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1. Introduction

There is a strong connection, in our world, between symmetry and prob-
ability. We often rely on symmetries to infer the probabilities of different
possible outcomes. Based on the physical symmetry of a die, we infer that
the probability of getting any particular face when I throw the die is one in
six. The symmetry of the die also tells us to have the corresponding degree
of belief: our degree of confidence in any given face is also one in six. When
I throw the die a bunch of times, we do observe each face approximately 1

6 th
of the time.

It seems as though we can infer these probabilities just by looking at the
symmetry in the shape of the die, before witnessing any actual throws. We
see that there are six different, completely symmetric ways the die could
land, and we distribute the probabilities, both the objective chances and our
degrees of belief, evenly among them.

We often make this symmetry-based inference to probabilities. And
these inferences tend to succeed: the probabilities approximate the observed
frequencies. It seems as though the symmetries in a situation, where there
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are any, indicate the probabilities of the different possible outcomes. These
symmetries indicate the probabilities even before we have witnessed any
actual outcomes.

This has led to a tradition of maintaining that this a priori symmetry rea-
soning suffices for inferring probabilities. On this view, a priori symmetry
considerations based on our epistemic situation correctly indicate the ob-
jective chances of outcomes. They also dictate what degrees of belief we
should have in their obtaining.

I don’t think the kind of a priori principle that is usually cited is what
explains the success of our probability assignments, or what justifies the
probability assignments we make. I argue that these symmetries do not in-
dicate the objective chances of outcomes; nor do they dictate reasonable
credences about the chances. Where symmetry considerations do succeed,
they are not the a priori ones people have taken them to be. I propose to ex-
plain these inferences on the basis of empirical symmetries in the structure
of our world.

2. Symmetry principles

First let me explain a bit more what I mean by our use of symmetries, or
a symmetry principle, for inferring probabilities of different possible out-
comes.

Suppose I have a die I am about to throw. I have no information that
the die is loaded, no reason to suspect it is not a fair die. There are six
different ways the die could land, with any one of its six sides facing up.
What probability should I assign to each possible one?

It seems the reasonable thing to do – indeed, the only reasonable thing
to do – is assign the same probability to each of the six possibilities, and
conclude that each face has a 1

6 probability of coming up. This seems like
the right physical probability, or objective likelihood, of any getting any
particular face on the die, as well the subjective probability, or degree of
belief, I should have in each one.

(You might think there are no such chances here. You might have the
view that if the laws are deterministic, there can be no objective chances
other than 0 or 1. Or you might think there are no objective probabilities
at all in the world. I disagree with both of these views, but wish to leave
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this aside here. If you think there are no objective probabilities, then you
can translate (some of) this talk of chances into subjectivist terms. (It is not
immediately obvious how much of what I say can be accommodated by the
subjectivist. I take it the subjectivist will have some way of making sense
of our ordinary chance talk, i.e. why it seems as though there are chances in
the world, and what are the things that physicists call ‘chances’.) I continue
on the assumptions that there are objective probabilities, and that these can
differ from 0 or 1 even if the world is deterministic. (If objective probabil-
ities simply correspond to robust patterns in the actual relative frequencies
of outcomes in the world, then they can be different from 0 or 1 regardless
of determinism.) I think my conclusions remain either way, but leave this to
the reader to decide.)

Back to the die. Since I have no information that the die is loaded, and
since there appears to be no other relevant asymmetry which would make
a difference to the outcome of a throw, if I were to say that the face with
number 5 on it, say, has a chance that is greater than 1

6 , this would strike
you as a completely arbitrary, unreasonable preference; you would think me
irrational for betting at different odds. My weighing one face more heavily
in the absence of any positive reason for doing so is to base my probability
inference on factors that have nothing to do with the actual state or behavior
of the die.

Instead, I should conclude that each face in fact has a 1
6 chance of com-

ing up; if I am rational, my degrees of belief should follow suit. And the
reason for this inference to symmetrically distributed probabilities – the rea-
son I assign the same probability to each possibility – is the corresponding
symmetry in the die, and my epistemic state with respect to it (the fact that
I have no extra information that the die is biased in some way).

In order to figure out the probabilities of different possible outcomes,
we tend to reason as follows. First, look at the symmetries in the situa-
tion. Next, use these to determine the outcome space, the set of elementary
or fundamental possibilities to which we are going to attach probabilities.
(The symmetry of the die tells us the outcome space is the set of integers
{1,2,3,4,5,6}.) Finally, assign an equal probability to each such possibil-
ity. Distribute the probabilities, both the objective chances and our degrees
of belief, uniformly over the possibility space. Calculate the probabilities of
any non-elementary events from these basic probabilities.
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(Michael Strevens (1998) calls this type of inference a ‘non-enumerative
statistical induction’. We don’t calculate the probabilities of different out-
comes by tallying up the frequencies with which we observe them to occur;
we simply examine the relevant symmetries in the set-up.)

In figuring out the probabilities of outcomes, we rely on this principle:
assign an equal probability to each basic possibility, where what are the
possibilities is determined by the symmetries relative to our epistemic situa-
tion. This is often called an ‘indifference principle’, since it tells us to infer
a probability distribution that is indifferent among the possibilities which,
for all we know, could obtain.

