
Surprise and Evidence in Statistical Model

Checking

Abstract

There is considerable confusion about the role of p-values in statis-
tical model checking. To clarify that point, I introduce the distinction
between measures of surprise and measures of evidence which come
with different epistemological functions. I argue that p-values, often
understood as measures of evidence against a null model, do not count
as proper measures of evidence and are closer to measures of surprise.
Finally, I sketch how the problem of old evidence may be tackled by
acknowledging the epistemic role of surprise indices.

1 Introduction: surprise, evidence and p-values

In statistical practice, p-values are often used to assess the tenability of a
“null” (or default) model H0 in the light of observed data. The precise role
of p-values, however, is not clear, despite their widespread popularity in the
empirical sciences. They are often cited as a basis for the rejection of a null
model or, vice versa, for claiming that the evidence against the null model
is not sufficiently strong to warrant rejection of the null. More dramatically,
they are often confounded with posterior probabilities of a null model, e.g.
when a p-value of 0.04 obtains, practitioners without a sufficient mathemat-
ical education often tend to assert that “the null model has a probability of
0.04”. Although this is a well-known fallacy – p-values do not give posterior
probabilities – practitioners often commit it. This leaves the question open
how to understand p-values most adequately. Philosophers of science, on
the one hand, have tried to integrate p-values into a philosophy of statistical
inference. Most notably, Deborah Mayo uses them to explicate severe tests,
the basic notion of her philosophy of inference.1 Given that Mayo identi-
fies evidence for a model with the survival of severe tests, p-values take the
function of measuring evidence in her framework. On the other hand, statis-
ticians have researched on the link between p-values and Bayesian measures
of evidence.2 Others try to calibrate them in a suitable way as to under-
stand them as measures of surprise.3 In total, there is no consensus about

1In a special, simplified case, the p-value of the null model can be understood as the
degree of severity with which a specific alternative model passes a severe test (cf. Mayo
2004, p. 111, Mayo and Spanos 2006).

2Cf. Casella and Berger 1987, Berger and Sellke 1987 for the relationship between
posterior probabilities and p-values and Sellke, Bayarri and Berger 2001 for the relationship
to Bayes factors.

3Cf. Bayarri and Berger 1997, 1999 and 2000, Robins et al. 2000, Sellke et al. 2001
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the proper role of p-values in statistical inference. However, due to the ubiq-
uitous occurrence of p-values in scientific research reports, this question is
of keen and abiding interest. I believe that a clarification of the inferential
role of p-values has to address the distinction between surprise and evidence:
What do we expect from a fruitful and valuable concept of evidence? What
is, on the other hand, the role of surprise in statistical inference? I would like
to answer this question by rethinking the functions of surprise and evidence
in section 3: Whereas measures of evidence form an objective basis for the
rejection and acceptance of models, surprise indices have a heuristic value
that is brought to bear in an exploratory model analysis. This investigation
is supplemented by a closer look at the properties of p-values in sections
2 and 4. Consequently, p-values cannot count as genuine measures of ev-
idence – they are much closer to measures of surprise. Finally, the above
results are applied to gaining a novel understanding of the problem of old
evidence in confirmation theory. For reasons of simplicity, all considerations
are restricted to full parametric models.

2 P-values: A closer look

It is not clear what information p-values, as ubiquitous as notorious in sta-
tistical practice, really convey. Most frequently, they are interpreted as mea-
sures of evidence, as measures of the discrepancy between the data and the
null model. To see his in an example, consider a standard statistical ex-
periment. We have a family of statistical models, parametrized by a real
parameter ϑ. For instance, we flip a coin several times. The parameter
ϑ ∈ [0, 1] then denotes the propensity of the coin to fall “heads”, so that
ϑ = 0.5 means that the coin is fair whereas ϑ = 1 means that the coin always
comes out “heads”. Now, we might want to examine the fairness hypothesis
H0 : ϑ = 0.5 and we perform repeated coin tosses. The p-value then indi-
cates how far H0 is tenable in the light of the result of the incoming data.
For calculating the p-value, we have to choose a statistic X – i.e. a function
of the data – that summarizes the results of the coin tosses.4 For instance,
such a statistic X could be the number of heads occurring in the trial. Fur-
thermore, p-values are based on a “distance statistic” T that measures the
discrepancy between the null model H0 and the observed data. Assume that
X = x0, i.e. x0 heads were actually observed. Then, the p-value sums up
the (H0-)likelihoods of those possible values of X that fit the null model to

