
Topological Phase Fields, Bäcklund Transformations, and Fine Structure

Bernd Binder
88682 Salem, Germany, binder@quanics.com c©2002

(Dated: 14.10.2002)

Quantum coupling is defined by comparing the evolution of an input to an output phase, where
the phase is evolving on a curved pseudospherical surface. The difference given by interference obeys
a single-valuedness condition since the output phase is coupling back to the input phase. We arrive
at Bäcklund transforms and corresponding sine-Gordon soliton equation. The idealized resonance or
feedback condition corresponds to an oscillator potential that can be mapped by projective geometry
to Coulomb coupling, where the effective coupling strength can be iteratively determined.
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Loop sub-loop coupling. In the previous work [1]
spin-orbit coupling and precession induced by geomet-
ric phases was modelled by rolling cones or with a low-
dimensional conic metric [2]. A phase can be a polariza-
tion or rotational property of a vector in Hilbert space.
In the next step phase evolution was generalized to topo-
logical phase fields on pseudospherical surfaces allowing
for solitonic signals [3]. In contrast to the previous work
this paper does not start with conventional topological
phases, it presents a simple model of non-linear topolog-
ical phase field evolution given by the difference or inter-
ference between input and output of a nonlinear quantum
impedance. With θ̃ as the input phase (the reference)
and θ the output phase including geometric phase shift
we have within the impedance the interference terms

• (θ + θ̃)/2: loop (common phase of subloops),

• (θ− θ̃)/2: subloop (differential or geometric phase),

where θ − θ̃ is the sub-loop geometric phase evolution
induced by “parallel transport”. Since the output phase
is coupling back to the input phase, single-valuedness in
the quantum case requires that the phase difference given
by interference on the closed loop must carry an integral
number M of subloops. Consequently, the total system
carries angular momenta distributed in M subloop units
that carry vector properties (i.e. spins) that interfere
with common loop vector properties (i.e. orbital spin).
In a physical scenario modelling a quantum transformer
of angular momentum with regular M -gonal symmetry,
there are fields providing for coupling and momentum
exchange. There are four types of coupling terms:

• f(θ + θ̃): common loop momentum.

• g(θ + θ̃): common loop field/force.

• f(θ − θ̃): geometric ph./sub loop momentum.

• g(θ − θ̃): geometric ph./sub loop field/force.

As a necessary condition for a closed–loop momentum
exchange there are two orthogonal couplings (x ⊥ y):

(x) f(θ + θ̃) = Mg(θ − θ̃) (1)

(y) Mf(θ − θ̃) = g(θ + θ̃) (2)

M times the geometric phase induced (gauge) field
strength balances the mean loop angular momentum,
and M times the geometric phase induced (subloop) an-
gular momentum balances the mean loop field strength.
This means, that the geometric phase of the M subloop
units is a generator of the spin-obit coupling field. An-
gular momentum is proportional to the temporal evolu-
tion of θ with f(ξ) = ∂(ξ/2π). To ensure integrabil-
ity, the field strength between sub-loop units in regular
M -gonal symmetry will be proportional to distance with
with g(ξ) = Mg sin(ξ/2). Now, the non-linear property
of the “impedance” is given by the trigonometric field
function, a consequence of curvature as can be directly
shown: the resulting non-linear transformer can be ex-
actly described by Bäcklund transformations (BT)

(∂xθ̃ + ∂xθ)/M = 2πMg sin[(θ̃ − θ)/2],

(∂y θ̃ − ∂yθ)M = 2πMg sin[(θ̃ + θ)/2], (3)

a manifestation of integrability [4, 5].

