·研究原著·

文章编号 1000-2790(2007)14-1260-04

## 人宫颈癌基因蛋白 B 细胞表位及其 HLA 限制性细胞毒性 T 细胞表位预测分析

# Prediction of B cell epitopes and HLA restricted CTL epitopes of human cervical cancer oncogene protein

LIU An-Ding<sup>1</sup>, YANG Yan<sup>1</sup>, LI Fang-He<sup>1</sup>, LU Meng-Ji<sup>2</sup>, GONG Fei-Li<sup>3</sup>, YANG Dong-Liang<sup>1</sup>

<sup>1</sup>Experimental Medical Center, <sup>4</sup>Institute of Clinical Immunology Tongji Hospital, <sup>2</sup>Department of Pathogenic Biology, <sup>3</sup>Department of Immunology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan 430030, China

[ Abstract ] AIM: To predict the secondary structure, the B cell epitopes and the HLA-A, B restricted T cell epitopes of human cervical cancer oncogene ( HCCR ) protein. METHODS: The secondary structure was predicted by the methods of Proteus and SOPMA. The hydrophilicity, surface probability, flexibility and antigenic index were predicted by the methods of Kyte-Doolittle, Emini, Karplus-Schultz and Jameson-wolf, respectively. According to the above methods, the B cell epitopes for HCCR protein were predicted. HLA-A \* 0201-restricted T cell epitopes were predicted by BIMAS, SYFPEITHI and NetCTL. And the restricted T cell epitopes of HLA-B and the other alleles of HLA-A were predicted by NetCTL. RESULTS: The secondary structure of HCCR1 protein was mainly composed of α- helix. The B cell epitopes were probably located at or adjacent to the N-terminal No. 41 - 53 216 - 228 310 - 325 and 355 - 360 regions. And the five predominant HLA-A \* 0201-restricted T cell epitopes were YLVFLLMYL(152-160), YLFPRQLLI(159-167), LLLHNVV- $LL_{(343-351)}$ ,  $CLFLGIISI_{(138-146)}$  and  $SIPPFANYL_{(145-153)}$ . The HLA-A B restricted T cell epitopes of HCCR protein were probably located at extracelluar domain of protein. CONCLUSION: Prediction of the epitopes of HCCR protein can provide a basis for production of the monoclonal antibody and development of some promising antigen peptides for tumor vaccines.

收稿日期 2007-01-26; 接受日期 2007-02-07

基金项目:国家自然科学基金(30571646);国家重大基础研究项目 (973 )(2005CB522901)

通讯作者:杨东亮. Tel:(027)83662894 Email:dlyang@tjh.tjmu.edu.cn

作者简介 刘安定. 硕士. Tel:(027)83663659 Email:liuandingtjmu @163.com 【 Keywords 】 cervix neoplasms; oncogene proteins; epitopes, B-Lymphocyte; CTL epitopes

【摘 要】目的:预测人宫颈癌基因(human cervical cancer oncogene, HCCR)蛋白的二级结构, B细胞表位及其 HLA-A, B 限制性细胞毒性 T 细胞表位. 方法:综合分析二级结构、亲 水性、柔韧性、表面可及性与抗原性指数 ,预测 HCCR 蛋白的 B 细胞抗原表位 ;利用 BIMAS ,SYFPEITHI 和 NetCTL 方法预 测分析其 HLA-A \* 0201 限制性 CTL 表位 运用 NetCTL 方法 对 HLA-A 的其他等位基因和 HLA-B 限制性 CTL 表位进行预 测分析. 结果: HCCR 蛋白的二级结构主要由 α-螺旋结构组 成 B 细胞优势表位位于 N 端第 41 ~ 53 216 ~ 228 310 ~ 325 和 355~360 区段;预测得到 5 个 HLA-A \* 0201 限制性 CTL 优势表位分别为 YLVFLLMYL(152~160), YLFPRQLLI(159~167), LLLHNVVLL<sub>(343~351)</sub>, CLFLGIISI(138~146) NYL(145-153) HCCR 蛋白 HLA-A B 限制 CTL 表位主要位于胞 外区. 结论:应用多参数预测 HCCR 蛋白 B 细胞表位及其 HLA-A B 限制性细胞毒性 T 细胞表位 ,为进一步实验鉴定其 表位进而制备单克隆抗体和基于 HCCR 抗原的肿瘤免疫学治 疗奠定了基础.