4Since X is supposed to contain all relevant content, it is tacitly assumed to be sufficient
with regard to the parameter of interest ϑ, i.e. X captures all information about ϑ
that is contained in the full data Y .In other words, sufficiency demands that the full
distribution of the data Y conditional on the sufficient statistic does no longer depend on
ϑ: P (Y = y|X = x, ϑ) = P (Y = y|X = x).
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a lower degree than the observed value x0:

pobs(x0) := PH0({T (X) ≥ T (x0)}) (1)

In other words, the bigger the distance between the observed data and the
model H0, the smaller the p-value. P-values yield the probability that, given
H0 is true, more extreme results will be observed. Or put even another
way, they yield the probability that the fit between data and model is worse
than the actually obtained fit.5 Figure 1 illustrates this for H0 = N(0, 1)
and pobs = 0.05 when T is identified with the likelihood function. It is
now suggestive to conclude that a low p-value suggests poor evidence for
H0 and that a high p-value suggests good evidence for H0, independent of
which alternative model is considered. The validity of this conclusion will be

Figure 1: The 2,5%-tails of the standard normal distribution N(0, 1).

questioned in the subsequent sections, however. At this point, I would like to

5Equation 1 tells us that the statistic X should be minimally sufficient, i.e. repre-
sentable as a function of any other sufficient statistic. To see this, consider again the coin
toss experiment. Assume the null model H0 : ϑ = 0.5 and identify T with the likelihood
function. Of course, both the entire data vector X := (X1, . . . , Xn) as well as the sample
mean Xn := 1

n

∑n
i=1Xi are sufficient statistics. But T (X) will be constant (all sequences

of zeros and ones are equally likely) whereas T (Xn) will mirror our intuitions that extreme
sequences like ‘11111 . . .’ diverge to a higher degree from the null model than an average
sequence. This is due to the fact that minimal sufficient statistics as Xn cumulate all
“informationally equivalent” results in a single point of the sample space. Therefore we
should base the p-values on minimally sufficient statistics. This point was brought to my
attention by Teddy Seidenfeld, it is also contained in the third chapter in Seidenfeld 1979.
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draw the reader’s interest to the choice of the distance function. There arise
two kinds of situations when evaluating the tenability of a null (or default)
model H0: First, H0 may be compared to alternative models. Second, no
specific models may compete with H0. This distinction corresponds to the
one-sided and two-sided hypothesis testing problems. In other words, in a
one-sided testing problem the distance function T has a specific departure
direction measures whereas in the two-sided problem, no such direction is
given. Presupposing the existence of a distance function without a specific
departure direction, however, is far from trivial. Building on the intuition
that the less likely a result under the null model, the more it diverges from the
null, the likelihood function constitutes a natural choice for such situations.
Then, the p-value is the sum of probabilities of those elements of the sample
space that are equally or less likely than the observed value x0.

6

After this brief introduction to p-values, the next section deals with the the
demarcation between surprise and evidence and the identification of their
epistemic functions.

3 Surprise and evidence

Evidence about a parameter of interest ϑ is required for making inferences
about that parameter, for giving sensible estimates of ϑ and for deciding to
work with this rather than that value of ϑ. Evidence measures transform the
data as to provide the basis for inferences about ϑ. They are supposed to be
suitable for public communication in the scientific community, i.e. they must
be objective and free of subjective bias and distortion. For instance, we all
have different opinions on the plausibility of certain models, but we should
not disagree on the strength of evidence in favor of this and against that
model. Unless we agree on the weight of evidence, we may be unable to lis-
ten to nature’s verdict on competing hypotheses. Miscellaneous researchers
should be able to draw on strength of evidence in their inferences and con-
clusions. Hence, I take those constraints – evidence as an objective, publicly
communicable concept – to be the common ground of our inquiry. To a cer-
tain extent, both aspects of “evidence” are alluded to in the similarity to the
word “evident”. We require an objective, quantitative method to represent
the information which the data convey about the unknown parameter.

