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Abstract 

I argue that there is natural relationist interpretation of Newtonian and relativistic non-quantum physics. Although relationist, this interpretation does not fall prey to the traditional objections based on the existence of inertial effects. 

Among the properties of physical systems in classical (non-quantum) physics we can distinguish between properties that attach to systems directly (or, in the case of relational properties, attach to sets of systems directly) and those that require the presence of space and time as an embedding medium. Examples from the former category are mass and electric charge. Position, orientation and state of motion, on the other hand, characterize the system’s situation with respect to space and time and derive their meaning partly from features inherent in space-time itself. At least, this is the standard view. 

Let us take inertial mass as an example of the first category of properties. It is a scalar quantity, expressible as a number, representing a system’s resistance to changes of motion. Of course, what the exact numerical value is will depend on the way mass is quantified---the scale that is used and the units that are chosen. As is the case for the numerical values of any physical quantity, the truth of statements about mass values is relative to a procedure of assigning such values. If we were to assign lengths in a non-standard, position-dependent way, the statement that the Earth is approximately a sphere could become totally wrong (cf. Reichenbach, 1957). Similarly, the statement that the mass of the Earth is approximately 80 times the mass of the Moon can become false if a non-standard way of assigning mass-values is adopted. More generally, the form of the laws of physics depends on the way numerical values are attributed to mass and the other physical quantities occurring in those laws. Thus, if we were to assign mass values in a position-dependent manner, and leave all other physical quantities the same, we would need a compensating position-dependent factor in the physical law F=m.a, in order to obtain the acceleration. Conversely, if we stipulate that the physical laws have a particular form, that imposes restrictions on the ways mass values can be assigned.

As already mentioned, mass is traditionally thought to have a status that is quite different from that of space-time quantities. That is because mass inheres in particles directly, in the sense that it has no meaning to speak of mass values as existing independently of particles. Mass can have no existence apart from physical systems; it is absurd to assume that systems need to be placed in a pre-existing mass realm to obtain their mass values. By contrast, space and time are traditionally considered to possess just such an independent existence. It does make sense to speak about actually existing ‘empty’ positions where nothing material is present. The position, orientation and state of motion of a physical system are traditionally considered to derive from the way that system is placed in pre-existing space-time.

What I propose in this paper, however, is to think of space and time as physical quantities that have exactly the same status as mass, charge and similar direct properties. I will treat space-time properties and space-time relations as directly inhering in physical systems, and not as things capable of independent existence. Consequently, I am going to reject the existence of space-time as an entity existing in its own right, prior to particles and fields. 

This approach is in the spirit of Leibnizean relationism. However, the position that I am going to defend is more flexible than traditional relationism and can accommodate the traditional objections based on the existence of inertial effects. The central idea here is that just as the standard form of the dynamical laws imposes restrictions on the way mass values can be assigned, certain ‘standard’ ways of assigning position and time values will be singled out by the usual form of the physical laws. This observation will make it possible to introduce “

‘inertial coordinates’; not by means of axes that have a certain orientation with respect to substantival space-time, but as given by privileged scales of position and time values---scales in which the dynamics assumes the standard inertial form. It will turn out to be possible to establish the existence of such scales by empirical means, on the basis of data pertaining to the behavior of physical objects. As we will argue, there is no need to invoke the notion of a container space at any stage.  

This ploy for avoiding space-time substantivalism is not completely new. Sklar (1974), Teller (1987), Maudlin (1993), Huggett (1999) and Belot (1999) have made suggestions that seem to go into at least partly the same direction. I will attempt, however, to present the idea as part of a more systematic framework. 

1
 Space without space.

What I have in mind is explained easiest for the case of particle physics. Particles in classical and relativistic pre-quantum physics are characterized by a number of properties: their mass, their electric charge, possibly other electromagnetic properties, and their state of motion. Mass and the electromagnetic characteristics of the particles are direct properties (Earman, 1989); they inhere in the particles without the need of any intermediary. By contrast, the positions of particles are traditionally viewed as indirect. That is, it is traditionally assumed that the particles are contained in a substratum, space, consisting of points standing in geometric relations to each other. The geometric relations between the particles (how far apart they are from each other, their relative orientation, and so on) accordingly derive from the geometric relations between the points they occupy. According to this conception the geometric properties of the container space are primary and the geometric relations between physical objects secondary and indirect. 