【 关键词】宫颈肿瘤 癌基因蛋白质类 表位 B 淋巴细胞 CTL 表位 【 中图号】R392.1 【 文献标识码】A

#### 0 引言

人宫颈癌基因(human cervical cancer oncogene, HCCR)是近年来发现的与多种肿瘤相关的基因,HCCR 可能作为抑癌基因 p53 的负调控因子,引起肿瘤的发生[1]. 其编码的蛋白可以作为一种重要的肿瘤标志物,在监测和诊断肝细胞癌、乳腺癌、结肠直肠癌等肿瘤方面具有重要的意义,是一种极为灵敏的指标[2-4]. HCCR 蛋白在肿瘤治疗中可以作为一个重要的靶位点[5]. 但到目前为止,人们对其蛋白特性及其表位生物学了解甚少. 我们根据人 HCCR 蛋白质的氨基酸序列,采用免疫信息学,在方法学比较的基础上,联合运用多种方法对 HCCR 蛋白的二级结构、B 细胞表位及其 HLA-A,B 限制性细胞毒性 T 细胞表位进行预测分析. 旨在为进一步鉴定其表位,研制单克隆抗体和基于 HCCR 抗原的肿瘤免疫学治疗奠定基础.

### 1 材料和方法

1.1 材料 HCCR 蛋白的氨基酸全长序列从 NCBI 网站上获取(GenBank accession no. AAK34885),含有 360 个氨基酸 相对分子质量为 41 803.

#### 1.2 方法

- 1.2.1 HCCR 蛋白二级结构预测 采用 Proteus<sup>[6]</sup>, SOPMA<sup>[7]</sup>蛋白质结构预测服务器分别预测 HCCR 蛋白的二级结构。
- 1.2.2 HCCR 蛋白 B 细胞抗原表位的多参数预测 按 Kyte-Doolittle 方案预测氨基酸亲水性; Emini 方案 预测蛋白质的表面可及性; Karplus-Schultz 方案预测蛋白质的柔韧性; Jameson-Wolf 方案预测蛋白质的抗原指数.
- 1.2.3 B 细胞表位的综合分析 综合比较分析上述 方法 辅以对 HCCR 蛋白的二级结构的分析 ,排除二级结构位于 α-螺旋和 β-折叠内不易形成表位的序列 ,预测 HCCR 蛋白的 B 细胞表位.
- 1.2.4 HCCR 抗原 HLA-A \* 0201 限制性细胞毒性 T细胞表位的预测 运用 BIMAS, SYFPEITHI和 NetCTL<sup>[8]</sup>预测服务器,分别对 HCCR 蛋白 HLA-A \* 0201 限制性细胞毒性 T细胞表位进行预测,然后按文献<sup>9]</sup>的方法,同时结合 NetCTL 预测结果,综合分析 HCCR 蛋白 HLA-A \* 0201 限制性细胞毒性 T细胞

表位.

1.2.5 HCCR 抗原 HLA-A 的其他等位基因和 HLA-B 限制性 CTL 表位的预测 运用 NetCTL 在线预测服务器对 HCCR 抗原 HLA-A 的其他等位基因和HLA-B 限制性 CTL 表位进行预测和分析.

### 2 结果

2.1 HCCR 蛋白的二级结构 Proteus 分析结果显 示其二级结构以 α-螺旋为主 ,占 73 % ,且多集中在 中间区域 ,C 末端次之. 无规卷曲占 27% ,主要分布 在 N 端的第 14 ~ 21 ,30 ~ 50 ,115 ~ 121 ,162 ~ 172 , 221~228 239~250 263~270 311~318 和 355~ 360 区域 ;未预测到有 β-折叠结构. 而 SOPMA 方法 预测结果为 HCCR 蛋白 N 端第 13 ~ 52 .66 ~ 85 .111 ~124 139 ~148 160 ~175 221 ~229 263 ~272 310 ~319 349 ~360 区段主要由构成蛋白质柔性区域的 无规卷曲结构、β-转角结构和伸展结构所组成 其他 区域主要由 α-螺旋结构组成 ,两种方法所预测的结 果基本一致. 综合以上两种方法的预测结果,认为 HCCR 蛋白以 α-螺旋结构出现的区域最多 其柔性区 域即功能区主要位于 N 端第 14 ~ 21 30 ~ 50 ,111 ~ 123 162 ~ 172 221 ~ 228 263 ~ 272 310 ~ 319 和 349 ~360 区段(图1).

С 无规卷曲区域 ε β-折叠区域 λ α-螺旋区域 λ 转角区域.