We do rely on this kind of principle in our everyday reasoning about
probabilities. What is more, this principle seems to work. The probabilities
turn out to approximate the (long-run) relative frequencies. In our experi-
ence, a fair die does tend to land on number 5 approximately 1

6 th of the time,
an unbiased coin does land heads up in approximately half the tosses.

This is remarkable. Surprisingly little information is needed to deter-
mine the correct probabilities of outcomes. Just looking at the relevant sym-
metries in a situation, before we have witnessed any actual outcomes, allows
us to make successful probabilistic predictions. There is a distinguished tra-
dition, from Laplace1 and continuing on in different guises in the work of
physicists and philosophers such as E. T. Jaynes,2 of maintaining that an a
priori indifference principle suffices to indicate what the chances are, and
to dictate what degrees of belief we should have in those chances. On this
view, we can have a priori knowledge about the probabilities of possible
outcomes.

But is this reasoning justified? Do the apparent symmetries suffice to
indicate the probabilities of outcomes, even before we observe any actual
outcomes? If they do not, then what explains the success of our everyday
inferences from symmetries to probabilities? I first consider whether sym-
metries suffice for inferring the objective probabilities of outcomes. I then
turn to symmetry and subjective probability.

1See (van Fraassen, 1989, ch. 12) for discussion of historical uses of indifference for
calculating probabilities.

2See Jaynes (1983), in particular the papers “The Well-Posed Problem” and “Prior Prob-
abilities.”
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3. Physical probability

Consider the chances in our theories of physics. Do symmetries suffice to in-
dicate these physical probabilities? One example suggests they do: the prob-
ability distribution of classical statistical mechanics.3 Certainly the physics
books cite a symmetry principle in justifying this distribution.4 Though I
agree that symmetries play a role, I think the books are wrong about what
kind of symmetries these are.

To see this, we need to understand a bit about the theory’s statespace.
In statistical mechanics, the space of fundamental physical possibilities, the
fundamental statespace, is called phase space. This is a mathematical space
that represents all the possible physical states of a system. In classical me-
chanics, a system’s fundamental state is given by the position and momen-
tum of each of its particles. The phase space of a classical n-particle system
has 6n dimensions, one for each of the three position and momentum coor-
dinates for each particle (for particles free to move around in three spatial
dimensions).

Each point in a system’s phase space picks out an exact possible to-
tal state, or microstate, of the system. This is its most precisely specified
state, given by the position and momentum of each of its particles. A sys-
tem’s macrostate is specified by its macroscopic features (things like av-
erage temperature, pressure, and volume). In general, corresponding to a
given macrostate, there are many different possible microstates, many dif-
ferent ways the system’s particles can be arranged so as to give rise to the
same macroscopic features. A macrostate corresponds to a region of phase
space, each point of which picks out a microstate realizing that macrostate.

Phase space is the fundamental possibility space of statistical mechanics.
In order to make predictions about a given system, the theory places a prob-
ability distribution over its phase space. The probability distribution used by

3I stick to classical statistical mechanics. I think my conclusions should apply to the
distribution of quantum statistical mechanics, but this raises technical issues not central
here.

4See e.g. Landau and Lifshitz (1980), Tolman (1979). To be fair, Tolman goes on to say
that the choice of this distribution “can be ultimately justified only by the correspondence
between the conclusions which it permits and the regularities in the behaviour of actual
systems which are empirically found” (Tolman, 1979, 59); he nonetheless takes a priori
indifference to be a prima facie, if fallible, reason for the uniformity assumption.
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statistical mechanics is the uniform one. (The distribution is uniform with
respect to the standard Lebesgue measure defined over the canonical posi-
tion and momentum coordinates, the Liouville volume measure. This is the
familiar way of calculating volume, applied to higher-dimensional spaces
like phase space. To find the volume of a region, multiply its extensions
along each dimension in the space. The uniform distribution with respect
to this measure says that the probability of a region is proportional to its
volume calculated in this way.) This probability distribution says that each
microstate compatible with a given macrostate is equally likely. Statistical
mechanics thus assigns the same probability to each fundamental possibil-
ity.5

There is no question that these probabilities are empirically successful.
Among other things, statistical mechanics is used to explain thermodynamic
phenomena, such as entropy increase in isolated systems. A key component
of this explanation is the fact that, according to statistical mechanics, higher
entropy states are much more probable than lower entropy ones.

But what justifies the theory’s assumption of a uniform distribution over
phase space? What makes this the correct assignment of probabilities to mi-
crostates? Since the set of microstates compatible with a given macrostate
is continuously infinite (position and momentum take on continuum many
values), there are many different, mathematically legitimate probability as-
signments we could use. (I return to this in a moment.) Why this particular
one? There is something perhaps more generally puzzling about these prob-
abilities. Any given system, at any time, will be in some exact microstate
or other; a classical system’s particles always have precise position and mo-
mentum values. What justifies our assigning probabilities to the different
microstates a system could be in, if one always in fact obtains? Why use
probabilities at all in the theory of these systems? This is especially puz-
zling if we consider the universe as a whole, as one big statistical mechani-
cal system: if there is only one system, it seems we can’t appeal to relative
frequencies to understand these probabilities.

5More accurately, statistical mechanics assigns the same probability to equal phase
space volumes on the standard measure; this a probability density function, which is the
derivative of the probability distribution. For the purpose of this paper, I will continue to
talk about the probabilities assigned to fundamental possibilities, represented by points in
phase space, though this really should be understood as probability densities.
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This is where a symmetry or indifference principle is supposed to come
in. Physics books begin by noting that, although any system is always in
one particular microstate or other, we don’t know which one. We could not
possibly know which microstate actually obtains. That would require our
being able to measure the exact position and velocity of each particle, which
is something that, for typical macroscopic systems, we cannot in general do.