This conditions affects above all candidate measures of evidence that depend
on the sample space because partitions of the sample space are particularly
open to subjectively grounded dissent. Different sample spaces are best illus-

6Neither is it obvious that there is only one sensible choice for the probability measure
in the evaluation of {T (X) ≥ T (x0)}. For instance, Bayesians could choose either the
prior or the posterior predictive distribution of H0 or even suggest further calibration. Cf.
Bayarri and Berger 2000, Robins, van der Vaart and Ventura 2000.
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trated by simultaneously measuring an experimental result with two different
instruments of which one has a wider measuring range than the other one.
However, assume that for the actual result, it makes no difference which of
the two instruments we use; only if other values had been observed, they
would have diverged. We say that the instruments are associated with dif-
ferent sample spaces. In such a situation, we have the strong intuition that
the evidential content of the data is not affected by the choice of the in-
strument: taking the other instrument would have actually yielded the same
observation, hence our inferences should be the same.7 The diverging range
of the two instruments does not seem to be relevant for the evaluation of the
actual trial. Indeed, that would violate the conditions for objectivity and
public communicability of evidence which I outlined at the beginning of the
section.

A natural move to circumvent such problems consists in the restriction of
evidence to the comparison of different hypotheses about a parameter value.
Indeed, it is the reply which I advocate. Our concerns about evidence ad-
dress the question whether this rather than that value is a good estimate
or basis for further analysis, and so on. Evidence then measures the degree
to which the data favor a certain model (e.g. ϑ ≤ 0) over another model
(e.g. ϑ > 0). Then, it is natural to quantify evidence by means of likelihood
ratios and Bayes factors which do fulfil the requirements for objectivity and
independence of the sample space. The likelihood ratio of two models H0

and H1 is defined as

L(H1, H0, x) :=
P (x|H1)

P (x|H0)
(2)

When those likelihoods cannot be computed directly, e.g. because H0 and
H1 are composite models with parameter ϑ, a more generalized version is
given by the Bayes factor, the ratio between prior and posterior odds

B(H1, H0, x) :=
P (H1|x)

P (H1)

P (H0|x)

P (H0)
=

∫
P (ϑ|H1)P (x|ϑ,H1) dϑ∫
P (ϑ|H0)P (x|ϑ,H0) dϑ

(3)

Even posterior probabilities can quantify evidence, on the condition that
there is an authoritative way of assigning prior probabilities in the specific
problem. There is a variety of desirable properties which a reasonable mea-
sure of evidence is supposed to possess, e.g. invariance under transformation
and reparametrization of the data. Indeed, Subhash Lele shows in his (2004)
that under these and a lot of further reasonable constraints, the likelihood
ratio of two models emerges as the optimal evidence function.8 Indeed, such
an understanding of evidence opens the way to a lot of fruitful applications

7Compare Howson and Urbach 1993, 192-193, and Royall 1997, 68-71.
8Cf. Lele 2004, in particular pp. 192-196. Lele also discusses cases where the likelihood

ratio is not directly applicable, e.g. in the presence of nuisance parameters, and the
problem of the sensitivity to outliers.
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(see, for instance, Royall 1997 and 2000). Lele’s result and Royall’s applica-
tions have a positive character – they show how a comparative understanding
of evidence can enhance and improve our statistical practice. However, they
do not show, at least not in a rigorous sense, that it is meaningless to speak
of “evidence for/against H0” simpliciter. People who assert this usually use
an argument which Royall has baptized “Fisher’s disjunction”:

“Either an exceptionally rare chance has occurred, or the theory
(i.e. the null model, the author) [...] is not true.”9

In other words, results that are very unlikely under the null model count
as strong evidence against the null model and justify dismissal. Note, by
the way, the connection to p-values: The more the actual result diverges
from the null model, the higher the p-value and the stronger, according to
Fisher’s disjunction, the evidence against the null. I am now going to show
that it is impossible to make sense of Fisher’s disjunction without introducing
alternative models.