图 1 根据 SOPMA 方法预测的 HCCR 蛋白二级结构

2.2 多参数预测 HCCR 蛋白表位 HCCR 蛋白亲 水性、表面可及性、柔韧性和抗原性指数单参数预测 结果如图 2~5 ,其中高于阈值的肽段即为预测的抗原表位. 将各种参数预测的可能性表位见表 1.



图 2 HCCR 蛋白的亲水性分析

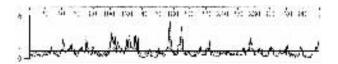



图 3 HCCR 蛋白的表面可及性分析



图 4 HCCR 蛋白骨架的柔韧性分析



图 5 HCCR 蛋白的抗原指数性分析

2.3 HCCR 蛋白 B 细胞抗原表位的综合预测 通过联合预测亲水性、表面可及性、柔韧性和抗原性指数的方法分析 HCCR 蛋白潜在的抗原决定簇,结果显示在 N 端第  $41 \sim 53$ ,63  $\sim 83$ ,99  $\sim 112$ ,121  $\sim 139$ ,

172~193,221~228,274~280,310~325 和 355~360 区段内或者附近存在着抗原表位 根据蛋白质的 二级结构分析结果显示,在第 101~109,130~136,172~193 和 275~280 区段主要是作为骨架起稳定作用的 a-螺旋结构所组成,形成表位的可能性比较

小. 综合比较分析 N 端第 41 ~ 53 216 ~ 228 310 ~ 325 和 355 ~ 360 区段满足亲水性、可及性、柔韧性和抗原性 在二级结构上主要是由无规卷曲结构组成,最可能为 HCCR 蛋白的优势 B 细胞表位.

表 1 HCCR 蛋白优势 B 细胞表位的综合比较

| 预测方案  | 预测表位                                                                                          |
|-------|-----------------------------------------------------------------------------------------------|
| 亲水性   | 23 ~ 32 39 ~ 57 65 ~ 83 98 ~ 138 171 ~ 195 210 ~ 229 239 ~ 248 271 ~ 282 314 ~ 328 355 ~ 360  |
| 表面可及性 | 41 ~53 63 ~82 100 ~136 172 ~193 221 ~229 275 ~282 315 ~325 355 ~360                           |
| 柔韧性   | 31 ~53 62 ~70 ,100 ~109 ,130 ~136 ,171 ~178 ,187 ~193 ,219 ~226 ,266 ~281 ,311 ~323 ,355 ~360 |
| 抗原性指数 | 26 ~55 64 ~82 99 ~110 121 ~140 172 ~195 213 ~229 269 ~281 287 ~293 300 ~328 337 ~343 355 ~360 |
| 二级结构  | 14 ~21 30 ~50 111 ~123 162 ~172 221 ~228 263 ~272 310 ~319 349 ~360                           |
| 综合分析  | 41 ~53 ,216 ~228 310 ~325 355 ~360                                                            |

2.4 HCCR 抗原 HLA-A \* 0201 限制性细胞毒性 T 细胞表位的预测 将 BIMAS 和 SYFPEITHI 的综合预测结果结合 NetCTL( 阈值设为 0.80 )预测结果进行综合分析 获取评分显著高与其他的 5 条 HCCR 抗原 HLA-A \* 0201 限制性细胞毒性 T 细胞候选表位(表2 ) 分别为 YLVFLLMYL(152~160) ,YLFPRQLLI(159~167) , LLLHNVVLL(343~351) , CLFLGIISI(138~146) 和 SIPPFA-NYL(145~153). 2.5 HCCR 抗原 HLA-A 的其他等位基因和 HLA-B 限制性 CTL 表位的预测 利用远程预测 , 登陆 NetCTL ,对 A1 ,A3 ,A24 ,A26 ,B7 ,B8 ,B2 ,B39 , B44 ,B58 和 B62 限制性 CTL 表位的预测 ,选取综合评分前 5 名的序列作为优势候选表位(表 3 ) ,分析发现 HCCR 蛋白 HLA-A ,B 限制 CTL 表位主要位于蛋

#### 白的胞外区.

表 2 BIMAS 结合 SYFPEITHI 和 NetCTL 分别预测 HLA-A \* 0201 限制性 CTL 表位

| , | 位置  | 序列        | SYFP-<br>EITHI | BIMAS | 总分     | NetCTL<br>综合评分 |
|---|-----|-----------|----------------|-------|--------|----------------|
| ٠ | 152 | YLVFLLMYL | 26             | 1 243 | 32 320 | 1.4202         |
|   | 343 | LLLHNVVLL | 30             | 309   | 9 270  | 1.1598         |
|   | 159 | YLFPRQLLI | 24             | 178   | 4 272  | 1.4448         |
|   | 138 | CLFLGIISI | 27             | 89    | 2 403  | 0.9455         |
|   | 145 | SIPPFANYL | 24             | 61    | 1 464  | 0.8134         |

总分 ProPred-I 和 SYFPEITHI 各自评分之乘积.