That’s the first thing the books point out: there is a continuous infinity
of microstates consistent with our macroscopic knowledge. The next thing
they note is that we have no reason to think a system is any more likely to
be in one possible microstate rather than any other. They conclude that we
should assign an equal probability to each one. They suggest the only thing
we can do is assign the same probability to each possible microstate.

This is similar to the reasoning we used for the die. Just as for the die,
here we are told that in the absence of any reason to the contrary, we should
weight each possibility equally. Once again, it is the symmetry relative to
our epistemic situation – in this case, the fact that we are limited to knowl-
edge about a system’s macrostate – that determines the set of elementary
possibilities to which we initially assign probabilities. Hence the ‘hypothe-
sis of equal a priori probabilities’ in the physics textbooks: we are supposed
to assume, even before having any evidence about a system’s behavior, that
each microstate compatible with its macrostate is equally likely. The books
suggest we can determine the correct physical probabilities on the basis of
a priori symmetry or indifference considerations, just as we seem able to do
in our everyday reasoning about the outcomes of die throws and coin tosses.

There are two general reasons the probabilities of statistical mechanics
can’t be inferred on the basis of this kind of indifference principle. The first
is familiar, but worth spelling out. The problem is this: indifference alone
won’t yield a unique probability assignment. An indifference principle will
assign different probabilities depending on the parameters with which we
describe the possibilities. And, in general, there is no a priori way of picking
out a unique and non-arbitrary set of such parameters.

The familiar example of the cube factory illustrates this problem.6 A
factory produces cubes of side length 6 1 foot. What is the probability that
a cube produced by this factory will have side length 6 1

2 foot? The answer

6See van Fraassen (1989, 303).
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depends on the parameters we use to describe the possibilities. We get dif-
ferent answers depending on whether we distribute probabilities uniformly
over cube length (probability1

2), side area (1
4), or volume (1

8).7 In general,
any probability assignment depends on the choice of description of a situ-
ation. With different parameters, we get different probabilities assigned to
the various possibilities.

The problem is that the principle of indifference tells us, given a par-
ticular parameter space (and our symmetric information with respect to it),
we must distribute probabilities evenly over it. It does not also say which
parameter space we must use. So whenever there are different, equivalent
ways of describing the possibilities, there are different “uniform” probabil-
ity assignments we could make. Even for the die, there are different ways
of describing the possibilities, depending on the type of outcome we are in-
terested in; consider the probability of its landing on an even as opposed to
an odd number, a prime versus a non-prime, or a one versus a non-one.8 (If
we stipulate that we’re interested in the probability of one of the six faces,
there will be a unique possibility space.) Indifference does not say how
we must carve up the possibilities before assigning probabilities to them;
yet different carvings yield different probabilities. Further, if there are dif-
ferent parameters that are non-linearly related to one another, as for the
cubes, then indifference will yield incompatible probability assignments.
And since there is no a priori reason for thinking that any of one of these

7First assume that each possible edge length is equally likely. Then we get the answer
1
2 : out of all the 1-foot-edge-length cubes produced by the factory, about half of them will
have edge length 6 1

2 foot. Next distribute probabilities uniformly over the area of a cube’s
side. Then we begin with the fact that all cubes have side area 6 1ft2. Assuming that any
cube meeting this condition is equally likely, we get that 1

4 of them should have a side
length 6 1

2 ft, that is, side area 6 1
4 ft2. Finally, start with a cube’s volume. Then all cubes

produced by the factory have a volume 6 1 ft3. Out of these, the cubes with sides of length
6 1

2 ft are the ones with volumes 6 1
8 ft3. Now we get the answer 1

8 .
8The last example is from Sklar (1993, 199). Sklar notes that if we impose the constraint

that the elementary possibilities correspond to “indecomposable” events, then indifference
will yield unique probabilities; and that this is an important difference from the infinite
case, for which the indecomposable events (the points) all have probability zero, on any
distribution. But note that we are still left with the conclusion that indifference won’t suf-
fice, even in the finite case, since (a) we need an independent notion of indecomposability,
and (b) which events are indecomposable in this sense cannot be known a priori.
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equivalent descriptions is the “correct” one, any description we do choose
will seem arbitrary. But then the resultant probability assignment will seem
just as arbitrary.

Note that this is precisely what proponents of indifference claim it can
do for us. Symmetries are supposed to suffice to tell us what the correct
probabilities are whenever we have no other information to go by. Symme-
try tells us to assign probability 1

6 to each face before tossing a die, proba-
bility 1

2 to each side before tossing a coin. Of course, knowing more about
the cube factory could tell us what the right probabilities are: we could infer
them from the frequencies with which different-sized cubes are actually pro-
duced. This reinforces the conclusion that a priori symmetry considerations
on their own cannot do the job.

The problem only worsens for infinite possibility spaces, especially un-
countably infinite spaces like phase space. Then there will be infinitely
many ways of assigning the same probability to each possibility.

