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Synopsis:

This essay explores structural realist interpretation of spacetime with special emphasis on the close interrelationship between, on the one hand, ontological debates in spacetime structural realism and, on the other, foundational investigations in structural realism in the philosophy of mathematics. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of General Relativity, this investigation will reveal that a structuralist approach can serve as a useful means of deflating some of the ontological and metaphysical disputes regarding similarly structured substantivalist and relationist spacetimes. Our analysis only covers spacetime theories up to the standard models in General Relativity (GTR), with its extension to theories of quantum gravity left for future investigations. This presentation is based on Slowik (2005).

Introduction:

Structural Realism (SR) holds that what is preserved in successive theory change is the abstract mathematical or structural content of a theory, rather than the existence of its theoretical entities. SR provides a plausible account of the progressive empirical success of scientific theorizing, thus avoiding the “no miracles” argument, while also accommodating the fact that the specific entities incorporated by these theories often differ; and thus SR evades the “pessimistic meta-induction” that results from an ontological commitment to the entities in specific theories. Example: the similar “structure” that underlies the progression in nineteenth century optics from Fresnel’s elastic solid ether theory to Maxwell’s electromagnetic field theory can be identified as the mathematical structure exemplified in Maxwell’s field equations, since they give Fresnel’s equations as a limiting case: “Fresnel’s equations are taken over completely intact into the superseding theory [Maxwell’s]—reappearing there newly interpreted but, as mathematical equations, entirely unchanged” (Worrall 1996, 160). 

1.1 Structural Realism and the Hole Argument:

Many recent investigations of spacetime structure can be traced to Earman and Norton’s “hole” argument manifold substantivalism. By shifting the metric and matter fields, 
[image: image1.wmf], and, 
[image: image2.wmf], respectively, on the manifold of points, 
[image: image3.wmf], with the latter representing the “substance” of spacetime, one can obtain a new model 
[image: image4.wmf] from the old model 
[image: image5.wmf] that also satisfies the field equations of GTR (via a “hole diffeomorphism”, 
[image: image6.wmf]: 
[image: image7.wmf]). If the mapping is the identity transformation outside of the hole, but a non-identity mapping inside, then the substantivalist will not be able to determine the trajectory of a particle within the hole (despite the observationally identical nature of the two models; see, Earman and Norton 1987). 

A popular substantivalist Response is to adopt “sophisticated substantivalism”: reject a straightforward realist interpretation of the individuality of the points that comprise the manifold, 
[image: image8.wmf]. “A preferable alternative [to manifold substantivalism] is to strip primitive identity from space-time points: call this view metric field substantivalism. The focus of this view is on the metric tensor [
[image: image9.wmf]] as the real representor of space-time in GTR” (Hoefer 1996). Since the identity of the points of 
[image: image10.wmf] are secured by the metric 
[image: image11.wmf], any transformation of 
[image: image12.wmf], i.e.,
[image: image13.wmf], does not result in the points of 
[image: image14.wmf] possessing different 
[image: image15.wmf]-values; rather, 
[image: image16.wmf] (with 
[image: image17.wmf]) gives back the very same spacetime points. See, also, e.g., Butterfield (1989), Mundy (1992), and Brighouse (1994).

Relationists have, in contrast, often adopted spacetime structures stronger than a pure relational account of motion, labeled (R1), can admit. Rather, since GTR has thus far not been hospitable to (R1) constructions, many relationists adopt (R2), which is the simple denial that spacetime is a type of entity that can exist independently of material entities or fields (using Earman’s classificational scheme, 1989). Linking relationism to (R2) allows the relationist to freely adopt any spatial structure required to explicate dynamical behavior, e.g., affine structure, 
[image: image18.wmf], just as long as they acknowledge that these structures are directly instantiated by material bodies or fields.

The result of these sophisticated forms of substantivalisms and (R2) relationism is that the difference between these alleged distinct ontological interpretations of GTR become hard to discern. Example: while Hoefer views the metric as representing substantival space, Einstein judged the metric (or gravitational) field as more closely resembling Descartes’ relational theory of space: “If we imagine the gravitational field, i.e. the functions 
[image: image19.wmf], to be removed, there does not remain a space . . . but absolutely nothing. . . . There is no such thing as an empty space, i.e. a space without field. Space-time does not claim existence on its own, but only as a structural quality of the field” (Einstein 1961, 155-156). Label this view “metric field relationism”: by holding that all fields, including the metric field 
[image: image20.wmf], are physical fields, even the vacuum solutions to GTR no longer correspond to empty spacetimes (see, Rovelli (1997), and Dorato (2000), for similar hypotheses).