We have to decide whether the chance in the above quote has to be relatively
rare (compared to the other possible outcomes) or absolutely rare, i.e. the
probability of the observed outcome falls below a certain threshold. A result
xi with p(xi) = 0.01 is very unlikely, but it can be very likely compared
to the other results, and vice versa. To reject a hypothesis based on an
absolute interpretation of Fisher’s disjunction yields absurd results: think of
a distribution with a large, finite number of points where any observation is
very unlikely. According to the absolute interpretation, all possible results
would provide strong evidence against the model. That is clear nonsense
since this very strong conclusion would be warranted independent of what
we observe. Hence, if we want to make sense of Fisher’s disjunction, it seems
mandatory to assume that a relatively unlikely outcome is a guide to evidence
against a model or justifies dismissal of the null. Nevertheless I believe that
reliance on relative unexpectedness cannot work either. Here is my argument.

There is a very general problem – measures of relative unexpectedness in-
volve the likelihood of results that were not observed, thereby depending on
the sample space and violating the objectivity conditions. We have already
seen that such a dependence is fallacious – think of the two measuring in-
struments. But there is a more specific problem, too. Measures of relative
unexpectedness (or surprise) are relative to a statistic that summarizes the
data in an adequate way. The choice of the statistic, however, reveals im-
plicit assumptions about the target of the investigation. Consider again the
repeated toss of a coin. Our null model H0 asserts that the coin is fair, i.e. all
sequences of heads and tails are equally likely under H0. Since all results are

9Fisher 1959, 39.
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equally likely, a measure of relative unexpectedness returns the same value,
regardless of the actually observed sequence. Therefore the full data cannot
be the right statistic when we aim at substantial conclusions.10 It appears
natural to count only the number of heads and tails that occurred in the
trial, because we believe that the order of outcomes does not matter at all.
But then we have identified a parameter of interest because that particular
statistic is minimally sufficient with regard to the propensity of the coin to
fall heads. Thus, when we want to determine what an “exceptionally rare
chance” could be, we have to identify a parameter of interest ϑ and to choose
a statistic that is minimally sufficient with regard to ϑ.11 In other words,
there is no exceptionally rare chance as such – any such chance is relative to
the choice of a statistic that determines the way in which it is exceptional.
For instance, we might observe much more heads than tails, leading to a
surprising result under the null model. But even when a relatively expected
result obtains – heads and tails are roughly balanced – the data could have
a pattern that casts heavy doubt on the independence assumption regarding
the single trials. Such a pattern (like ‘10101010’) would also be very unex-
pected under the null model, but it is not detected by counting the number
of heads. Hence, we do not judge the tenability of H0 “in general”, without
recourse to a specific parameter or comparison to alternatives – we always
examine a certain way the data could be surprising. Thus, when applying
Fisher’s disjunction, we are asking specific questions about a parameter as
“why that value of ϑ rather than another one?”. The choice of the statis-
tic reveals a comparative question. This contradicts, of course, the aim to
speak of evidence for or against a model simpliciter, without recourse to
alternatives.

To summarize: Fisher’s disjunction and the inference from relatively unlikely
results to evidence against the hypothesis neglect (a) that relative unexpect-
edness must be based on a (minimally sufficient) statistic and (b) that the
choice of the statistic specifies a particular question of inference. We have
seen that evidence has to be an objective and intersubjectively accessible
concept in order to be communicable in scientific journals. That condition
urges us towards a comparative understanding of evidence, as the failure of
Fisher’s disjunction makes clear. Measures which take into account counter-
factual considerations as dependence on the sample space violate this con-
straint. For those measures different interpretations must be given. They
might be classified as measures of surprise or relative unexpectedness. The
following section goes back to p-values and connects them to the epistemo-

10Compare again Seidenfeld 1979, 80. Seidenfeld also discusses Fisher’s disjunction, but
under the (equivalent) label of “significance tests”.