Sine-Gordon soliton. The BT eq.(3) are the genera-
tors of the sine-Gordon SG equation

∂x∂yθ = −R sin(θ)/2, (4)

where the second order equation eq.(4) arises as the in-
tegrability conditions of a pair of first order equations
eq.(3), with i.e. ∂y(∂xθ̃) = ∂x(∂y θ̃). For simplicity, θ̃ will
serve as the special reference field of constant or station-
ary phase evolution given by the rather trivial case θ̃ =
4π( 1

2+n), with quantum gauge (or spin) dependent wind-
ing number n = 0, 1, 2, .... This provides in eq.(3) for the
simplification ∂x = M2∂y. Parametrizing the sub–loop
with radius r2 = x2 + y2 = (1 + 1/M4)x2 = (M4 + 1)y2

and ∂2
r = ∂2

x + ∂2
y we have

∓
√

M2 + 1/M2∂rθ = 2πMg sin(θ/2). (5)

The nonlinear SG phase field evolves with a pseudospher-
ical curvature constraint. This property is found with
generalized Chebyshev coordinates on a plane S embed-
ded in R3

ds2 = (dx)2 + (dy)2 + 2 cos θdxdy (6)
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with scalar curvature R = 2R1212/ det(gij) [5] of the gen-
eralized Chebyshev metric. There is a clear geometri-
cal interpretation: the coordinate vector field is paral-
lel transported along the signal/soliton vector field with
respect to the Levi–Civita connection. A ”privileged”
surface of scalar curvature R = −2 is given i.e. by the
Lobachevskian plane.

Topological solitons as solutions to eq.(4) and eq.(5)
are spatially confined (localized), non-dispersive and
non-singular solution of a non–linear field theory. In
2+1-dimensional gauge vortex scattering it follows from
purely geometric considerations that the head-on scatter-
ing of M topological solitons (like monopoles, vortices,
skyrmions, ...) distributed symmetrically around the
point of scattering (relative angular separations 2π/M)
is by an angle π/M , independent of various details of the
scattering [6]. In this case the initial configuration has
the symmetry group of a regular M -gon, the “moduli
space” of M vortices, MM [7].

Spin-orbit resonance condition. To approach the cou-
pling resonance we can define potential relations. Ap-
plying the Euler-Lagrange equation to the SG soliton
Lagrangian and correspondent Hamiltonian, the poten-
tial for a stationary solution is with ∂2

rθ ∝ ∂θV and
V ∝ (∂rθ)2 ∝ f2 given by

2V (θ) = (∂xθ/M)2 = (M∂yθ)2

= (M2 + 1/M2)(∂rθ)2

= 2π2M2
g (1− cos θ), (7)

where cos θ = 1 − 2 sin2(θ/2). Since the field strength
g(θ) between sub-loop units in regular M -gonal symme-
try is proportional to distance r, the coupling potential
as the square of the field strength can be assigned to an
oscillator potential

Vo(r) =
1
2

(
r

ρ

)2

=
1
2

(πMgr)
2 = −1

4
Rr2, (8)

providing for resonant coupling and for the general con-
dition

r = ∓2ρ sin(θ/2). (9)

Coupling and self-energy. From eq.(7) the self-energy
term can be identified as a constant θ-independent Rie-
mann curvature scalar R = −2/ρ2, with eq.(4) πMgρ =
1. Therefore, it is plausible to decompose energy in eq.(7)
into at least two terms: a self-energy term π2M2

g (of
constant phase evolution) and a dynamic coupling term
π2M2

g cos θ that accounts for the geometric field evolu-
tion based on the BT. Integrating eq.(12) provides for
θ ∝ r2 + c, where the integration constant c can be ob-
tained by comparing the correspondent parts in eq.(7)
and eq.(9). This provides for a dynamic coupling term
∓πMg

√
M2 + 1/M2θ that can be combined with a self-

energy term and integration constant to

V (θ) = Vo(y) = π2M2
g ∓ πMgθ

√
M2 + 1/M2. (10)

With eq.(7) and eq.(10) we immediately obtain an itera-
tive equation of phase shift in resonance

θ
√

M2 + 1/M2 = ±πMg cos θ, (11)

where the coupling allows for two possible signs.