1.2. The Structural Realist Spacetime Solution.

The benefit of an SR spacetime interpretation is that both sophisticated substantivalist and relationist theories are treated as the very same type of theory, and thus they are no longer distinct ontological interpretations. Example: For both Einstein and Hoefer, the metric field 
[image: image21.wmf] is the structure identified or associated with spacetime, whether as its “real representor” (Hoefer), or where spacetime is reckoned to be a “structural quality of the [
[image: image22.wmf]] field” (Einstein). In either case, if you remove 
[image: image23.wmf], then you remove spacetime. On a structural realist construal, both Hoefer’s substantivalist and Einstein’s relationist versions of GTR would appear to constitute different ontological interpretations of the very same underlying physical theory, since the key mathematical structure equated with the nature of spacetime is identical in both cases. In other words, just as the different theories of light proposed by Fresnel and Maxwell embody the same formal structure, and so comprise different ontological perspectives of the same underlying (structural) reality, the substantivalist and relationist readings of GTR likewise capture the same spacetime structure but from the standpoint of diverse ontological assumptions. Other (R2) interpretations are incorporated, as well, such as those that posit spatiotemporal structure as a sort of “property” (Sklar 1974, Teller 1987), or the modal relationist renditions of (R2) (e.g., Manders 1982, Teller 1991, Hinckfuss 1975). These theories presumably do not differ on the mathematical structure and predictive scope of the relevant spacetime theory, since they all reject (R1), and they all can agree on the meaningful possibility of, say, a lone rotating body in an empty universe.

More carefully, given the fact that most (R2) relationists and sophisticated substantivalists (1) accept the standard formalism of the relevant spacetime structure, such as 
[image: image24.wmf] and 
[image: image25.wmf] from the set 
[image: image26.wmf], for the Relativistic spacetime of GTR, as well as (2) accept the implications of these structures (e.g., our lone rotating body), it follows that SR must regard these apparently different theories as identical. Formulating an identity criterion for SR is a work-in-progress, as noted in Da Costa and French (2003), but one could utilize their method of (partial) isomorphisms among the sub-structures of models. Shapiro (1997) also describes several means of capturing “sameness of (mathematical) structure” across different systems through the use of a full, or partial, isomorphism of the objects and relations of the compared structures.

The essential criterion for an SR approach to spacetime is the structure actually utilized in the theory, and neither the ontological ranking of those structures, nor the attempt to prove that some structures are more privileged, is relevant to the theory’s SR classification. Ontological interpretations of GTR that strive to identify spacetime with 
[image: image27.wmf] or 
[image: image28.wmf] (and not 
[image: image29.wmf] and 
[image: image30.wmf]) will consequently fall under the same SR category that endorses the joint 
[image: image31.wmf] and 
[image: image32.wmf] structure. Since these interpretations do not eliminate, but rather still employ, the other structures, they fit the same SR spacetime category as those models less concerned with embracing both 
[image: image33.wmf] and 
[image: image34.wmf]: e.g., Hoefer does not claim 
[image: image35.wmf] can be dropped altogether, since “it represents the continuity of space-time and the global topology” (1998, 24). Second example: in the twistor formalism of Penrose, conformal structure is basic, with other structures as derivative, whereas the standard tensor formalism would consider conformal structure as derivative of the manifold and metric structures. The necessity of the mathematical structure to the function of the theory is the key point, regardless of its primary or derived status (here, we are assuming that these theories possess an identical predictive scope, or can be developed in this manner). This point is reminiscent of Quine’s claim that the conventional element in Carnap’s treatment of geometric truth arose, not in determining the truths of geometry (since “the truths were there”), but in selecting from that interrelated set of pre-existing truths which ones would serve as the fundamental Euclidean axioms, and which ones would serve as the derived results (Quine 1966; in section 2.3, competing mathematical formulations of a spacetime theory are subsumed under the more general problem of underdeterminism, 
[image: image36.wmf]).