表 3 NetCTL 预测 HCCR 蛋白 HLA-A B 限制性 CTL 表位

| 等位基因 | 位置  | 序列        |
|------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|-----------|
| A1   | 189 | QSHPEIISY | 63  | KTKAINGKY | 176 | QTDFLDIYH | 300 | AQEVKSACY | 175 | QQTDFLDIY |
| A3   | 57  | MSYVVTKTK | 166 | LIRHFWTPK | 55  | NLMSYVVTK | 63  | KTKAINGKY | 251 | ALHVKALSR |
| A24  | 178 | DFLDIYHAF | 81  | RFYILYTIF | 324 | TWLGEWLQI | 328 | EWLQISCSL | 196 | SYLEKVIPL |
| A26  | 52  | DVKNLMSYV | 193 | EIISYLEKV | 347 | NVVLLSTNY | 114 | NIKFHQLPY | 63  | KTKAINGKY |
| B7   | 39  | APRSSKLHL | 5   | RVCWARSAV | 259 | RAMLLTSYL | 120 | LPYREMEHL | 102 | KARRIKTNM |
| B8   | 253 | HVKALSRAM | 275 | RLKTHTTVI | 282 | VIHQLDKAL | 27  | RLQLGRSGL | 59  | YVVTKTKAI |
| B27  | 104 | RRIKTNMWK | 129 | RQFRQDVTK | 258 | SRAMLLTSY | 274 | HRLKTHTTV | 284 | HQLDKALAK |
| B39  | 77  | RHFPRFYIL | 278 | THTTVIHQL | 225 | THPAIHDIL | 131 | FRQDVTKCL | 241 | NHPLGMNQL |
| B44  | 236 | RECFSNHPL | 301 | QEVKSACYL | 318 | GEDRCRTWL | 337 | KEAELSLLL | 123 | REMEHLRQF |
| B58  | 204 | LISDAGLRW | 15  | GSAVTPGHF | 144 | ISIPPFANY | 89  | FMKGLQMLW | 29  | QLGRSGLAW |
| B62  | 189 | QSHPEIISY | 300 | AQEVKSACY | 144 | ISIPPFANY | 63  | KTKAINGKY | 249 | LQALHVKAL |

### 3 讨论

HCCR 是近年发现的与人类多种肿瘤相关的基因,在宫颈癌、肝细胞癌、乳腺癌、白血病等肿瘤中呈过量表达<sup>[1]</sup>. HCCR 蛋白在肿瘤免疫治疗中可以作为一个重要的靶位点<sup>[5]</sup>,预测其抗原表位,可为制备HCCR 特异性单克隆抗体、HCCR 诊断试剂的开发和针对 HCCR 抗原的肿瘤免疫预防和免疫学治疗奠定基础.

根据 Kyte-Doolittle 预测氨基酸亲水性方案、Emini 预测蛋白质的表面可及性方案、Jameson-Wolf 预测 蛋白质的抗原指数方案分别对 HCCR 蛋白可能的 B 细胞表位进行了预测 综合各单参数预测的结果 发 现 N 端第 41 ~ 53 63 ~ 83 99 ~ 112 121 ~ 139 172 ~ 193 221 ~ 228 274 ~ 280 310 ~ 325 和 355 ~ 360 区段 具有较好的亲水性、可及性、柔韧性和抗原性指数. 蛋白质的二级结构也是预测抗原表位的重要信息 α-螺旋、β-折叠等二级结构的化学键键能比较高 不易 形成抗原表位序列 ,而蛋白质二级结构中 β-转角及 无规卷曲结构 往往突出在蛋白的表面 从而构成蛋 白质的功能区,因此该区域内常含有 B 细胞的优势 抗原表位. 因此得到单参数的预测结果后 还要结合 二级结构的预测结果来排除不易形成表位的序列. 综合亲水性、可及性、柔韧性和抗原指数和二级结构 预测的结果 最终确定了 HCCR 蛋白的潜在 B 细胞 优势表位.