External coupling: Coulomb force. The stereographic
projection of the stationary dynamics on the two-
dimensional (pseudo)sphere within PSL(2,R) connects
angular variable and sub-loop radius r. Eq.(7) in com-
bination with eq.(9) maps the local oscillator potential
to the non–local Coulomb potential under stereographic
projection given by the conventional Bohlin transforma-
tion rc → r2 [8]. This relates the Coulomb system to the
resonance oscillator potential and maps with eq.(5) and
eq.(9) the square of the phase gradient to the potential

2πrc = ρ2∂rθ → 4π2r2 = ρ4(∂rθ)2. (12)

The projective geometry with PSL(2,R) has the typical
parameterization

z = rceiϕ =
{

ρ cot θ
2eiϕ sphere;

ρ coth θ
2eiϕ pseudosphere,

(13)

where θ, ϕ are the (pseudo)spherical coordinates [8].

Berry’s Topological Phase. The so-called complex SG
theory (applied in nonlinear optics to the phenomenon
of anomalously low energy loss in coherent optical pulse
propagation) has coupled nonlinear partial differential
equations in 1+1-dimensional spacetime given by the
Maxwell and Bloch equations with two complex fields and
one real field [9] and generalizes the sine-Gordon theory
to the non–abelian cases on a coset SU(N)/U(N − 1) in
terms of a deformed gauged Wess-Zumino-Witten action
[9]. The optical Bloch equation can be used to describe
dipole spin precession [10], where θ as the strength of the
torque vector agrees with the conventional mechanical in-
terpretation of the SG equation as a continuum limit of
the infinite chain of coupled pendulum equations. This
allows also to interpret the SG field as an precession angle
field induced by the topological phase field. In the typical
case of ‘parallel transportation’ the spin vector will come
back after every loop with a directional change ϕg(T )
(a geometric phase) equal to the curvature enclosed by
the path C [11]. This is the simple monochromatic case
of a loop with conic precession on the sphere (rotation
induced i.e. by a modulated magnetic field) with an ad-
ditional geometric phase given by

ϕg(T ) = 2πJ(1− cos θ), (14)

θ is the vertex cone semiangle. The total phase ϕ(T ) =
2πJ can be decomposed into a dynamic coupling part
ϕd(T ) = 2πJ cos θ and a geometric part ϕg(T ), where
cos θ is a typical spin-orbit or spin-spin coupling term.
A general spin-orbit coupling constant proportional to
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the evolution of the dynamical part can be defined as a
combination of an M -dependent term and a cos(θ)-term

α(M) =
4ϕd(T )

ϕ(T )
, 4ϕd(T ) =

ϕd(T )√
M2 + 1/M2

. (15)

Note, that α can also be defined with spin J proportion-
ality (see the previous work [2], where 1/M -term or y
contribution eq.(2) is missing). Comparing eq.(14) with
eq.(11) the central term is given by

α(M) =
cos θ√

M2 + 1/M2
=

±θ

πMg
. (16)

The coupling strength. Consequently, a mutual
resonant coupling od two identical systems via Coulomb
mapping [3] is proportional to θ and α. The iteration
eq.(11) is invariant with respect to the inversion and
duality M ↔ 1/M . Inversion is the central operation
in linear fractional transformation between local and

non–local holonomy. M as an integral quantum number
describes the phase-locked and single-valued field [2] and
provides for integrability. M -type inversion could also
characterize the relations between the electric and mag-
netic monopole charge (2ge)2 = 1 with (2g/e)2 = M2,
and also between group and phase velocity of a wave
packet in the ground state vgvp = 1 with vp/vg = M2.
The coupling constant and special θ-value or oscil-
lation range is iteratively obtained in eq.(11), where
M = 137 or M = 1/137 from the Dirac theory of
magnetic monopoles [12] provides with Mg = 1 for
1/α = 137.03600960 that fits within some ppb’s to the
Sommerfeld fine structure constant obtained in neutron
interferometry. The meaning of the number 137 remains
unclear. Eq.(11) is an chaotic algorithm, bifurcation
starts above a special values of Mg, one-dimensional
conic coupling [2] has no 1/M2-term within the square
root in eq.(16) and is for big M values slightly stronger
[3].
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