2.1. Assessing the SR Spacetime Hypothesis via Structuralism in Mathematics.

A dilemma that faces the SR theorist is the ontological status of the spacetime structures themselves, which is also a problem for mathematical structuralism: Do the structures exist as a sort of Platonic universal, independent of all physical objects or events in spacetime, or are they dependent on matter/events for their very existence or instantiation? Consequently, can the dispute in the philosophy of mathematics be regarded as a re-emergence of the traditional substantivalist versus relationist problem? 

However, a survey of the mathematical ontology dispute can assist the SR spacetime theorist, especially when the relevant mathematical and spacetime options are paired together according to their analogous role within the wider ontology debate. First, mathematical structuralism can be classified according to whether the structures are regarded as independent or dependent on their instantiation in systems (ante rem and in re structuralism, respectively), where a “system” is loosely defined as a collection of “objects” and their interrelationships. Ante rem structuralism, as favored by Resnik (1997) and Shapiro (1997, 2000), is thus closely akin to the traditional “absolute” (or Newtonian) conception of spacetime, for a structure is held to “exist independent of any systems that exemplify it” (Shapiro 2000, 263). Yet, since system/object must be given a broad reading, without any ontological assumptions associated with the basis of the proposed structure, it would seem that substantivalism would not fit ante rem structuralism, as well. Given the reciprocal relationship between the metric and matter fields in GTR, such that 
[image: image37.wmf] can be effected by, and effect in turn, the matter field, 
[image: image38.wmf], it does not seem implausible to defend a substantivalist ante rem structuralism (since ante rem mathematical structures do not enter into these sorts of quasi-causal interrelationships with physical things; rather, things “exemplify” ante rem structures—see also section 2.2). Thus, spacetime structuralism makes a nice distinction between absolutism about mathematical structures (ante rem) and substantivalism. In fact, as judged against the backdrop of the ontology debate in the philosophy of mathematics, the mathematical structures contained in all GTR spacetime theories would seem to fall within a nominalist classification. If, as the nominalists insist, mathematical structures are grounded on the prior existence of some sort of “entity”, then both the substantivalists and relationists would appear to sanction mathematical nominalism (with in re structuralism included among nominalist theories, as argued below): whether that entity is conceived as a unique non-material substance (substantivalism), physical field (metric-field relationism), or actual physical objects/events (relationism, of either the modal (R2) or strict (R1) type), a nominalist reading of mathematical structure is upheld. Consequently, if both substantivalism and relationism fall under the same nominalist category in the philosophy of mathematics, then the deeper mathematical Platonist/nominalist issue does not give rise to a corresponding lower-level substantival/relational dichotomy as regards the basis of those spacetime structures. 

Not all nominalist constructions of spacetime are identical, however. Field’s (1980) strict nominalism attempts to treat mathematical objects and structures as entirely dispensable, or “fictional”. Field posits a continuum of spacetime points, conceived physically in the manner of a manifold substantivalist, in his effort to rewrite Newtonian gravitation theory along mathematically anti-realist lines. Modal (R2) relationists, like Teller (1991), would not constitute the spacetime SR analogue of Field’s program, accordingly, since this form of relationism sanctions modal spacetime structures that can transcend the structures exhibited by the actually existing physical objects: e.g., the affine structure 
[image: image39.wmf] instantiated by a lone rotating body. Whereas Field requires an infinity of physical spacetime points (isomorphic to 
[image: image40.wmf]) in order to capture the full content of the mathematician’s real numbers, the (R2) relationist can allow modal structures to serve this function (also, if Field’s nominalist program is committed to manifold substantivalism, 
[image: image41.wmf], then it is susceptible to the hole argument).

The mathematical equivalent of both sophisticated substantivalism and (R2) relationism is, rather, any of the less stringent nominalist theories that reject Field’s strict nominalism, as in, e.g., Chihara (2004) or Azzouni (2004), or Hellman’s (1989) in re structuralism. Much like the modal (R2) relationist theories surveyed above, which we can dub “minimal nominalism” do not allow structures to exist independently of the systems they exemplify, yet they do not believe that these structures can be dismissed as mere fictions, either. Contra Field, the minimal mathematical nominalists deny a purely instrumentalist construal of mathematical structures (while simultaneously rejecting a Platonic absolutism): they all insist, for instance, that mathematical structures cannot be excised from scientific theories without loss of valuable physical content (e.g., Chihara 2004). Hellman’s in re structuralism, moreover, employs “possible structures” as a means of avoiding a commitment to an infinite background ontology, a feature that helps to explain its frequent nominalist classification (see, Hellman 1989, and Chihara 2004). 