What I propose to do instead is to assign space-time properties and space-time relations to particles in the same way as we assign mass values to them. Just as we do not suppose that there is an underlying substantive ‘mass-space’ in which particles occupy points, we will not need the idea of a container space in which the particles are located. We will consider space-time properties as direct properties, whose introduction is justified by the possibility of formulating physical laws in terms of them. In the same way as mass values play a role in the formulation of regularities in the behavior of particles, we will use (relative) positions, velocities and accelerations as quantities whose numerical values are needed to formulate laws of motion. 

Let us look somewhat closer at the way mass values are attributed, in order to make the analogy clearer. Consider a physical system consisting of two particles. It is an empirical fact that within limits of accuracy such that relativistic considerations are unnecessary, the dynamics of such a system is governed by a Hamiltonian of the form  

H = p12/2m1  + p22/2m2  + V(q1 –q2).

Here pi, qi and mi denote the momentum, the position and mass, respectively, of particle i. V stands for the potential associated with the interaction between the particles. For simplicity we consider the one-dimensional case at this stage of the argument. Now suppose that we change the mass values in the following way, mi´= fi(mi); with f a function connecting the old and new mass values. It is easy to check that such a transformation of mass values will in general not leave the above form of the Hamiltonian unaltered (of course, we require that the same particle trajectories as before will result as solutions of the laws of motion). Indeed, if we demand that the Hamiltonian remain the sum of two kinetic energy terms pi²/2mi and a potential that is a function of the distance between the particles, only the following alternative way of assigning mass values will do: mi´ = ami  (in which the constant a should be greater than 0 if we require mass values to be always positive). This transformation of mass values should be accompanied by a change in the value of the potential: V´  = aV. These two changes together leave the Hamiltonian form-invariant and preserve the solutions of the laws of motion. 

It remains true, of course, that no inconsistencies result if mass values are assigned via arbitrary systems of units, for instance units that differ in a complicated way for different particles.  This corresponds to arbitrary transformation functions fi connecting the new and the old (standard) mass scales and, in general, a complicated accompanying change in the form of the dynamics. What we have argued is that this freedom is very much restricted if we require that the standard form of the dynamics apply. We are then left with only linear transformations, of the form mi´ = ami . This is the freedom in the choice of unit that is standardly acknowledged in the physics literature; it is of the same kind as the freedom of choosing between inches and centimeters. That only such transformations of mass values are commonly discussed, and that these changes of unit are regarded as unimportant, finds its justification in the fact that a standard form of the physical laws is silently presupposed and that the changes in question are irrelevant for that form of the physical laws.

As announced in the introduction, we are now going to treat space-time properties in the same way as mass. Experiment tells us that the behavior of particles can be systematized by introducing the notion of mass; experience, in particular phenomena having to do with motion, is even clearer in telling us that we should assign positions to particles (or a quantity similar to position; see below). We want to assign such positions directly, without referring to an underlying space. This is completely similar to introducing masses without referring to an underlying mass space. Also analogously to the case of mass, not all assignments of numerical values to the quantity ‘position’ will lead to the same form of the physical laws. If a preferred form of the laws of motion is specified, only a limited freedom in assigning position values is left.

Let us make this more precise. It is an immediate fact of experience that objects can move, i.e. change a ‘spatial property’. Motivated by this, we attribute the property ‘position’ to particles (see, however, below for a refinement in which relative rather than absolute positions are attributed). We expect that this property can be expressed numerically and will play a dominant role in the laws of motion. This is analogous to what we do in the case of mass in order to systematize phenomena relating to the response to impressed forces. Consider for the moment the simple one-dimensional case, in which there is only one position-number associated with each particle. We can regard it as basically an experimental fact that there exists a way of assigning position values such that a free particle can be treated by means of the Hamiltonian formalism, with Hamiltonian H = p2/2m, and p = dq/dt. Let us now investigate what freedom exists in the assignment of numerical position values, if we require the dynamics to keep this same form, with the same Hamiltonian and the same relation between momentum and position. So we consider alternative ‘position-scales’, q´ = f(q), with arbitrary functions f connecting the old to the new position values. In this transformation the momentum becomes p´ = m dq´/dt= df(q)/dq. p. We have required that the new Hamiltonian has the form H´ = (p´)2/2m. A simple calculation shows that this can only be the case if f is a linear function of q, q´=f(q) = aq+b(t), with a a constant and b a linear function of t. In other words, the dynamics is invariant under changes of the position scale that change the velocity, but leave the acceleration the same. 