Let’s spell this out. Start with a countable set of possibilities, and try to
distribute probabilities uniformly over it. We can’t assign each possibility an
equal finite probability, since the probability of all the possibilities would be
greater than one, in violation of a probability axiom. We could assign each
possibility zero probability. This will violate countable additivity: the prob-
ability of the entire space is 1; the sum of the individual probabilities is zero.
(We could assign each possibility infinitesimal probability; this too violates
countable additivity, since the sum of a countable set of infinitesimals will
not converge to 1.9)

In order to take a uniform distribution over a countable space of pos-
sibilities, then, we will be forced to violate countable additivity. Although
countable additivity seems intuitive, it is controversial whether to include it
as a probability axiom. Yet even if we are willing to drop it, there remains
the deeper problem that there is no unique way of assigning each possibility
equal probability. There will be infinitely many ways of satisfying our con-

9The sum of a countably infinite sequence is the number that larger and larger finite par-
tial sums get closer and closer to, if there is such a number; if there is not, we say the series
diverges. There is no such number for a countable sequence of equal-sized infinitesimals.
Even setting this aside, clearly a countable sequence of infinitesimals will not converge to
1 (if it converges, the sum will be infinitesimal), and this rules out a uniform distribution; I
thank Hartry Field for this last point.
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straints, that each possibility get the same probability, and the whole space
gets probability 1.

Turn to an uncountable space in order to sidestep the issue of countable
additivity. Take the points on the real line between 0 and 1. Consider a
distribution that assigns probability 1

2 to the interval (0, 1
2) and probability 1

2
to the interval (1

2 ,1). Now consider a different assignment: probability 1
4 to

the first interval, 3
4 to the second. Each distribution assigns an equal, zero,

probability to each possibility (or point) in the space, and probability 1 to
the entire space. Hence each is a legitimate way of assigning uniform prob-
abilities. Yet since there is no a priori reason to think that either one is the
“correct” uniform distribution, indifference won’t tell us what probabilities
to infer.

The distinctive problem that arises for infinite spaces is that the proba-
bilities of the individual possibilities don’t determine how the probabilities
must be distributed over infinite (measurable) sets of them. The probabili-
ties of the elementary possibilities (the points) on the real unit interval don’t
suffice to give the probabilities of sub-intervals of the space (specifically,
sub-intervals of the form (r1,r2), r1 and r2 two distinct reals between 0 and
1). Indifference dictates that the probability of each elementary possibil-
ity must be zero (or infinitesimal). But this requirement can be satisfied by
many different distributions, relative to different parameterizations. Again
take the real unit interval. Consider two coordinatizations of the points – say,
by x and x2 – and a uniform distribution over each one. Each of these dis-
tributions assigns an equal, zero, probability to each point in the space; and
each assigns an equal probability to equal-sized sub-intervals (equal-sized
according to its own paramaterization). The two distributions disagree on
the probabilities of infinite sets of points. In particular, they disagree on the
probabilities of the sub-intervals, since they disagree on the very sizes of
these sets of points. Yet there is no a priori way of saying which is the “cor-
rect” coordinatization, or the “real” size of the intervals, and so the “correct”
way of assigning uniform probabilities. There’s no reason to think that one
coordinatization is intrinsically better – that would presuppose we already
knew what the right probabilities are. Once again, the conclusion is that in-
difference fails to yield unique probabilities. Here, indifference fails to tell

10



us the probabilities of anything that gets a non-zero probability.10

(As a practical matter, we only ever seem faced with finitely many pos-
sibilities. This is because we are ignoring all the micro-possibilities, the
infinitely many ways in which the macroscopic options can be realized by
different microscopic situations.)

There is a second reason we can’t infer the probabilities of statistical
mechanics on the basis of an a priori indifference principle. We use these
probabilities to predict and explain the frequencies with which actual out-
comes occur. Simply put, the actual frequencies can diverge from the appar-
ent symmetries. The frequency data could disconfirm any initial symmetric
distribution. Since the observed frequencies must be some evidence of the
actual physical chances, and since there’s no a priori reason the actual fre-
quencies must track the apparent symmetries, symmetries can’t suffice to
indicate the actual physical probabilities.

We don’t think systems would behave any differently if we did know
their exact states. This further suggests that symmetries with respect to our
epistemic state, and probabilities based on it, cannot factor into scientific
explanations of their behavior. Indeed, indifference would tell us to assign
different probabilities if we did know systems’ exact states. Although in
that case we wouldn’t need the uniform distribution (or probabilities at all)
for making predictions, there is no reason to think the uniformity assump-
tion would suddenly stop being successful if that were the case. Finally,
indifference tells us to posit uniform probabilities in any world of which we
are similarly ignorant. But consider a non-statistical mechanical world: this
would yield the wrong predictions in a world like that.

You might respond that indifference is a prima facie, defeasible basis
for inferring probabilities. Yet since there is no reason an initially uniform
assignment is any more likely to succeed than any other, what could justify
the assumption of a uniform distribution, over a particular parameter space,
to begin with? In the absence of evidence, there is no more reason to choose
an initial symmetric distribution rather than some other. So choose one, and

10This is not to say that indifference does suffice to tell us the probabilities of each of
the countably many elementary possibilities. Rather, even given the assumption of equal-
probability points – which in an uncountable space can only be done by assigning them
each zero or infinitesimal probability – no other probabilities are settled.
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update the initial probabilities in the right way as the evidence comes in.11

(Hence even the Bayesian, who allows for the updating of initial proba-
bilities on the basis of evidence, cannot justify an initial distribution on the
basis of indifference. The problem remains: what could justify the sym-
metric distribution to begin with, before we conditionalize on the frequency
evidence? Of course, the Bayesian will require some initial distribution over
credences to be able to take that evidence into account. It is not that we are
unjustified in choosing any priors at all to get us going, but rather that with-
out any evidence, an initial distribution that is not symmetric seems just as
good as a symmetric one. I return to this in section 5.)