From the SR standpoint, in fact, the philosophy of mathematics would likely be considered a more proper arena for assessing the structures employed by spacetime theories, at least as opposed to the apparently unverifiable metaphysics of “substance versus body”. Not only has the traditional spacetime dichotomy failed to explain how these mathematical structures arise from their basic ontology, but, as we have seen, the underlying structures advocated by the sophisticated versions of both substantivalism and relationism are identical when judged within the wider philosophy of mathematics framework. Furthermore, since the real work, as judged from the mathematical perspective, concerns how the structures are constructed from the underlying entity, the competing claims of substance or physical existent do not effect this mathematical construction. In essence, the only apparent difference between the sophisticated substantivalists and (R2) relationists are where those mathematical structures are located: either internal to the substance or field (for the substantivalists and metric-field relationists, respectively), or external to bodies/events (for non-field formulations of (R2) relationism, such as Teller’s). Needless to say, this internal/external distinction does not provide any information on how the mathematical structures are built-up; rather, it reveals the pervasive influence of the age-old substance/property dichotomy within the philosophy of science community, an unfortunate legacy that the SR theorist regards as hindering the advancement of the debate on spacetime theories.

2.2. Geometric Structure, Causation, and the Accusations of Instrumentalism. 

A critical question remains: Since spacetime structure is geometric structure, how does the SR spacetime approach differ from mathematical structuralism? Is the theory just mathematical structuralism as it pertains to geometry (differential geometry)? While it may sound counter-intuitive, the SR theorist should answer this question in the affirmative—the reason being, quite simply, that the puzzle of how mathematical spacetime structures apply to reality, or are exemplified in the real world, is identical to the problem of how all mathematical structures are exemplified in the real world. Philosophical theories of mathematics, especially nominalist theories, commonly take as their starting point the fact that certain mathematical structures are exemplified in our common experience, while other are excluded. To take a simple example, a large finite collection of coins can exemplify simple algebraic structures (addition, subtraction, etc.), but not, say, the structure of the real numbers series, nor non-commutative multiplication (unless some other conventions are assumed that introduce linear algebraic structures into the coin multiplication). In short, not all mathematical structures find real-world exemplars. 

In addition, both spacetime theories and mathematics are subject to underdetermination problems. For both, mathematical structures will vary along with the postulated physical conventions of the system. For example, there are a number of competing spacetime theories, and thus different mathematical structures, compatible with the same evidence: in Poincaré fashion, Newtonian rivals to GTR can still employ 
[image: image42.wmf] as long as special distorting forces are introduced. Yet, underdetermination can plague even simple arithmetical experience, a fact well known in the philosophy of mathematics and in measurement theory. For example, Chihara (2004) claims that “the fact that adding 5 gallons of alcohol to 2 gallons of water does not yield 7 gallons of liquid does not refute any law of logic or arithmetic [“5+2=7”] but only a mistaken physical assumption about the conservation of liquids when mixed” (237). To capture our common-sense intuitions, the application of the mathematical structure in such cases requires coordination with a physical measuring convention that preserves the identity of each individual entity, or unit, both before and after the mixing. In the mixing experiment, perhaps atoms should serve as the objects coordinated to the natural number series, since the stability of individual atoms would prevent the sort of blurring together of the individuals (“gallon of liquid”) that led to the arithmetically deviant results. Thus, mathematics, for both complex geometrical spacetime structures and simple non-geometrical structures, cannot be empirically applied without stipulating physical hypotheses and/or conventions about the objects that model the mathematics. Consequently, as regards real world applications, there is no difference in kind between the mathematical structures that are exemplified in spacetime physics and in everyday observation; rather, they only differ in their degree of abstractness and the sophistication of the physical hypotheses or conventions required for their application. Both in the simple mathematical case and in the spacetime case, moreover, the decision to adopt a particular convention/hypothesis is normally based on its overall viability and consistency with our total scientific view (the scientific method): we do not countenance a world where macroscopic objects can, against the known laws of physics, lose their identity by blending into one another (as in the addition example), nor do we sanction otherwise undetectable universal forces simply for the sake of saving a cherished metric.    