If we consider a system consisting of several free particles, with H = ( pi2/2mi, we find in the same way that the transformation qi´ = aiqi + bi(t) is a symmetry of the Hamiltonian. That means that the position-value of each individual particle can be linearly transformed in its own independent way, without any change in the form of the dynamics. However, if we now introduce an interaction potential V in the Hamiltonian, dependent on the differences between the particle positions, it turns out that this individual freedom disappears. The symmetry transformations can now only have the form qi´ = aqi + b(t), with the same a and b for all particles. In our scheme this is the translation of the fact in the customary approach that all particles are embedded in the same space. In this customary approach it is evident from the outset (because of the assumption of the existence of one all-encompassing container space) that only coordinate transformations that are the same for all particles ought to be considered. In our treatment there is no such self-evidence. The global character of the position symmetry transformations follows from the form of the interaction Hamiltonian. We consider it as an empirical fact that a choice of a position scale exists such that the interaction can be represented by a potential that depends only on the position differences (qi – qj). The usual space-time symmetry group follows as the group of those new ways of assigning position values that leave this standard form of the dynamics invariant.

Summing up, we assign positions to particles in a direct way, without assuming the existence of an underlying container space. We take it to be an empirical fact that there exists a way of assigning numerical values to the physical quantity ‘position’ such that the ordinary inertial form of the dynamics applies. In fact, it turns out that if there is one such representation, then there are many of them. These different ‘inertial position scales’ are connected through the usual ‘space-time’ transformations. In the general case of three-dimensional non-relativistic particle mechanics these are the Galilei transformations (plus reflections); in the case of relativistic physics we have the Poincaré group of transformations.

2
 Absolute motion.

The traditional objection against the view that the notion of a substantive container space is superfluous is that relationist alternatives to classical mechanics will not be able to accommodate Newton’s bucket experiment and similar instances of non-inertial motion. In those cases classical mechanics makes a distinction between states of motion that seem identical from a relationist point of view because they exhibit the same relative distances, relative velocities, etc., between the particles. The distinction is that the particles themselves may or may not be accelerating. The stresses, forces, and so on, in a system in inertial motion will be different from those in a system that is accelerated. It is clear that a Leibnizean mechanics that would use only relative distances and velocities as dynamically meaningful quantities would not be able to cope with such differences.

However, in the approach we have outlined this difficulty does not occur. It is possible here to distinguish between the instantaneous state of particles that are accelerated and the state of particles in inertial motion, even if the relative distances and velocities in the two cases are identical. For take a position scale in which the dynamics assumes the inertial form; if a particle has d2q/dt2 ( 0 for its position according to this scale, it is accelerated in the sense needed for the description of the bucket experiment and similar examples. Because the mathematical formalism is exactly the same as in the usual accounts of mechanics, all the usual results can be reproduced. In particular, a system that is accelerated will evolve differently from a system that is unaccelerated, even if the relative distances and velocities are instantaneously the same. The distinction between the usual approach and our proposal is not in the formalism or in the predictions, but in the interpretation of the formalism. ‘Absolutely accelerated’ in the scheme we propose does not mean, ‘accelerated with respect to absolute space’, but rather ‘with non-vanishing second time derivative of the position according to a position scale in which the standard laws of motion hold’. Whether a particle is accelerated or not can thus be made out independently of any considerations about absolute space. Absolute acceleration becomes a direct particle property in this approach.