Thus, even if symmetries could yield a non-arbitrary, unambiguous as-
signment, this still wouldn’t suffice to tell us the physical probabilities. Con-
sider the case of a finite, discrete statespace, such as for the six faces of a
die. Here there is a unique uniform distribution. Still, nature might not
oblige and distribute systems this way.

4. Empirical justification

What then tells us to use the uniform distribution in statistical mechanics, if
we have no other information to go by? Answer: we do have other infor-
mation – empirical input from the world. We must rely to some extent on
evidence of actual frequencies in order to confirm the probabilities we use
in physics. And statistical mechanics, with its probability distribution, is an
extremely successful empirical theory.

Now, the statistical facts on their own underdetermine the exact form
of the probability distribution. Other, not-completely-uniform distributions
should yield just as good probabilistic predictions. Why the uniform one?
Answer: this distribution is uniform over the structure needed for the dy-
namics.

Let me explain. Recall the statespace of statistical mechanics. The ele-
mentary possibilities are given by the different possible combinations of mo-

11For the purpose of this paper, I am assuming that the right way to update is by means of
something like Bayesian conditionalization, though I don’t have any argument for this here.
It suffices to assume that there is some correct method for taking in evidence, according to
your preferred confirmation theory.
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mentum and position coordinates for each of a system’s particles. The uni-
form distribution counts each such possible combination as equally likely.

You might wonder why we use the momentum and position coordinates
to describe the fundamental states in the first place. We could describe sys-
tems’ states differently, using different coordinates. So we seem to be back
at the problem that there is no unique, non-arbitrary set of parameters over
which to distribute probabilities uniformly. Here, the question is why we are
justified in making the uniformity assumption with respect to the position
and momentum coordinates of phase space.

The answer is that these are the canonical coordinates, in terms of which
there is a particularly simple formulation of the dynamics, Hamilton’s equa-
tions. Hamiltonian dynamics requires a certain amount of structure, called
symplectic structure. This is all the structure that is needed for the dynam-
ics of classical systems.12 And phase space has this structure. A probability
distribution that is uniform over this space then requires no further structure
in addition to what is already needed for the dynamics.

This then gives us two reasons for this distribution. (1) It yields empir-
ically successful predictions. (2) It is uniform over the structure required
by the dynamics; it is the simplest, most natural distribution, given the dy-
namics. It requires no further structure over and above the structure that is
“already there” for the dynamics.

You might worry that the simplicity considerations which lead us to pre-
fer Hamiltonian dynamics in the first place are somewhat a priori or arbi-
trary, since we can formulate the dynamics differently, in terms of different
variables. Yet insofar as we think the simplicity and invariance of the dy-
namics are not arbitrary but track genuine features of the world, we can
avoid this worry.13

12A symplectic manifold comprises a differentiable manifold and a symplectic two-form.
The symplectic two-form is a geometric object that encodes information about the kine-
matics. We can think of the symplectic form as picking out the canonical coordinates, the
coordinates such that transformations between them preserve the Hamiltonian dynamics.
The Hamiltonian is a scalar function defined on the manifold, which encodes information
about the dynamics of the system, including the forces acting on it. A symplectic mani-
fold with a Hamiltonian then has all the necessary structure for the dynamics of classical
systems. For a nice discussion of symplectic structure in classical mechanics, see Singer
(2001).

13You might also worry about other formulations of classical dynamics, such as La-
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Generally, in physics, we infer the existence of the simplest, minimal
structure needed for the dynamics. We take this to be a feature of the dy-
namics and the underlying structure of the world, not the way in which we
formulate the theory. We assume that if there were additional structure, it
would show up in the dynamics. For example, from the theory of relativ-
ity, we infer that spacetime has no identity-of-spatial-location-across-time
structure: the theory does not require this structure, and we correspond-
ingly infer there is none. Likewise, the time-translation invariance of the
dynamical laws suggests that time itself has no preferred-temporal-location
structure. Invariances in the laws suggest the corresponding symmetries in
the structure of the statespace of the theory, and of the world that theory
describes; they suggest the lack of any structure that would be needed to
support the corresponding asymmetry. These invariances are things we can
check by inspecting the dynamical laws.

In statistical mechanics, a non-uniform probability distribution would
require additional structure, a kind of “preferred-point (or -region) in phase
space” structure. Since we do not need this structure for the dynamics of
classical systems, and since we can formulate a successful statistical me-
chanics without it, we should infer a uniform distribution as the one that
accurately reflects the underlying dynamical structure of the world.14

To put it another way, we tend to think the world must have at least the
amount of structure that is required to formulate its fundamental dynamics.
Although it might seem as though we should be able to formulate the dy-
namics using different variables, and have a statistical mechanics based on
the structure of its statespace, we do know that symplectic structure suffices
for the dynamics; and we do not know of any other structure that does. It
seems to be a fact about our world that its dynamics requires this partic-
ular structure. Symplectic structure is what’s invariant under transforma-
tions that preserve the dynamical laws. A uniform distribution is then the

grangian mechanics. For arguments that we have reason to prefer the Hamiltonian formu-
lation and its structure, see my North (ms).