Another significant shared feature of spacetime and mathematical structure is the apparent absence of causal powers or effects, even though the relevant structures seem to play some sort of “explanatory role” in the physical phenomena. For example, philosophers of mathematics have found it difficult to offer a satisfactory account of the relationship between general mathematical structures (arithmetic/”5+7=12”) and the physical manifestations of those structures (the outcome of adding 5 coins to 7): “Why should appeals to mathematical objects [numbers, etc.] whose very nature is non-physical make any contribution to sound inferences whose conclusions apply to physical objects?” (Liston 2000, 191). A “causal” hypothesis can be rejected, however: mathematical structures did not cause the outcome of the coin adding, for this would seem to imply that numbers (or “5+7=12”) somehow had a mysterious, platonic influence over the course of material affairs. Yet, this is analogous to the causal irrelevance of spacetime for differentiating the inertial and non-inertial motions of bodies (i.e., the origins of non-inertial force effects). In a universe with a single rotating body, it would be somewhat peculiar to claim that the causal agent responsible for the observed force effects of the motion is either substantival spacetime or the motions of bodies relative to each other, privileged reference frames, or possible trajectories. (See, Einstein (1923), Teller (1991), Sklar (1990), Bricker (1990), and Azzouni (2004), for similar arguments about the causal irrelevance of spacetime structures for explaining accelerated effects. Furthermore, with respect to the interrelationship between the metric and matter fields in GTR, this relationship is (i) not normally presented as “causal”, (ii) nor does it explain the non-inertial forces associated with accelerated motion.) 

To sum up, all participants in the spacetime ontology debate are confronted with the puzzle of understanding the relationship between the empirical behavior of bodies (namely, the non-inertial forces) and the apparently non-empirical, mathematical properties of the spacetime structure that are somehow involved in any explanation of those non-inertial forces—namely, for the substantivalists and (R2) relationists, the affine structure, that lays down the geodesic paths of inertially moving bodies. The task of explaining this connection between the empirical and abstract mathematical aspects of spacetime theories is thus identical to elucidating the mathematical problem of how numbers relate to experience (e.g., how “5+7=12” figures in our experience of adding coins). Likewise, there exists a parallel in the fact that most substantivalists and (R2) relationists seem to shy away from positing a direct causal connection between material bodies and space (or privileged frames, possible trajectories, etc.) in order to account for non-inertial force effects, just as a mathematical realist would recoil from ascribing causal powers to numbers so as to explain our experience of adding and subtracting.

An insight into the non-causal, mathematical role of spacetime structures can also assist the (R2) relationist in defending against the charge of instrumentalism, as, for instance, in deflecting Earman’s criticisms of Sklar’s (R2) “absolute acceleration” concept. Earman argues that the use of these richer spacetime structures, like 
[image: image43.wmf], tacitly endorses the absolute/substantivalist side of the dispute: “the Newtonian apparatus can be used to make the predictions and afterwards discarded as a convenient fiction, but this ploy is hardly distinguishable from instrumentalism, which, taken to its logical conclusion, trivializes the absolute-relationist debate” (1989, 128). Yet, does the equivalent use of mathematical statements, such as “5+7=12”, likewise obligate the mathematician to accept a realist conception of numbers (such that they exist independently of all exemplifying systems)? Yet, if the straightforward employment of mathematics does not obviously entail either a realist or nominalist theory of mathematics, then why must the equivalent use of the geometric structures of spacetime physics, e.g., 
[image: image44.wmf], require a substantivalist conception of 
[image: image45.wmf] as opposed to an (R2) relationist conception of 
[image: image46.wmf]? Put differently, does a substantivalist commitment to 
[image: image47.wmf], whose overall function is to determine the straight-line trajectories of Neo-Newtonian spacetime, also necessitate a substantivalist commitment to its components, such as the vector, 
[image: image48.wmf], along with its limiting process and mapping into 
[image: image49.wmf]? A non-instrumental interpretation of some component of a theory’s quantitative structure is often justified if that component can be given a plausible causal role (as in subatomic physics)—but, as noted above, 
[image: image50.wmf] does not appear to cause anything in spacetime theories, just as “5+7=12” does not cause my having 12 coins. (A view of spacetime that is similar to the SR theory developed here, and which also emphasizes this lack of a causal role, can be found in Stein (1977) and DiSalle (1995).) 