This idea is not unprecedented: notoriously, Sklar (1974) proposed assigning absolute acceleration as a direct property. However, it has been objected to Sklar’s proposal that it is unclear how it can stand on its own feet; how it can provide the conceptual means necessary to formulate laws of motion, without silently invoking Newton’s substantive absolute space after all (Eearman, 1989). I believe that the approach outlined in this paper successfully avoids objections of this kind. The conceptual means to formulate laws of motion are available here from the outset --- the particle properties were introduced for the very purpose of formulating such laws. It is true that the resulting formalism looks exactly the same as Newtonian mechanics. But that does not mean it is parasitic on the usual Newtonian theory, including absolute space. On the contrary, our approach demonstrates that it is possible to have the full Newtonian theory without any ontological commitment to absolute space. Indeed, we were able to introduce the formalism of mechanics in all its details without reliance on the concept of absolute space at any stage. 

To further counter Earman’s objection (1989, p.128) that schemes with the same predictions as Newtonian mechanics but without a commitment to absolute space run the risk of being ‘cheap instrumentalist rip-offs’ of Newtonian theory, it should be clear that the approach described here has nothing to do with instrumentalism. The particles and their properties need not to be observable, and a realistic interpretation of the scheme is possible without difficulty. The difference with the usual interpretation of Newtonian mechanics is that the ontology is more parsimonious: there are only particles, and absolute space does not enter the game as an additional player. This is not achieved by first using the notion of absolute space and removing it again from the conceptual apparatus later. Our approach is self-contained, and not a rip-off of Newtonian theory in its traditional philosophical interpretation. In fact, I think that the proposed analysis is rather close to the way mechanics is used in practice. Because there is no direct epistemic access to absolute space or space-time, space-time coordinates are in practice necessarily introduced by means of concrete physical objects (think, for example, of the rods and clocks in Einstein’s 1905 article). Apparently it is possible to arrive at the standard form of the laws of motion this way. Only after the whole theory has been formulated, without access to absolute space, can the arguments for the existence of absolute space (based on the bucket experiment and the like) come off the ground.  

The last remark perhaps resuscitates the worry that some sleight of hand is involved in our proposal, and that we need absolute space after all (but just refuse to mention it). In traditional Newtonian theory we can explain the difference between the resting and the rotating buckets by pointing to their different relations to absolute space. Do we not need absolute space if we want to retain the same explanatory resources as available in Newtonian theory? In response to this possible objection, it should first of all be noted that the purported Newtonian explanation is not a mechanical explanation in the usual sense of the word. It is not made clear by what mechanism or interaction space exerts an influence on the water in the bucket; there is no exchange of energy or momentum between the water and absolute space. In Newtonian theory it is even impossible to attribute any energy or momentum at all to space. This makes it clear that Newtonian absolute space cannot be seen as a causal factor in the usual sense, namely as something that exerts a force. The mentioned explanation of the bucket experiment therefore boils down to the observation that there is a difference between the two cases: the difference between rotation and non-rotation. But the same difference exists in our formulation of classical mechanics! Of course, we do not explicate this difference by means of a reference to absolute space. We give a different explication, relying on the standard form of the dynamical laws, a standard position scale, and a non-vanishing acceleration in that scale. But for the explanatory resources of the theory this does not matter. In all cases in which traditional Newtonian theory gives an explanation in terms of different states of motion with respect to absolute space, we can give a parallel explanation using the distinction between being accelerated and being unaccelerated.

That our proposal as outlined thus far is so close to Newtonian mechanics has an obvious drawback: just as Newtonian mechanics operates with the empirically superfluous notion of absolute location, it seems that our account must not only attribute absolute accelerations to particles, but also absolute positions and velocities as direct properties. However, mechanical theory itself tells us that these latter notions do not have empirical counterparts. It would therefore be a serious disadvantage if absolute position and velocity would turn out to be indispensable in our approach. However, a closer look reveals that absolute location and velocity are not fundamental.  Absolute location should be compared to the value the mass of a particle possesses within a given system of units. This mass value changes if the system of units changes.  Only the ratio between mass values is independent of such changes. The choice of unit is a matter of convention, and mass ratios rather than absolute mass values are therefore fundamental. We want to treat position in exactly the same way. That means to retain as fundamental only those features of a particle system that are insensitive to conventional choices. In section 2 we already alluded to the role symmetry considerations can play in this connection. Let us now discuss this in more detail.

