary condition is of course much more difficult to achieve – an actual impossibility.


There do exist systems of electromagnetic radiation where time reversal of electromagnetic waves can take place.   Consider light rays: a light ray is a collection of electromagnetic waves that stays together as it travels over long distances.  One often speaks of ‘pencils’ of light.   Such rays are the subject matter of geometrical optics; they stay together when reflected, refracted (if monochromatic), or sent through complex optical systems.  Their motion can be time reversed in actuality.  Mathematically, their equation depends only on the index of refraction and does not depend on time.


Mathematically, the time reversed equation (8) is an equation for x() given Fout and its time derivative.  But, as I have shown, this is not a physical process.  In this sense, too, equation (8) is not time reversal invariant.  The cause, impressed force, and the effect, emission of radiation, are not interchangeable.

5. An accelerated charge: the movie
It is very helpful for the understanding of time reversal to picture the description of an accelerated charge by a movie.

A point is moving across the screen but not in a straight line.  It represents the accelerated charge.  Blue waves are converging to this point as it moves along.  At the same time, there are outgoing waves (red) leaving the point at every instant.  We call the blue waves ‘incident radiation’ or ‘the external force’; we call the red waves ‘emitted radiation’ or simply ‘radiation’.

Now play the movie backwards.  The point reverses its motion following the same trajectory in reverse.  The blue waves are now outgoing waves while the red waves are incoming and are converging to points on the trajectory.   Now, we call the red ones: ‘incident radiation’ or ‘the external force’; we call the blue waves ‘emitted radiation’.  There is a role reversal and in that sense complete symmetry.

But this is not what the equation of motion describes.  Upon time reversal, eq. (5) becomes eq. (8).  In (5), the blue waves are F in, but there are (explicitly) no red waves, no radiation.  Instead, only the self-force is recorded which includes the reaction to the emitted radiation.  In the time reversed case, (8), there are only outgoing waves, blue waves, i.e. emitted radiation, marked Fout, but there are no red waves, i.e. there is no explicit external force.  Instead, there is only the self-force (with ‘wrong’ sign) that includes radiation reaction (with ‘wrong’ sign).  This is a very peculiar physical description.  It results from the role reversal where (forward in time) radiation is not given explicitly, and therefore (backward in time) the external force is not given explicitly.   The lack of an explicit force in the time reversed case makes it impossible to actualize physically.

6. Comments

In the following, I want to relate the above discussion to my previous paper on this subject (Rohrlich 2000) and to its criticism by Rovelli (2004).


1.  In Rohrlich (2000), I emphasized the extended charged particle.  Contrary to the point charge treated above, the extended charge is governed by a delay-differential equation rather than an ordinary differential equation.  Such a delay-differential equation requires initial conditions that are not at a single point i but are extended over a finite time interval 2a/c of the world line; that is the time it takes light to traverse the diameter of the particle, between x(i –2a/c) and x(i), say. The initial conditions of the time-reversed motion then also require a known finite interval of the world line, between x(f + 2a/c) and x(f), say.  For the forward-in-time motion, that information is of course given; and for the backward-in-time motion, it becomes known only after the forward-in-time motion has been computed.  Thus, the initial conditions for the time-reversed motion are known.  The equations are therefore time-symmetric including the initial conditions.  While this holds mathematically, it would be practically impossible to produce exactly that prescribed initial condition for the time-reversed motion.   Any inexactness will not lead to the retracing of the original world line. That is how time’s arrow enters in my previous paper (2000). 


In the present paper, I show that considerations of a point charge rather than an extended charge, are sufficient to establish an arrow of time.  The initial conditions offer no problem for point charges; but the external force in the time-reversed case is due to the absorption of the radiation that was emitted in the original motion.  And that physical situation is not possible to produce, as discussed above.  To repeat: the time reversed equation (8) can be solved only if its outgoing radiation (now giving the force Fout) were known.


2.  Rovelli’s criticism (2004) is based on a complete misunderstanding of my paper (2000).  This is partly because that paper is not very explicit, and Rovelli seems not to have read the physics paper (Rohrlich 1998) on which the paper he criticizes was based (at least, he gives no reference to it).  Unfortunately, in my paper (2000), I presented no equations of motion and simply referred to the earlier paper.  I gave only the self-interaction, I did not distinguish between time reversal invariance and time symmetry; and I based my argument on the equations of motion for a charge of finite extent which are not ordinary differential equations but lesser known delay-differential equations.  Finally, I took for granted that the solutions of the equations of motion are meaningful only when they are combined with the initial conditions as pointed out in my (1998) paper.  I wrote that “If it is claimed that no preferred time direction exists, it means that.…the time reversed conditions are physically possible“(p.1046).  This means that these conditions cannot only be stated mathematically but can also be realized empirically.  For the positive time direction, this is certain; for the negative one, it is physically impossible.  Thus, I do not deny initial data in the future because of an arrow of time as claimed by Rovelli (2004, following his eq. (3)).  Rather, I claim that the fact that the initial conditions for the time-reversed motion cannot be exactly realized implies an arrow of time.

Rovelli’s Figure 1 and its caption are incorrect: I do allow for incoming radiation (and outgoing radiation in the time reversed case).  I expressed this in my (1998) by subscripts in and out following Dirac (1939). Rovelli ignores that distinction by using the subscript ‘ext’ in all of his equations.  Using F ext instead of Fin , assumes no change of the external force under time reversal.  He also claims, incorrectly, that Fself  does not change under time reversal (it changes sign).  

A side issue is raised by Rovelli for the extended charged particle: my treatment is not fully relativistic.  That is indeed the case.  However, a fully relativistic treatment of an extended object is prohibitively complex (Havas 1979).  My approximately relativistic treatment in (1998) of finite size particles seems to be good enough.  But the issue is irrelevant: the point I am making can already be made for the hundred year old non-relativistic equation; its self-interaction was given in (3) of my (2000).

Finally, I want to thank Carlo Rovelli for his criticism.  Without it, the present paper may well not have been written. 

                                                      7. Conclusions
When the differential equation of motion of a charged particle is sketched historically, it is found that the emission of electromagnetic radiation has always affected it in a problematic way.  The solution of the equation of motion requires both, the knowledge throughout the motion of the fields that provide the external forces, and knowledge of conditions at some initial time.  When the equation of motion has a solution, so will the time-reversed equation provided the appropriate conditions for the time-reversed case are met.  The motion can than be traced backwards in time along the same world line.  
However, whenever a charge is accelerated, it emits radiation.  The momentum and energy of that radiation is lost to the charge; it is evident in the equation of motion only from the reaction of the particle to that radiation emission.  That radiation reaction is part of the particle’s self-force.  The emitted radiation itself is not explicit in the equation of motion.  In the time reversed case, the self-force (with sign reversed) plays the role of the driving force, while the incoming field that provides the driving force in the original motion, becomes an explicit outgoing field in this time reversed case, i.e. it becomes an emitted electromagnetic field.  A role reversal takes place.

The driving force of the time-reversed motion is the incident radiation that is the time-reversed of the radiation emitted in the original motion.  Such an incident radiation (all along the particle’s worldline) would require initial conditions for electromagnetic radiation that cannot possibly be met in actual physical systems.  There exists therefore a de facto arrow of time for classical electromagnetic radiation.

Very few and only very special physical systems involving classical electro-magnetic radiation allow a reversal of radiation.  One such system is a (loss-free) beam of light as described in geometrical optics.  It has no arrow of time.
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