11In the present case, it appears at superficial sight that there can be only one parameter
of interest. But some model families have two or more parameters, e.g. mean and variance
in the case of the normal distribution. For instance, the sample mean is minimally sufficient
for the population mean, but not for the population variance.
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logical functions of measures of surprise.

4 P-values and measures of surprise

Given the foregoing distinction between surprise and evidence, we can now
see that p-values are better interpreted as measures of surprise than as mea-
sures of evidence. First, they depend on a specific partition of the sample
space, i.e. on the likelihood of outcomes that have a higher discrepancy to
the null than the actually observed one. This is clear from equation (1).
Therefore p-values can not be as objective as it is required for measures of
evidence. Second, we have seen in the previous section that measures of
evidence ought to be comparative. P-values can accommodate that by de-
termining a specific direction of departure. For instance, we might have a
normally distributed population with known variance 1, and we might want
to examine whether the population mean exceeds 0. Hence, we choose the
standard normal model H0 : N0,1 as our null model and check whether the
p-value indicates a significant departure towards a higher population mean
µ. Taking the sample mean Xn as a minimally sufficient statistic, assume
that we obtain Xn = 0.6 with a sample size of n = 10. Then, familiar
transformations yield a p-value of 0.029:

pobs(0.6) = N0,1{Xn ≥ 0.6} = N0, 1
n
[0.6;∞]

= N0,1[1.897;∞] = 0.029

According to all statistical practitioners, such a low p-value constitutes a
significant departure from the null. But what exactly does that mean? It
cannot mean that all population means greater than 0 are strongly favored
over the null model. We quickly recognize that by looking at the alternative
model µ = 2 which diverges much more from the data than the null model
N0,1. So, a low p-value probably means that some alternative models with
population mean greater than zero are favored over the null, e.g. the model
µ = 0.6 (see also figure 2). In other words, it depends on the peculiar
alternative models (or the direction of departure) whether p-values constitute
evidence against the null or not; the p-value itself is independent of which
alternatives we have in mind. In other words, p-values alone cannot carry
information about weight of evidence, or in other words, they do not give not
enough information to assess the tenability of a model. Such assessments are
relative to the alternative models proposed. Moreover, in the above example
the p-value is extremely low whereas a sensible measure of evidence as the
likelihood ratio gives at best moderate evidence against H0. Even for the
maximally favored model µ = 0.6, we get only P (Xn|µ = 0.6)/P (Xn|µ =
0) ≈ 6.049 which can by no means count as strong evidence against H0. The
low p-value deceives us into disbelieving the null model although the weight
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Figure 2: The null model N0,1 (straight line) versus the alternative models
N0.6,1 (dashed line) and N2,1 (dotted line)

of evidence, as measured by the likelihood ratio, is far from being conclusive
against H0, even if we choose the model that makes the data most likely.
Hence, p-values give an overly pessimistic evaluation of the null model and
cannot serve as an evidential basis of our decisions and inferences.

Still, it is an open question whether there are other applications for p-values.
Since two decades, statisticians have been researching on the connection be-
tween p-values and Bayesian measures of evidence. Indeed, there is a com-
patibility result when a specific direction of departure from the null model
is distinguished. Take again a normal distribution Nµ,σ2 with known vari-
ance σ2 and unknown mean µ. The rivalling models are H0 : µ ≤ 0 and
H1 : µ > 0. Then, the statistic Xn := 1

n

∑n
k=1Xi is minimally sufficient with

regard to µ. Casella and Berger (1987) show that the p-value of with regard
to H0, Xn and T (x) := x provides a lower bound for the posterior probability
of H0, taken over a certain class of prior densities π that assign equal weight
to both models. In mathematical terms,

inf
π
P (µ ≤ 0|x0) = pobs(x0) := P (X ≥ x0|µ = 0) (4)

or, equivalently,
1− pobs(x0) = sup

π
P (µ > 0|x0) (5)

(Theorem 3.2. in Casella and Berger 1987, 108.12) In other words, under
suitable (and “impartial”) prior assignments, the null model is at least as