3
 The razor of symmetry.

In ordinary Newtonian theory we face the problem that absolute space has more properties than necessary for the theory of motion. Space-time is attributed more structure than we need for the dynamics. The space-time symmetry group, which leaves the space-time structure invariant, is therefore smaller than the dynamical symmetry group. An often made observation at this point, both among physicists and philosophers, is that we have no empirical evidence for the additional space-time structure, and that we should therefore follow the methodological prescript of widening the space-time symmetry group so that it becomes equal to the dynamical one. This leads to the concept of neo-Newtonian space-time, a space-time structure that is weaker than the original Newtonian space-time. In neo-Newtonian space-time absolute velocity is not defined, but absolute acceleration is (Stein, 1967).

As an aside, it should be noted that this common line of thought fits in more naturally with an approach in which the physical systems and their properties and the evolution of these properties (the dynamics) are the only factors to be taken into account, than with space-time substantivalism. In an approach in which there is an additional autonomous player on the stage, namely absolute space, it is not evident at all that its properties should be read off from the particle dynamics. If it is admitted that space in itself exists, independently of its physical contents, why would it be cogent to make its symmetry group equal to the dynamical symmetry group of those physical contents? By contrast, particle properties and particle dynamics are inseparable from the outset: it is a matter of course to accept only those particle properties that are relevant to the behavior of the particles, that is, have some dynamical effect.

In section 1 we noticed that classical particle dynamics is invariant under transformations in which all mass values are multiplied by the same constant and in which there is a compensating change in the potential. In other word, absolute mass values and absolute values of the forces are irrelevant for the validity of Newtonian theory in its standard form. But the quotient of mass values is relevant because it is invariant under the mentioned transformations. Of course, this is common wisdom: the choice of a mass unit is conventional. We have already argued that the reason commonly adduced for the existence of this freedom, namely that we are completely free to choose any method we like for measuring masses, does not go to the heart of the matter. It is true that there is no logical inconsistency in assigning mass values in a completely arbitrary way – in terms of our earlier discussion that would result in a mass transformation with an arbitrary function f(m). But the freedom in assigning masses that actually is accepted in physics and plays a role in practice is much more limited. It consists in exactly those transformations that leave the dynamical equations the same, and consequently in the (‘trivial’) ‘centimeter or inches’ choice of unit. Put differently, the form of the dynamics plays an essential role in assigning mass values and singling out acceptable measuring procedures. A simplistic operationalistic viewpoint according to which the measuring procedures define the measured quantity, and according to which there is basically no preference for one procedure over another, does not do justice to the practice of physics.

Let us now look at the analogous freedom of position values, in the case of Newtonian mechanics. In other words, we are interested in the question of which transformations of the position values leave the Newtonian equations of motion invariant. Clearly, the sought transformations are the Galilei transformations (plus trivial transformations of the units). We should now look at the invariants of these transformations in order to find the particle properties that are fundamental, in the sense of independent of conventional choices that are immaterial for the form of the dynamics. Obviously, the position values themselves are not such invariants. But ratios of relative distances are (ratios rather than relative distances themselves because of the arbitrariness in the choice of a length unit). It follows that only quotients of relative velocities have an absolute status and, similarly, that the ratios of accelerations are invariant. 

In the language of the ordinary approach this corresponds to the freedom in choosing an inertial frame of reference in space-time and units of length and time when we construct a coordinate system. In our approach this arbitrariness is completely on the level of choosing units for the description of the dynamics. There is only a choice of ‘coordinates’, in the sense of choosing quantitative measures for space-time properties of the particles. There is no underlying space-time with respect to which a frame of reference, a ‘coordinate system’, could be oriented. 

We therefore conclude that distances between particles, relative velocities, and particle accelerations (barring the freedom corresponding to the trivial choice of length and time units) characterize Newtonian particle systems.

We can represent such a system mathematically by embedding it in 3+1-dimensional manifold. This can be done in infinitely many ways in a manifold with the structure of Newtonian space-time: the absolute location of the center of mass at one instant, its absolute velocity and the orientation of the system can be chosen arbitrarily. A more elegant, because more parsimonious, representation can be achieved in a neo-Newtonian space-time structure (in which spatial points do not possess identity in time; Stein, 1967). The essential thing to note is, however, that such representations are just mathematical a-posteriori constructs. We do not need them to develop the dynamical theory, and there is no reason to attribute physical reality to them.