14This is akin to other inferences we make in physics. Modern geometric formulations
of physics emphasize the distinction between the features ascribed to a space because of
the particular coordinate system, and the structural features of the space itself. The invari-
ance of coordinatizations under certain transformations, for instance, indicate structural
symmetries of a space.
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unique distribution requiring no additional structure. This inference is not
conclusive; we cannot be certain that the inference to the minimal structure
required by the dynamics is correct. But it does seem to be a reasonable
inference, and is one we generally make in physics.

The justification for the uniform distribution then bottoms out at the
contingent fact that our world is particularly parsimonious in this way. Its
theory of many-particle systems happens to be strikingly simple, comprising
the dynamics of individual particles, a natural probability assumption, and
nothing more – no further structure.

Unlike the traditional principle of indifference, the symmetry consid-
erations in play here are not epistemic, a priori, or arbitrary. For the dy-
namics determines the parameters over which to distribute the probabilities
uniformly. The justification is ultimately empirical. It comes from empiri-
cal evidence of actual frequencies, combined with the (typically successful)
inference that we do not infer more structure than is indicated by the funda-
mental dynamics. Of course, uniformity over this structure does not force
the uniform distribution; rather, its success, combined with its simplicity
given the dynamical laws, gives us reason for it. For that reason, it escapes
the usual problems with relying on indifference to infer physical probabili-
ties.15

And once we have the statistical mechanical distribution in place, I claim
that it can explain the success of our everyday macroscopic inferences from
symmetries to probabilities. These inferences are successful because we
live in a world of which statistical mechanics is true.

To see why this seems plausible, consider a simple case like a coin toss.
We infer, even before we toss the coin, that each of its physically symmetric
sides is equally likely to come up. Repeated tosses of the coin confirm this
prediction. Why does our initial inference succeed?

For simplicity, imagine that I am holding the coin balanced vertically
on a table. The “toss” consists in my letting go of the coin and its falling
to the left (to land heads) or to the right (tails). Think of the phase space
of the coin, and consider the region corresponding to its initial macrostate.
This region contains all the microstates compatible with the coin’s being in
this location, with its having this particular size and average temperature,

15It also escapes difficulties faced by other approaches, such as Jaynes’ (Jaynes, 1983)
and approaches based on ergodic theory, neither of which I discuss here.
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and so on. Now place a uniform probability distribution over this region, as
statistical mechanics tells us to do.

Out of all the possible initial microstates of the coin, think of the differ-
ent combinations of positions and momenta of the particles that will result
in either a heads or a tails outcome. Think in particular of the different pos-
sible combinations of momenta: in this idealized case, slight differences in
the momentum of even a single particle will determine that the coin falls to
the left or to the right.

Statistical mechanics says that, compatible with any given macrostate,
such as the initial macrostate of the coin, there are just as many microstates
in which a given particle is heading to the left as to the right. (There is
a one-one mapping between each microstate and its time-reverse, the same
microstate with reversed particle velocities; and for any microstate that real-
izes a given macrostate, so will its time-reverse.) Since the initial velocities
of the particles determine how the coin will land, this means there are just
as many ways the initial velocities could be arranged so as to wind up tilting
the coin to the left as to the right when I let go of it. In other words, half the
initial phase space region will be taken up by microstates such that, if the
coin were in one of those, it will fall to the left; half to the right. The uniform
distribution with respect to this measure says that any such “left-directed”
microstate is equally probable as any “right-directed” one.

According to statistical mechanics, there are just as many initial mi-
crostates the coin could be in such that, when I let go of it, it will fall to
the left as to the right. This distribution thus counts these microscopic dif-
ferences in such a way that they add up to an equal probability for each
of the two macroscopic outcomes. (The initial distribution, combined with
the deterministic dynamics, will yield a similarly uniform distribution over
microstates at all times.16) Within a bunch of similar coin tosses, statistical
mechanics says the microstates will be distributed with approximately half
the tosses starting out in “left-directed” microstates, half in “right-directed”
ones. At the macroscopic level, this yields the prediction that half the tosses
will land heads and half tails; or similarly, that a given toss has a 1

2 chance

16That the initial distribution will remain uniform is a common assumption in statistical
mechanics. See Lebowitz (1993), Albert (2000). Note that this should be true for ordinary
statistical mechanics as well as Albert’s unorthodox version, which conditionalizes these
probabilities on the low entropy past.
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of landing heads.
That is precisely our initial inference! We infer, on the basis of our

macroscopic information, before observing any actual tosses, that the coin
has a 1

2 chance of landing heads. We similarly infer that in a long sequence
of tosses, we will get heads about half the time.

This suggests that the reason for the success of our initial inference is
the truth of the statistical mechanical distribution. Our inferences from sym-
metries to probabilities succeed when the symmetries we observe happen to
match the symmetries in the statistical mechanical probabilities. For when
there is this correspondence between the observed symmetries and those
in the distribution of fundamental states, the uniform distribution over mi-
crostates will yield a similarly uniform distribution over the macroscopic
possibilities. It is not that we have know what the statistical mechanical
probabilities are; our inferences succeed even though we do not generally
know about statistical mechanics. Rather, these inferences turn out to be
successful because (and when) the observed symmetries align with the sym-
metries in the distribution of canonical coordinates. The reason we tend to
make these inferences is our past experience, and our past experience has
been in a statistical mechanical world.