HCCR 蛋白在多种肿瘤中过度表达,可以作为免 疫治疗的一个重要靶点 研究 HCCR 蛋白序列的 CTL 表位可为肿瘤免疫治疗开辟新的途径. 寻找和鉴定 CTL 识别的肿瘤特异性抗原肽是肿瘤免疫治疗的关 键 而利用免疫信息学进行抗原表位的预测是重要的 手段之一. BIMAS 和 SYFPEITHI 是最常用的两大 CTL 表位预测程序. 由于数据库和算法的差异 将导 致预测结构存在差异. 将两种预测程序结合起来 ,可 以提高表位预测的准确率[9]. 由于 BIMAS 和 SYF-PEITHI 都是基于抗原肽与 MHC I 类结合特性而建 立起来的方法,未考虑针对抗原加工处理过程的预 测. 而蛋白酶体的裂解和 TAP 转运对 CTL 表位的形 成至关重要. NetCTL 是近年来 Larsen MV 等建立起 来 CTL 表位的整合预测方法,包括对抗原肽与 MHC I 类分子结合特性、TAP 转运效率、蛋白酶体裂解基 序的综合预测 其综合性能要比目前公认的两大预测 程序 BIMAS SYFPEITHI 要高<sup>[8]</sup>. 我们将 BIMAS SY-FPEITHI 和 NetCT 预测的结果进行综合分析 结果发 现联合 BIMAS 和 SYFPEITHI 所得到的高评分序列,同样在 NetCTL 预测中具有很高的评分. 综合分析以上分析 获取 5 条 HCCR 抗原 HLA-A \* 0201 限制性细胞毒性 T 细胞优势候选表位. 同时,通过 NetCTL对 HLA-A 的其他等位基因和 HLA-B 限制性 CTL 表位进行了预测和分析,可为构建 HLA 不同等位基因限制的、基于混合 T 细胞表位的肿瘤治疗性疫苗提供理论依据.

本研究通过生物信息学方法对 HCCR 蛋白二级结构 B 细胞表位及其 HLA-A ,B 限制性细胞毒性 T 细胞表位进行了预测分析 ,为进一步研究该蛋白单克隆抗体的制备奠定了理论基础 ,也为以 HCCR 蛋白作为靶分子的肿瘤免疫治疗提供了新的途径 ,其预测的结果有待进一步的实验加以验证.

#### 【参考文献】

- [1] Ko J, Lee YH, Hwang SY, et al. Identification and differential expression of novel human cervical cancer oncogene HCCR-2 in human cancers and its involvement in p53 stabilization [J]. Oncogene, 2003, 22(30):4679-4689.
- [2] Yoon SK, Lim NK, Ha SA, et al. The human cervical cancer oncogene protein is a biomarker for human hepatocellular carcinoma [J]. Cancer Res, 2004, 64(15):5434-5441.
- [3] Jung SS, Park HS, Lee IJ, et al. The HCCR oncoprotein as a biomarker for human breast cancer [J]. Clin Cancer Res, 2005, 11 (21):7700-7708.
- [4] Shin SM, Chung YJ, Oh ST, et al. HCCR-1-interacting molecule "deleted in polyposis 1" plays a tumor-suppressor role in colon carcinogenesis [J]. Gastroenterology, 2006, 130(7) 2074 - 2086.
- [ 5 ] Chung YJ, Kim JW. Novel oncogene HCCR: Its diagnostic and therapeutic implications for cancer [ J ]. Histol Histopathol, 2005, 20 (3):999-1003.
- [ 6 ] Montgomerie S , Sundararaj S , Gallin WJ ,et al. Improving the accuracy of protein secondary structure prediction using structural alignment [ J ]. BMC Bioinformatics ,2006 ,7 301.
- [7] Geourjon C Deleage G. SOPMA significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments J. Comput Appl Biosci , 1995, 11(6) 581-684.
- [8] Larsen MV, Lundegaard C, Kasper L, et al. An integrative approach to CTL epitope prediction: A combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions [J]. Eur J Immunol, 2005, 35(8):2295-2303.
- [ 9 ] Panagiotopoulos C , Qin H , Tan R , et al. Identification of a β-cell-specific HLA class I Restricted epitope in type 1 diabetes [ J ]. Diabetes , 2003 52(11 ) 2647 2651.

编辑 王 睿