4
 Special relativistic particle physics.

We have not yet discussed time explicitly. In order to treat time as a direct property, on a par with position, we obviously have to focus on particle events as the fundamental physical objects with which physical quantities are to be associated. A particle event is assigned three position values (three components of the position) and a time value. Symmetry considerations can subsequently be used to filter out what is conventional and what is not, in the sense of what is irrelevant and relevant for the form of the dynamical equations. In the case of Newtonian mechanics we thus find that the ratio of time intervals between events is fundamental. But the proper framework for considerations involving time is relativistic particle physics. 

The important difference between the relativistic and the Newtonian setting is that in relativity the symmetry transformations mix space and time quantities. What is invariant in special relativity is the space-time interval between two events (or, if the centimeter/inch freedom in the choice of units is taken into account, the ratio of two such intervals). Relativistic particle dynamics can be formulated completely in terms of this 4-dimensional distance. For example, the free motion of a particle obeys the variational principle ((ds = 0: the particle makes the 4-distance between the events in its existence a maximum. 

So, in the relativistic context the direct property view of space and time assumes the following form. We start with particle events as our physical ‘objects’; they are assigned positions and times, i.e. four numbers: x, y, z, t. The scales of these numerical values are then chosen in such a way that the relativistic equations of motions hold in their inertial form. This still leaves a lot of freedom, because the dynamics is invariant under the transformations from the Poincaré group. To make a connection with the conventional approach, one can think of these various assignments of position and time values as relating to standard measuring procedures from different inertial frames of reference. It is a well-known result that the invariant quantity in all these representations is the ratio of the intervals ds of two pairs of particle events.

The transition to relativity thus makes it possible to satisfy a traditional relationist desideratum, namely to make all quantities relative, in the sense of pertaining to relations between physical objects. However, the physical ‘objects’ we are speaking about now, in the relativistic context, are particle events, and not the particles-at-the-same-time Leibniz had in mind. This change of perspective results in a reconciliation between the relative character of the basic quantities, and the absoluteness of being accelerated. This is because Lorentz transformations not only leave the 4-dimensional interval ds invariant, but also preserve the distinction between being accelerated and being in an inertial state of motion. This can easily be illustrated: given the relative distance ds between any two events in a particle’s existence, it is completely determined whether or not the particle accelerates, because being accelerated is the same as not following a geodesic (a geodesic is the solution of the variational problem ((ds = 0). Only in the case of a geodesic will the distance between any two points on the worldline be equal to the length of the stretch of worldline connecting the two points. The situation is essentially the same as the one in plane geometry, in which the relative distances, in the two-dimensional plane, between the points of a curve determine whether or not the curve is straight. 

In the original Leibnizean approach the focus was not on particle worldlines, but on the distances between particles at an instant. In other words, the original Leibnizean viewpoint was essentially three-dimensional. Within that framework, nothing follows about the curvature of the worldlines (the particle accelerations). But when we broaden the relationist view and start comparing particle events at different times, the situation changes. From a four-dimensional point of view it becomes possible to define ‘being accelerated’ in relationist terms. 

Relativity theory provides the natural arena for this relationist treatment of particle physics, because it operates with one relative distance between events. However, an analogous maneuver is possible in Newtonian mechanics. Instead of working with one distance between particle events, Newtonian mechanics assigns two distances: a spatial distance dl and a temporal distance dt. Given these distances between any two particle events, the particle accelerations are obviously fixed. So a four-dimensional relationist description is possible even in Newtonian mechanics. 

