About Geometric Phases Serving as Memory in Quantum Computing

Spacetime Memory: Phase-Locked Geometric Phases
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Spacetime memory is defined with a holonomic approach to information processing, where multi-state stability is introduced
by a non-linear phase-locked loop. Geometric phases serve as the carrier of physical information and geometric memory (of
orientation) given by a path integral measure of curvature that is periodically refreshed. Regarding the resulting spin-orbit
coupling and gauge field, the geometric nature of spacetime memory suggests to assign intrinsic computational properties

to the electromagnetic field.
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Recently, geometric phases [1] are getting con-
siderable attention in quantum computing [2]. In
this paper we shall evaluate basic couplings of non-
abelian geometric phases (holonomies) and try to
find out what is necessary to setup, couple, and
process spacetime memory. Geometric phases are
subject of concepts in differential-geometry and
topology [3] associated with non-abelian groups, i.e.
U(N) [4]. The first successful implementations via
NMR have been reported [5], so it is likely that a
quantum computer will be operated in the near fu-
ture by the non-abelian Berry connection of a quan-
tum computational bundle. To reveal the role of
geometric phases, one has to discuss the necessities
in information

e storage, transfer, and processing.

In [2] it has been shown how quantum informa-
tion can be encoded in an eigenspace of a degen-
erate Hamiltonian H such, that one can in princi-
ple achieve the full quantum computational power
by using holonomies only. For an introduction to
geometric phases see i.e. [0].

Information storage

What characterizes memory? A memory has a
time scale much longer than the time scale of in-
formation processing. This is a basic requirement,
since computation is useless if the input is forgotten
while waiting for the output. These two timescales
are natural requirements of geometric phases: in
a physical situation the long time scale is given by
the path of a vector signal on a curved manifold, i.e.
the orbital period, the short time scale defines the
vector signal, i.e. it’s spinning period. The informa-
tion has to be ‘imprinted’ in a spacetime structure,
where the topology is implemented by the proper
spacetime manifold of the signal path. The infor-
mation coded in the geometric phase is given by

a path integral measure of curvature that modu-
lates the vector, on S? by a typical conic precession.
In the holonomic approach, information is encoded
in a degenerate eigenspace of a parametric family
of Hamiltonians and manipulated by the associated
holonomic gates. Important for the realization of a
memory unit, the non-adiabatic generalization of [7]
defines a geometric phase factor for any cyclic evo-
lution of a quantum system. Consider a T-periodic
cyclic vector | (7)) that evolves on a closed path
C according to

|9(T)) = ™) 4(0)), (1)
where the total phase ¢(T') acquired by the cyclic
vector can naturally be decomposed into a geomet-
ric p4(T) and dynamical phase ¢4(T)

(1) = ¢, (T) + a(T). (2)
The dynamical phase for one loop t € [0;T] is with
the Schrodinger equation given by

oaT) = —3 [(WOHOBE)dr. @)
0

The Berry phase or geometric phase depends not on
the explicit time dependence of the trajectory and
is for one loop given by

D) =i U v). )
The ‘parallel transported’ spin vector will come
back after every loop with a directional change
q4(T') equal to the curvature enclosed by the path
C. On the unit sphere the curvature increment is
proportional to the area increment that can be a
spherical triangle with area given by

dQ = [1 — cosO(7)]dp(7), (5)
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the total area enclosed by the closed orbit (loop) is
equal to

T
Q- 7( 40 = / dr[l — cosO()]e(r).  (6)
c 0

The Berry phase ¢4(T') = JQ and the total phase
are proportional to spin J. In the standard case of
precession on the sphere

wg(T) =2mJ(1 —cosb), (T)=2nJ, (7)
where 6 is the vertex cone semiangle, ¢q4(T) =
27nJ cosf. For the two level system, the geometric
phase is equal to half of the solid angle subtended by
the area in the Bloch sphere enclosed by the closed
evolution loop of the eigenstate. With n parame-
ters A, (t), 1 =1,2,...,n that span a closed curve C
in the T-periodic parameter space A,(0) = A, (T),
the Berry phase may be represented in terms of the
‘gauge potential” A with connection matrix

(40)7 = @ (V)] 9/ON [P (N)

where A =3 A, d),, and

(®)

%(T):fiA:/F, F = dA. (9)
Sc

A is the non-abelian gauge potential that can be re-
garded as a winding number density and allows for
parallel transport of vectors over S¢, an arbitrary
surface in the parameter space bounded by the con-
tour C. For more details regarding monopoles and
Wilson loops on the lattice in non-abelian gauge
theories, see e.g. [§].

Information transfer

What characterizes information channels? Our ge-
ometric memory will have quantum nature: it is
periodically refreshed or regenerated with quantum
memory loss and information transfer given by the
correspondent phase-frequency modulation. Degen-
eracy plays a crucial role in quantum computing
and allows to transfer the phase states between en-
ergetically equivalent sub-systems. The dimension
d of the manifold U(N) reaches its minimum for
d =1, in this extreme case N = 1 denotes the max-
imally degenerate case [2]. In this case (the gauge
group U (1) has the topology of a circle on which the
homotopy classes of closed curves are labelled by
their winding or loop numbers) the wave-function
in the M-fold degenerate case transforms as

) — MRy, (10)

where one unit corresponds to the phase sub-
interval [0, 27 /M]. Information transfer of M quan-
tum information units per unit cycle (adiabatic
loop) at dynamical phase evolution frequency wps
could be realized by a spin-orbit coupling energy
AFE sponsored by a carrier with energy E where

(11)

with AE <« Mhwys. M can be interpreted on S? =
SU(2)/U(1) as a quantum number or magnetic
monopole charge (generator of the Berry phase [1])
taking integral values +0,+1,+2,... [9, 10]. Tt is
quite often that the relevant systems provide for the
required discrete symmetries and large degenerate
eigenspaces, i.e. rotational invariance, see eq.(10).