12Casella and Berger even derive this result for any distribution family that is indexed
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likely as the p-value indicates. That result explains why Bayesian posterior
probabilities and p-values are often conflated. In the Casella/Berger case, the
p-value pobs(x0) = P (X ≥ x0|µ = 0) sums up the probability of those values
where the evidence in favor of H1 is greater than at the actually observed
value x0. In a similar vein, under a suitably narrow class of prior distributions
π and alternatives H1, p-values can be calibrated as to provide lower bounds
on Bayes factors (see Sellke, Bayarri and Berger 2001):

inf
π
B(H1, H0, x) = −epobs(x) log pobs(x) (6)

Hence, we see how p-values depend on proper measures of evidence, offer-
ing a lower bound for the posterior probability of the null. In practice, this
can be very useful: instead of a cumbersome and computationally expensive
Bayesian analysis, a quickly performed computation of the p-values gives a
rough idea of whether the null model is severely shaken by the data. The
p-value is easy to calculate and avoids careful deliberation about prior prob-
abilities etc. For instance, if the p-value is greater than 0.1, we know that
the null model has at least a probability of 0.1 so that it remains a seri-
ous candidate. In other words, knowing the p-values can make more detailed
investigations that aim at the dismissal of the null model superfluous. Right-
fully, Bayesians often stress that the use of p-values in a Bayesian framework
has merely auxiliary character; as soon as a full Bayesian analysis is possible,
they cannot play any role. So, although p-values can give a rough idea about
a the evidential content of the data, the actual computation of the strength of
evidence or a rejection of the null model can seldom, if ever, be based on the
calculation of p-values. In the latter case, this is particularly salient because
they merely provide lower bounds for the posterior probability of and the
evidence against the null model where an upper bound would be required.
Hence, although no scientific report should cite the observed p-value in favor
of rejecting the null model (as it is often done, unfortunately), working with
p-values remains practically useful, having a heuristic value.13

Another function of p-values might consist in measuring surprise or relative
expectedness in the data. Surprise has an epistemological function that is
particularly important in exploratory model analysis. When a result turns
out to be surprising under all possible parameter values, we are more or less
forced to develop and to specify alternatives to the original model. Whereas,
when a result is not at all surprising in a certain respect, we might decide
to go on with the old model or draw our attention to other ways in which

by µ that is (1) symmetric around zero and (2) has a monotonely increasing likelihood
ratio.

13Recall however, that these results hold for p-values with a specified direction of depar-
ture. When no such direction is specified, p-values grossly overstate the evidence against
the null, and their interpretation becomes much more difficult, as it was shown by Berger
and Sellke 1987.
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the result could be surprising. In many cases, it is overly optimistic to as-
sume that all relevant models are available a priori, i.e. before having a look
at the data and proceeding with a model selection analysis. If all relevant
models were known, measures of surprise would be pointless and could be
directly replaced by model selection procedures.14 Thus, surprise measures
can help us to decide whether we should base the subsequent analysis on
a comprehensive or a parsimonious set of rivalling models. Compare that
kind of reasoning to a model selection analysis. Model selection and vali-
dation require reasons for favoring a model over a number of competitors
– no successful model is thought to best the absolutely best one, but only
a more reasonable approximation of the truth than its competitors. That
selection procedure often requires a careful assignment of prior probabilities
etc. and deliberation about the precise selection criteria. By contrast, an
exploratory model analysis is only concerned with the set of models which
will be subjected to the model selection procedures. That is the point where
surprise measures enter the stage. They have a heuristic value in guiding
our analysis. Indeed, the usage of p-values outlined above (as giving lower
bounds on posterior probabilities and Bayes factors) appears to be driven by
the same heuristic considerations.

When we interpret p-values as measures of surprise, distance to the model is
usually measured by the likelihood function.

pobs(x0) := PH0({PH0(X) ≥ PH0(x0)}) (7)

Thus, the p-value sums up the probability of those outcomes that are less
likely than the actually observed one. Note that the dependence on the sam-
ple space which p-values exhibit is not harmful for a measure of surprise
since surprise and relative expectedness are psychological concepts which are
not subject to strong objectivity requirements as the concept of evidence.
Nonetheless, there are two basic problems with interpreting p-values as mea-
sures of surprise: on the one hand, p-values tend to overstate the evidence
against the null model when they are based on the likelihood function.15 On
the other hand, they are not continuous in the probability density. Practi-
cally nearly undetectable changes and measuring inaccuracies can yield huge
differences in the p-values which is clearly unacceptable.