It is true that in this form the idea assumes that distances between particle events at different times are well defined. As we have discussed, there are good reasons to doubt the physical significance of such quantities that are not invariant under Galilean transformations. We had better confine ourselves to invariant magnitudes. That can be done: assign a time interval dt to each pair of particle events, and a spatial interval that is determined up to vdt. Here v is an arbitrary vector, with the restriction that it should be taken as same for any pair of events and any time interval dt (this parallels the introduction of neo-Newtonian space-time in the conventional approach). Galilei transformations change the value of v, but leave the differences between two distances with the same dt the same. So if dt is the same for two pairs of events, the difference between their spatial separations has a well-defined invariant value. As a result it becomes possible to calculate the acceleration along the worldline of a particle: take pairs of events with the same dt along the worldline and consider the change in spatial separation; this immediately leads to d2x/dt2. In this manner we end up assigning an absolute acceleration to particles. If we introduce the absolute acceleration this way it becomes clear that there is no conflict with relationism, interpreted as pertaining to the 4-dimensional description. 

Summing up, the original intuition behind relationism, namely that “space denotes, in terms of possibility, the order of things which exist at the same time” (Leibniz’s third letter to Clarke, Alexander 1984, pp. 25-26) clearly depends on the notion of absolute simultaneity. It is part of an essentially three-plus-one dimensional notion of space-time. If absolute simultaneity is abandoned, the relativistic conception in which the spatio-temporal order of particle events replaces the spatial order of objects at the same time becomes the natural form of relationism. With hindsight, this same idea makes it possible to formulate a 4-dimensional variant of relationism for Newtonian particle physics.

5
 Fields.

Our strategy of doing without substantive space, and of implementing a version of relationism, would not be very relevant to modern physics if it were impossible in principle to apply it to fields. The focus of this paper is on particle physics, though; the detailed elaboration of the same ideas for field theory would require much more work. Nevertheless, I want to make it clear that I disagree with those authors who view substantivalism as the natural or even indispensable ontological background of field theory (cf. Earman, 1989, ch. 8). 

The culmination of field theory in non-quantum physics is the general theory of relativity. However, the status of space-time in general relativity is very different from that in Newtonian and special relativistic physics. In those earlier theories space-time points were traditionally considered to stand in (metrical) geometrical relations to each other, completely independently of the material content of the universe. By contrast, in general relativity the space-time points (x,t) do not possess such independent metrical properties. All metrical geometrical relations come from the metrical field, which is a physical field on a par with electric and magnetic fields. This change is relevant for our discussion, because substantivalism in Newtonian physics derived most of its prima-facie plausibility from the notion that space-time must be a physical system in itself, because it possesses independent metrical structure. In the case of general relativistic field theories this initial plausibility disappears. The metrical field, a physical system of the same kind as the particles we considered earlier, is the bearer of the geometrical space-time properties. 

As emphasized by Rovelli (Rovelli, 1999), in the general relativistic setting the natural view of the remaining role of the coordinates x and t is that they serve to order relations between physical fields. Indeed, physically significant predictions of the theory relate field quantities to each other, instead of field quantities to values of x and t. Put differently, statements in which values of x or t occur without identification of the space-time point in question in terms of field quantities are not physically meaningful. The mathematical expression of this physical insignificance of the space-time points is the invariance of general relativistic field theory under diffeomorphisms: it does not matter whether the space-time coordinates are mixed up, as long as the relations between the field values remain the same
. This makes it unnatural to think of the x,t coordinates as referring to physical individuals, namely space-time points. The strategy of interpreting space-time characteristics as relating to direct properties of material physical systems appears therefore natural within the framework of our best classical field theory. And since special relativistic and Newtonian field theories can be considered as representing limiting situations of the general relativistic case, the same analysis of the status of x and t should be applicable there too. 

It remains true, of course, that fields require the continuum of x and t values for their ordinary representation. Field configurations are standardly defined via the assignment of field values to x and t. Some authors (cf. Earman 1989, ch. 8) take this to imply that field theories need a substantival space-time manifold for their very possibility of existence: an assignment of properties to space-time points obviously requires the assumption that space-time points exist, so the argument goes.  It seems to me, however, that this begs the question. Of course, if properties are assigned to substantival space-time points, the assumption is involved that there are such space-time points; this is a tautological. The interesting question is whether the assignment of field values to x and t necessarily presupposes the assumption that x and t refer to substantive space-time points. It seems obvious that the answer to this latter question is in the negative. One counter-example should suffice to show that if a field-like quantity whose reality is accepted is represented as a function of certain coordinates, it does not follow that these coordinates themselves refer to something real, ontologically prior to the thing that is being coordinatized. The instance of colors and their mutual relations is a case in point. Different colors and their shades can be represented in various ways; one way is as points on a 3-dimensional color solid. But the proposal to regard this “color space” as something substantive, needed to ground the concept of color, would be absurd. Of course, it is exactly the other way around. Colors have certain relations among themselves, and their comparison makes it expedient to introduce the notion of a color space. Coordinates can then be introduced to mathematically handle this ordering scheme. 