2.3. Underdetermination Problems. 

If many different geometric-physical combinations are consistent with the same empirical evidence, as Poincaré’s examples suggest, then a troubling implication is that the geometric structure of spacetime is open to conflicting interpretations. But, how can the geometry of spacetime be open to alternative construction without undermining the “realism” in “structural realism”?

The SR theorists can employ two general strategies in responding to the underdetermination problem. First, they might simply reject the possibility of a radical underdetermination, insisting that there remains a single, fundamental geometric structure underlying our best spacetime theories, presumably from Aristotle all the way to GTR (and beyond), that underwrites their success. Even if the postulated successor theory coordinates an entirely different set of geometric structures to its physical processes, the combined “geometry + physics” of this new theory, 
[image: image51.wmf], must at least approximate the “geometry + physics” of the older theory, 
[image: image52.wmf], under the appropriate circumstances. What this response to the underdetermination problem insists is that, in the limit of scientific theorizing, only one 
[image: image53.wmf] combination will arise that is both consistent with the empirical evidence and the scientific method.

The second strategy for dealing with a Poincaré-style underdetermination is to invoke Laudan’s general distinction between its nonunique and egalitarian forms (Laudan 1996). If, on the egalitarian option, all geometric structures are compatible with the same evidence and the physical conventions/definitions of a single theory, 
[image: image54.wmf], then a structural realist interpretation of spacetime is indeed in trouble; but, if the underdetermination is limited to just “more than one” coordination of geometry (say, just 
[image: image55.wmf], 
[image: image56.wmf], and 
[image: image57.wmf], and no more) with a single physical theory, 
[image: image58.wmf], then underdetermination does not represent a serious problem. The SR theorist can contend that, given the complexity of physical phenomena and the latitude in the geometric construction of 
[image: image59.wmf], there can be no guarantee of a unique geometric structure, 
[image: image60.wmf], linked to a single physical theory 
[image: image61.wmf]—rather, it is possible that several (but not all) different combinations of geometry and a single set of physical hypotheses/definitions/conventions 
[image: image62.wmf] (returning to our example: 
[image: image63.wmf], 
[image: image64.wmf], 
[image: image65.wmf]) equally satisfy the protocols of the scientific method and are consistent with the evidence. This interpretation upholds a realism about structure by only admitting a select number of different geometric structures given a single physical theory 
[image: image66.wmf], implying that the vast majority of geometric structures are not exemplified in the physical phenomena, 
[image: image67.wmf], of that theory 
[image: image68.wmf]—a point made above about simple non-geometric structures as well. Returning to the discussion in section 2.2, many, but not all, mathematical structures are exemplified by a collection of coins and their associated physical stipulations (say, about their identity over time); e.g., addition, multiplication, and division are exemplified by the coins, but not non-commutative multiplication, complex numbers, etc. Consequently, using structuralism in mathematics as a general guide, the spacetime structuralist should also allow nonunique exemplification of mathematical structures as regards alternative spacetime geometries and a single physics 
[image: image69.wmf] (but not egalitarian exemplification, since the egalitarian option is equally restricted in the case of general mathematical structures and a fixed set of physical stipulations, as just described). Of course, these different geometries cannot contradict one another as regards empirical prediction—such as 
[image: image70.wmf] predicting A, and 
[image: image71.wmf] predicting not-A—overall, we are assuming that both combinations of geometry and physics comprise the same theory, 
[image: image72.wmf], whereas a variant empirical predictive scope is tantamount to two theories, 
[image: image73.wmf] and 
[image: image74.wmf]. Given this restriction, the most likely cases of different geometries coordinated to the same physics 
[image: image75.wmf] would probably be those instances of different mathematical formalisms (as in the competing “twistor” or “tensors on manifolds” constructions, as noted in section 1.2)—yet, as also hinted above, these alternative formulations, if they are truly grounded in an identical physical theory, 
[image: image76.wmf], are much more akin to different hierarchical arrangements of the same geometric component structures (manifold, metric, affine, conformal, etc.), rather than different geometries (such as Euclidean or non-Euclidean): e.g., conformal structure is basic for the twistor theorist, with the manifold and metric as derived structures, while manifold and metric structure is basic for the traditional tensor theorist, with conformal structure as derived.       