Both problems suggest that we better calibrate p-values in a way that avoids
these problems. Furthermore, we might wish to make them more amenable
to numerical computation, e.g. using Monte Carlo methods (cf. Bayarri and
Berger 1999). There are lots of suggestions about how to perform such cali-
brations, most of them fine-tuned to the use of surprise indices in a Bayesian

14For papers that describe how model selection can be done in a fully Bayesian way, see
e.g. Wasserman 2000.

15Cf. Berger and Sellke 1987. This distinguishes surprise-measuring p-values which
basically arise from a two-sided testing problem from p-values in the one-sided testing
problem discussed above.
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framework.16. Instead of giving a comprehensive review that would go be-
yond the scope of this article I would like to present a very recent proposal
by John V. Howard, made in his (2007). Howard’s proposal solves the above
problems is very intuitive, too, saving the basic intuitions about p-values.

Howard 2007 takes the density function p as the distance function and sug-
gests a calibration of p-values by trunctating the density function at the
actually observed value x0. Then, the integral over the trunctated density
function constitutes the surprise index h:

s(x0) :=

∫
min{p(x0), p(x)}dx (8)

= pobs(x0) + p(x0)

∫
1{p(x)>p(x0)}dx

The relationship to p-values is obvious from the second line of equation 8

Figure 3: To the left, Howard’s surprise index, graphically interpreted. To
the right, the classical p-value.

and figure 3: s-values do not only focus on the probability of more “extreme”
outcomes, they also consider other characteristics of the distribution. A low
s-value assigns both as small absolute and a small relative probability to the
actually observed result whereas p-values state that the observed result has
a low absolute probability and that an unspecified alternative offers a better

16See, for instance, Bayarri and Berger 1998, 1999 and 2000, as well as Robins, van der
Vaart and Ventura 2000
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explanation. In this sense, s-values are closer to measuring surprise than
p-values although both are closely related to each other. It is easy to see
that Howard’s surprise index s solves the problem of continuity and is also
more conservative than the original p-values.

There are, of course, lots of different measures of surprise, and I do not want
to argue for a specific measure. The vast number of different tasks in model
exploration is unlikely to favor a single measure in all circumstances, and con-
sequently, there is a large variety of surprise measures (see the Bayarri/Berger
papers cited above, and also Good 1956 and Evans 1997). Indeed, I did not
turn my attention to Howard’s surprise measure for that reason. Rather,
I wanted to show how p-values can be related to measures that are more
closely attached to relative expectedness and surprise. Apart from that, in
virtue of their connections to Bayesian measures of evidence, p-values still
play a useful heuristic role in exploratory model analysis.

5 Bayesianism, surprise and the problem of

old evidence

The penultimate section sheds a new light on a classical problem in con-
firmation theory: the problem of old evidence.17 It arises when formerly
known evidence is used to confirm a newly developed hypothesis. In other
words, a new hypothesis H enters the space of hypotheses. Then, it seems
to be fair that H can be confirmed by formerly known evidence E because
H had no chance to be confirmed or disconfirmed by E prior to its devel-
opment. But Bayesian conditionalization cannot account for the fact that
the introduction of a new hypothesis changes our epistemic situation. The
old evidence is already known and has probability 1 so that it cannot con-
firm anything. According to orthodox conditionalization, the new hypothesis
must have been a part of the previous Bayesian supermodel even if we did
not formulate it explicitly. Such a line of reasoning, however, seems to be
far from reality and scientific practice. There is no Bayesian supermodel
containing all hypotheses that could ever be formulated, and even if there
were such a supermodel, we would not entertain it due to its complexity.
Rather we restrict Bayesian model checking to a selection of sensible and
fruitful models. Hence, Bayesian confirmation theory cannot account for the
introduction of novel theories.