There is thus at least the possibility that the coordinates used in the representation of fields should be interpreted as referring to field properties, like the positions in the color space stand for properties of colors. That brings us close to the proposal of section 1. There we considered position as a particle property; a solid body, consisting of very many particles, would thus be assigned a range of position values. Properties like density, chemical composition, etc., would vary along this range, as a function of position. A field configuration could perhaps be conceived of in analogous fashion. One possibility is to think of combinations of the field values of the several physical fields as constituting elementary events which possess space-time positions (or rather their relative counterparts discussed in section 3). The same kind of reasoning can subsequently be applied as in the case of particle physics.

This is a sketch of a possible approach rather than a worked-out proposal. But I think it is plausible enough at this point that field theory does not raise an a-priori insurmountable barrier for anti-substantivalism and relationism.

6
 Conclusion

Substantivalism and anti-relationism are not forced upon us by Newtonian mechanics, nor by relativistic particle physics or field theory. It is possible to think of space and time as attributes of particles or fields.

The proposal of this paper is part of a larger program. Interpreting ‘position’ as a particle property is a very natural move to make in non-relativistic quantum mechanics, because the Hilbert space formalism does not start from a space-time manifold in which particles are located. The quantum state is given by a vector in Hilbert space, and has in general no special relation to specific space-time points. Rather, ‘position’ is treated in the same way as ‘spin’ or other quantities that are direct particle properties: all these quantities are ‘observables’, represented by Hermitean operators in Hilbert space. In particular, particles generally do not have a well-defined position in quantum mechanics, just as they generally do not possess a well-defined value for their spin, momentum, etc. Quantum mechanics, the quantum theory of particles, thus provides a congenial environment for the idea that space and time should not be seen as a substantive container (Dieks, 1998). But quantum field theory seems to reverse the odds. In its algebraic formulation a space-time manifold with Minkowski metrical structure is presupposed, and the axioms of the theory stipulate how observables of the quantum field are associated with open regions in the space-time manifold. The usual interpretation is that these observables represent possible measurements that can be performed within the associated space-time region. This suggests that the open space-time regions, with their metrical properties, and even the possibility of making measurements in those regions, exist independently of and prior to the properties of the quantum field. It would seem desirable, however, to avoid localized measurement as an a priori, fundamental notion. If quantum field theory is a basic physical theory, it should be able also to fully describe measurement devices. It should follow from such a physical description, rather than being presupposed, whether or not the device is localized. 

One of our general purposes is to address these issues by developing an interpretation of quantum field theory in which Minkowski space-time is not ontologically fundamental, and in which generic quantum systems are not a priori characterized in terms of localization in space and time. In such an analysis x and t would be mere parameters, needed to systematize the internal properties of the quantum fields; like the parameters in color space serve to order the physical relations between the colors.  Space-time regions associated with localized physical systems and with localized measurements would no longer be fundamental in such a scheme. Of course, we would expect applicability of those usual space-time concepts in some (classical) limiting situation, in which the concept of a classical, localized, particle would become approximately applicable. In (Dieks, 2000) some tentative suggestions are made that go into the direction of such a way of interpreting quantum field theory; see (Clifton, 2000) for comments and an alternative approach. If such a scheme could be worked out successfully, we would even in the classical limiting situation have that the properties and mutual relations of material physical systems represented by the quantum fields are basic, and that space and time coordinates only serve to order them. From the point of view outlined in this paper that would be very satisfactory, because it would fit in with a natural interpretation of space and time in non-quantum physics itself.
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Notes


� This brief discussion supposes that it is not acceptable to view the formally different solutions of the field equations in the context of the hole argument as physically different.
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