However, it is also possible (although very unlikely), that there could be a potential infinity of equally successful, but different, theories, 
[image: image77.wmf], 
[image: image78.wmf], 
[image: image79.wmf], etc., each comprising different geometric structures (
[image: image80.wmf], 
[image: image81.wmf],
[image: image82.wmf], etc.) linked to different physical hypotheses/stipulations (
[image: image83.wmf], 
[image: image84.wmf], 
[image: image85.wmf], etc.), such that each 
[image: image86.wmf] is a unique combination of a geometry 
[image: image87.wmf] and physics 
[image: image88.wmf] that does not appear in any of the other successful theories (e.g., 
[image: image89.wmf], 
[image: image90.wmf], 
[image: image91.wmf], etc.). This possibility cannot be ruled out by the structural realist, but it does not actually pose a threat to the structuralist theory advanced in this essay since the different geometries in each theory 
[image: image92.wmf] are linked to different physical hypotheses 
[image: image93.wmf], as in the famous disk-world proposed by Poincaré. In order to defeat the pessimistic meta-induction, however, each of these different structures must, individually, be interpreted as an invariant feature across all the other past and present successful spacetime theories: that is, as in our first response to the underdetermination problem, every successful 
[image: image94.wmf] combination must be approximately contained in each of the other 
[image: image95.wmf]combinations that makeup the nonunique class of successful spacetime theories. Returning to Poincaré’s examples, the “flat space plus forces” theory must approximate empirically the “curved space without forces” theory, and visa verse—as is indeed the case. (Finally, provided the scenario described in the previous paragraph, each successful 
[image: image96.wmf] combination must be approximately contained in the each of the other successful 
[image: image97.wmf] combinations).

3. Conclusion

How does the SR theory relate to the current debate on ontological and epistemological implications of the structures themselves? Epistemic structural realism regards the mathematical structures of our best scientific theories as only providing epistemological information, and not information on the ontology that underlies the observed structural relationships. The ontic structural realists, in contrast, claim that structures do reveal facts or truths about the underlying ontology, and may, in fact, be the underlying ontology (see, e.g., Chakravartty 2003).

Overall, the view of spacetime structure advocated in our investigation would seem to favor the epistemic strand of SR, since the mathematical form of structuralism for spacetime theories is a minimal nominalism (including the in re modal structuralists; our investigation would seem to favor the “minimal structuralism” of Brading and Landry, 2004). As described above, both the sophisticated substantivalists and (R2) relationists predicate spacetime structure on some form of “entity”—whether that entity is a unique substance (spacetime), body, or field, the structure is grounded upon that entity. On the other hand, a more mild forms of ontic structuralism, that regards structure as just revealing facts or truths about the underlying ontology, could also be judged as consistent with the general SR approach to spacetime theories (although it remains unclear what type of ontological facts or truths can be divulged). There is one conclusion that can be confidently reached; namely, that the ontic/epistemic dichotomy does not constitute a surrogate substantival/relational distinction. The ontic/epistemic debate does not divide along the lines of attributing to physical reality either the existence or non-existence of some alleged ontological member (spacetime structure). Rather, the ontic/epistemic dispute turns on the type of information, either epistemic or ontological, that scientific theories convey (e.g., one could accept the epistemic SR theory, yet accept the arguments for sophisticated substantivalism).   

Finally, to recap the advantages of the SR approach to spacetime theories over the traditional (substantival versus relationist) ontological dichotomy, it has been argued above that: (1) the SR approach more successfully captures the importance of geometric structure to spacetime theories; (2) by treating spacetime structure as mathematical structure, one gains an insight into the non-causal relevance of spacetime structure for understanding dynamical phenomena (i.e., all mathematical structures are non-causal); and (3) the SR spacetime approach treats the top two contenders in the ontological dispute (i.e., sophisticated substantivalism and (R2) relationism) as the very same type of SR spacetime theory, thus eliminating a great deal of unproductive ontological debate.
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