AFE = E — Mhwyy,

Information processing

What characterizes information processing? Com-
putation requires that memory is multi-stable and
coupled to the quantum state transfer, where the
time evolution of a quantum sub-system can be con-
trolled by the state of another sub-system. The
computational dynamics is obtained by switching
on and off by a set of gate Hamiltonians that gener-
ate a small set of basic paths given by unitary trans-
formation on the quantum state-space. Multi-state
stability can be introduced by non-linear behavior.
The well known example of a simple flip-flop-type
feedback process (a bi-state or half spin configura-
tion) can be realized with a geometric phase that
is driven by it’s own precession dynamics. Let the
precession cone vertex semiangle 6 of eq.(7) realize
a bi-stable flip-flop configuration characterized by
two states:

o My >0,0<6, <3

e M_<0,-T<6_ <0

that can be stabilized by the chaotic iteration

mcosly ;

T (12)

0+ i41 =
and converges for integral |My| > 2 after a few
steps to a special fixed point 4. A fast conver-
gence is crucial for the performance of the space-
time computer. The coupling can be interpreted as
a navigational iteration on the closed path, where
one iteration step requires to exchange one bit of in-
formation between the orbital system partners con-
trolling each other in a center-of mass system. The
bit is the & sign of the phase that gets lost in the
cosine-function on S? independent of the resulting

coupling shift. Therefore, a virtual coupling bit-
stream can be assigned to the closed orbital path



on S2. The choice of the form eq.(12) is adjusted to
the energy transfer relation eq.(11) with M — My
and § — 65. This has the following background:
the phase evolution can be divided into the two
parts of geometric and dynamic phase evolution,
where the geometric evolution can be assigned to a
precession frequency w, with ratio adjusted to the
sponsored energy
2nJ

including relativistic correction 7. The dynamical
phase evolution corresponds to the cyclic frequency
wy, and characterizes the general expression for
spin-rotation coupling observed in the laboratory
frame which can be assumed to be on S?

w
My My :ilq:% = cosf4

Yw E

(14)

in accordance with eq.(7).

Omitting the + polarity the relative dynamical cou-
pling constant a(M) can be defined by the ratio dy-
namical phase evolution frequency wy; divided by
the carrier (Compton) frequency w driven by parti-
cle spin J

_ JDpa(T)

O((M)— JwM

= : (15)
o(T) w

where the coupling is proportional to the evolution
of the dynamical part Apq(T)/¢(T). With eq.(14)

in eq.(15)

g (T) M«
2rJ J’ (16)
the dynamical part of eq.(16]) provides for
Ma = Jcos(0). (17)

Comparing eq.(14) - eq.(17) to eq.(12), the pre-
cession cone vertex angle 26 is linearly related to
the dynamic spin-orbit interaction and given by the
feedback coupling relation of the most trivial kind

0 = +ma. (18)

eq.(18) has a simple geometric interpretation: spin-
orbit coupling modelled by a ‘rolling cone’ repre-
senting a vector state or signal. Rotated once, the
cone will change its orbital orientation by a special
angle 2w /M, rotated M-times in the quantum case,
the cone will return to the initial position with in-
tegral M (providing for single-valuedness). If the
base of the cone has radius 6/x, the side length is
M6 /7 = cos(9). As shown in [10], for M = 137 and
vitual photon vector coupling with J = 1 the cou-
pling constant o ~ 1/137.03600941164 fits within
error range to a neutral and theory independent de-
termination of the Sommerfeld fine structure con-
stant. This suggests to assign intrinsic computa-
tional entities and capabilities to the electromag-
netic field.

Conclusion

In the holonomic approach to information process-
ing geometric phases serve as the carrier of physical
information. In this case geometric phases are the
primordial memory of orientation given by a path
integral measure of curvature on S? = SU(2)/U(1),
where the coupling of intrinsic spin with rotation re-
veals the quantum of rotational inertia = memory
= angular momentum quantum A. The system car-
ries pair-creation energy E and coupling energy AE
stabilized by a phase-locked feedback loop, a peri-
odical refreshment including precession as a form
of phase-frequency modulation. The non-linear it-
eration converges quickly and provides for a fast
and flip-flop-type situation: the prototype space-
time imprint of a polar binary system. A virtual
coupling bit-stream can be assigned to the naviga-
tional iteration on the closed path, since one non-
linear iteration step requires to exchange one bit of
information. Regarding the polar coupling constant
and the magnetic monopole topology [1},9], it can be
proposed that natural memories optimized by iter-
ative phase relationships can be found everywhere.
The non-linear phase-locked feedback mechanism
provides for an hidden and very fast bit-stream run-
ning at a nice bandwidth ~ wj;. In such a natu-
ral high-performance computer, fine structure as a
pure number would divide hardware from software.
Additional details can be found in [10], and [11].
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