The above example is admittedly quite idealized. How the coin lands
will depend on other factors, such as the velocities of the surrounding air
molecules, the angular velocities of the particles in my hand, and more be-
sides. It will take more to argue that the above idea should work even when
we include these real-life complications. Yet I think we can reasonably con-
sider it a plausible hypothesis, given the empirical success of statistical me-
chanics. (Note, though, that this is where Strevens’ view might seem more
plausible. Strevens (1998) similarly argues that underlying mechanical con-
siderations help explain the success of our symmetry-based inferences to
probabilities. Yet his account requires a relatively smooth distribution, not
a completely uniform one over canonical coordinates. The above proposal
is more ambitious and correspondingly more prone to failure. If success-
ful, however, it could provide a deeper, more unified approach to objective
probabilities in general, by explaining the success of many different kinds
of probabilistic inferences we make about the world, including the success
of Strevens’ distribution.)

On this view, the statistical mechanical distribution at once explains the
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success of our everyday inferences from symmetries to probabilities, and
justifies our symmetric probability assignments. We don’t rely on some
a priori principle to (successfully) infer the frequencies with which actual
outcomes occur. Instead, we have learned from experience how systems’
microstates are in fact distributed, and we have updated our degrees of belief
in what the initial chances are. Any seemingly a priori expectation we might
have that the frequencies will match the symmetries in a situation really
stems from the experience we have had in a statistical mechanical world.

5. Subjective probability

Nothing so far rules out relying on indifference for determining credences.
Given the particular problems we ran into for physical chances, subjective
probabilities might seem just the thing for which symmetry considerations
could suffice. This seems to be the general assumption: even if indifference
can’t tell us the objective chances of outcomes, it can dictate what degrees
of belief we should have in different possibilities’ obtaining.

Can we rely on a principle of indifference here? I will to start to an-
swer this question by looking at a particular view in epistemology called
Uniqueness.17 This will lead to a more general conclusion.

Uniqueness is the view that, given a total body of evidence, there is a
unique set of beliefs a rational person can have. Any other belief – any
other degree of belief – would be irrational.

Though this might seem an implausibly strong view, the idea behind it
is intuitive. If there were more than one rationally permissible conclusion,
given one’s total evidence, then any belief one winds up with must really be
irrational. If the total evidence does not uniquely determine a conclusion,
then some other, non-evidential factor must have played a role in one’s belief
formation. But a belief based on such arbitrary factors can’t be rational. For
such a belief is no more likely to be true.

I want to start with this view because it seems committed to the kind
of symmetry principle I’ve been discussing. Here’s why. In order for there
to be only one rational conclusion given the evidence, as Uniqueness main-
tains, there must be a uniquely rational set of beliefs one can have before

17See White (2005).
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getting that evidence. Otherwise, equally rational people with the same ev-
idence could come to hold different beliefs, by updating in the right way18

from their differing prior beliefs.
To avoid this, Uniqueness must hold that there is a uniquely rational

set of priors anyone can have. This means the view needs some basis or
principle on which to conclude that certain priors are the uniquely rational
ones. Since these are beliefs we have before obtaining evidence, it seems
this will have to be some kind of a priori principle.

The natural idea is to employ an indifference principle. Before obtaining
any evidence, figure out what the different possibilities are, and assign an
equal subjective probability to each one. Why equal probability? Without
any evidence favoring one possibility over any other, it would be arbitrary to
place more weight on any one possibility than any other. The only reason-
able thing to do in the absence of evidence is to divide up the possibilities
equally. This captures the motivating intuition behind the view: a rational
person needs evidence in order to favor one possibility over another; oth-
erwise any such preference would be completely arbitrary. And arbitrary
factors cannot be grounds for rational belief.

At first glance, this reliance on indifference seems to avoid the pitfalls
we ran into for physical probabilities. Since we are not trying to determine
the objective chances of events, we don’t run the risk of getting probabilities
that fail to match the empirical facts. Here, we are simply using indifference
to tell us which initial credences are (uniquely) rational. This seems to be
the reason people think indifference should work for credences, if not for
chances: whereas empirical frequencies can tell us that the actual chances
are different from what we had thought, they cannot tell us that our initial
credences were irrational.

This does not, however, manage to escape the familiar difficulties we’ve
seen. First, there remains the problem that any probability assignment will
depend on the description of the possibilities. For physical probabilities, the
problem was that there is no a priori reason to conclude that any particular
parameter space is the uniquely correct one. Here, the problem is that there
is no reason to conclude that a particular description is the uniquely rational
one. But then there can be no unique, non-arbitrary way of assigning each

18See note 11.
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possibility equal subjective probability, as Uniqueness requires.
Second, even if there were uniquely rational parameters for describing

the possibilities, why must we distribute our subjective probabilities uni-
formly over them? That we are trying to determine our priors introduces a
new difficulty we didn’t face for chances, a difficulty which stems from the
reason people think we can use indifference for determining credences. The
problem is that we can’t rely on empirical evidence to tell us whether these
are reasonable degrees of belief about the chances. For we are assigning
these probabilities before getting any such evidence. But since there is no
a priori reason to suppose that an initially uniform assignment is any more
likely to lead us to the truth, Uniqueness is left without the justification it
claims for its (uniquely rational) priors.