To see the problem in practice, recall that Einstein’s General Theory of Rel-
ativity (GTR) was the first theory that successfully explained the perihelion

17For a detailed description of the problem and several attempted Bayesian solutions,
see Earman 1992.
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advance of Mercury in 1915. However, the Mercury data were already inten-
sively studied in the nineteenth century by Leverrier and other astronomers
and were considered as a major anomaly of Newtonian celestial mechanics.
This went so far that a new, unobserved planet inside the Mercury orbit
(“Vulcan”) was postulated in order to account for the perihelion advance.
According to Bayesian Conditionalization, the perihelion data E were old
evidence so that P (E) = 1 at the time when Einstein developed the GTR.
Hence, according to Bayesian conditionalization, E cannot raise the credence
in GTR. This clashes with the viewpoint of most physicists that GTR was
best confirmed by the old Mercury perihelion data and not by novel evidence,
e.g. the deflection of starlight by the sun. More generally, scientists happily
embrace solutions to penetrating old problems so that old evidence might
have a special confirmatory power.

If we limit the scope of a Bayesian analysis to model selection and try to
account for the epistemic role of surprise, we can possibly get a better un-
derstanding of the problem of old evidence. When data are surprising with
regard to a model and when this unexpectedness does not disappear upon
refinements of the model, we are inclined to focus our efforts on the devel-
opment of new hypotheses. In the long run, resilient anomalies demand for
the development of alternative models. Repeatedly detecting relatively un-
observed results leads us into questioning our models and drives scientific
model change. Bayesianism, on the other hand, has no place for surprise
measures, as shown in the previous section. However, developing alterna-
tives as a consequence of surprising, unexpected results better corresponds
to the dynamics of science. Hence, a surprise index is not only valuable for
exploratory data analysis, but also for guiding and driving the introduction
of novel models that are not contained in a Bayesian supermodel.

The problem of old evidence shows that Bayesian conditionalization cannot
be a comprehensive account of statistical model checking and development.
Bayesian statisticians have conceded that for a long time, on the grounds
that exploratory model analysis is placed outside a strictly Bayesian frame-
work, just because it precedes and lays the groundwork for Bayesian model
selection. Thus it is strange that confirmation theorists have been worry-
ing for such a long time about the problem of old evidence, nourishing a
hope that was already abandoned by statistical practitioners. With the sur-
prise/evidence distinction in mind, we can devise a strategy to resolve the
problem: Straightforward Bayesian analysis is adequate for model selection
and validation, but it must be supplemented by an account of exploratory
model analysis. Developing surprise indices and clarifying their epistemolog-
ical role helps to accomplish the latter task.
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6 Summary and conclusions

This paper has made several points concerning the role of surprise and evi-
dence in statistical model analysis. First, I have outlined the confusion about
the most adequate interpretation of p-values. Then I have elaborated a sep-
aration of surprise and evidence, the latter being an essentially comparative
concept whereas the former is allowed to depend on the sample space. Ev-
idence has its place in model selection and validation whereas quantifying
surprise is useful in exploratory model analysis and choosing the right super-
model for a Bayesian analysis. Surprise indices, on the other hand, drive and
guide the development of competitors to the first, tentative models, so that
their function clearly differs from measures of evidence. For practitioners,
it is important to keep that distinction in mind – surprise indices are not
adequate for final decisions on the tenability of a model. That distinction
was then brought to bear on the interpretation of p-values. It was shown
that p-values cannot be measures of evidence whereas they (a) provide lower
bounds on measures of evidence and (b) can be modified as to yield measures
of surprise. An intuitive modification might be given by Howard’s s-value.
Finally, the surprise/evidence distinction gives a means of tackling the re-
silient problem of old evidence in confirmation theory. It is clear that this
problem cannot be solved by an evidential appraisal of a certain model. But
the epistemic role of surprise explains why purely Bayesian approaches come
to their limits in early stages of model checking. Hence, the problem of old
evidence does not pose a serious threat to Bayesian inference.
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