It might appear arbitrary, absent any evidence, to put more confidence
in one possibility over any other. But it can seem seem just as arbitrary to
choose an initially uniform distribution, especially if we cannot show that it
is any more likely to yield true beliefs. There may very well be some rational
constraints on our priors. Yet it is hard to see why symmetry must be one of
them – at least, not until we have evidence that this is more likely to yield
true beliefs, in which case we are no longer talking about a principle for
determining what beliefs we should have before getting any evidence. Of
course, symmetries may affect our initial credences, and in that sense be
a reason for them; nonetheless, prior to getting any evidence, it is no less
reasonable to choose an initially asymmetric assignment over a given set
of parameters. Either one serves just as well as an initial distribution over
credences.

There are examples which bring out our intuition that there are a pri-
ori symmetry constraints, at least for certain types of inference. Consider
an example of Roger White’s.19 What should we infer is the probability
that the number of electrons in our universe is an exact multiple of 10,100?
Intuitively, it ought to be very low. Imagine all the possible numbers of elec-
trons there could be, and it seems extremely unlikely that the actual number
would be a multiple of 10,100.

Even this inference, however, is presupposing things we cannot know a
priori: that electrons in our world do not come in multiples of 10,1000; that

19White (ms).
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any particular number of electrons is just as likely as any other, regardless
of how the world actually is; and so on. Consider a similar inference, famil-
iar from the literature on indifference principles: that a needle is extremely
unlikely to land on the floor at any particular angle with respect to the hori-
zontal. Though intuitive and seemingly a priori, this inference, too, is based
on our experience in a world like ours, namely, a world with no force field
or intrinsic spatial asymmetry picking out a preferred spatial direction or
location.

It is these empirical facts which ground our intuition that the probability
must be very low. We know from experience that there are these spatial
symmetries, just as we know from experience that (as far as we can tell)
electrons can exist in any number. I submit that, for any example which
seems to demonstrate that symmetry is an priori constraint on reasonable
beliefs about the chances, we are really smuggling in some such empirical
assumptions.

Uniqueness in particular needs the link to truth – from symmetrically
distributed initial credences to the likelihood of getting true beliefs – in or-
der to ground its assumption that there are uniquely rational priors. Without
being able to say that these priors are more likely to lead to true beliefs, the
view loses its force against more permissive epistemologies. The intuitive
pull to Uniqueness is the idea that if the evidence does not uniquely deter-
mine a rational conclusion, then one’s belief must depend to some extent
on arbitrary factors and so be irrational. The belief would be irrational be-
cause there is no reason to think that such irrelevant or arbitrary factors are
truth-conducive.

We have already seen, however, that uniformity in initial probabilities
is no more likely to lead to truth. An initially symmetric distribution is a
priori no more likely to match the actual facts than some other distribution.
Moreover, indifference over the apparent symmetries can yield the wrong
results. Consider the probability distributions over statespaces of quantum
mechanical particles. Whether or not two configurations related by an ex-
change of identical particles count as the same state depends on the type
of particle involved. This demonstrates that we need some evidence to be
justified in concluding that a given uniform distribution, over a particular
way of counting the possibilities, is correct, even if it appears to us to be
uniquely given by symmetries.

21



Thus, the reason it initially seems that indifference should work for sub-
jective probabilities – that the probability assignment is not immediately
answerable to the empirical facts – is the very reason it can’t work here.
We could instead take indifference to be a brute assumption, but this too
relinquishes any justification for the constraint via its likelihood of yielding
true beliefs. Nor will the consistency or coherence considerations we use to
show that our priors should conform to the probability axioms do the job.

The general conclusion is this. Initially, it might seem as though some-
one with no evidence to distinguish among different possible outcomes, with
no reason to to expect one rather than another to occur, ought to infer that
each one is equally likely (or almost equally likely), on pain of irrational-
ity. We now see, however, that any view which claims indifference to be a
rational constraint on priors runs into the following trouble. Insofar as we
link the rationality of a belief to the likelihood of its being true, we can-
not rely on indifference: a symmetric probability distribution is a priori no
more likely to be truth-conducive than any other. And without this link be-
tween rationality and truth, it is hard to see why we should care about being
rational in the first place.20

6. Conclusion

I conclude that a priori or epistemic symmetry considerations do not suffice
as a basis for assigning probabilities. A priori symmetries cannot suffice to
tell us what the actual chances of outcomes are; for they cannot tell us what
the fundamental possibilities are, let alone that any particular probability
distribution over them will be empirically successful. Nor must symme-
tries factor into reasonable initial credences about the chances of different
possible outcomes.

The impression that we can rely on a priori symmetries, stemming from
our epistemic situation, really comes from our past experience in a world of
which statistical mechanics is true. The symmetries in our world’s funda-
mental dynamical structure, and the correspondence between those funda-

20The problem arises for any view that relies on a priori symmetries for rational cre-
dences; to the extent that a view allows in other factors, in particular empirical ones, it can
escape these difficulties.
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mental symmetries and the macroscopic symmetries we observe, explains
the success of our everyday inferences from symmetries to probabilities.
Absent any such evidence, for truly prior credences, we can go ahead and
rely on symmetry to choose a particular initial distribution; but so too can we
choose some other asymmetric distribution over initial credences. Neither
one is more reasonable than the other, not until we have some experience in
the world. For us, not until we have experience in a statistical mechanical
world.
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