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Abstract

This paper addresses the problem that Bayesian statistical inference can-

not accommodate theory change, and proposes a framework for dealing

with such changes. It first presents a scheme for generating predictions

from observations by means of hypotheses. An example shows how the hy-

potheses represent the theoretical structure underlying the scheme. This is

followed by an example of a change of hypotheses. The paper then presents

a general framework for hypotheses change, and proposes the minimiza-

tion of the distance between hypotheses as a rationality criterion. Finally

the paper discusses the import of this for Bayesian statistical inference.

1. Introduction. This paper is concerned with Bayesian statistical infer-

ences. These inferences are here considered in a scheme that generates predic-

tions by means of hypotheses: Bayesian updating is used to adapt a probability

over hypotheses to known observations, and this adapted probability is further

used to generate predictions over unknown observations. The hypotheses in

the scheme represent the theoretical structure that underlies the predictions.

However, after we have chosen these hypotheses and a prior probability over

them, updating fully determines the probabilities over the hypotheses at any

later stage, and thus also the predictions resulting from that. There is no room

for any further amendments to the hypotheses or the prior over them after they
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have been chosen. In Bayesian statistical inference, the theoretical structure is

therefore fixed.

The fixity of the theoretical structure in the above schemes is a specific

form of a problem for Bayesianism on the whole. In the philosophy of sci-

ence it has been formulated, among others by Earman (1992, 195–198), as the

problem that Bayesianism fails to accommodate theory change. But the fact

that Bayesian inference is in this sense dogmatic is at the origin of many other

criticisms, including the criticism of Dawid (1982) that Bayesian inference is

by definition calibrated. Furthermore, as hypotheses can be considered as spe-

cific terms in the observation language, changing the hypotheses in the scheme

comes down to changing the language with which the predictions are made.

The same problem can therefore be seen in light of the fact that Bayesianism

fails to accommodate language change, as noted by Gillies (2000) and discussed

elaborately by Williamson (2003).

This paper addresses the above problems with Bayesianism. More in partic-

ular, it proposes a way of dealing with theory change within Bayesian statistical

inference. The plan of the paper is to introduce the Bayesian scheme for gen-

erating predictions from hypotheses, to present an example of such a scheme,

then to show in the example how hypotheses can be changed, and finally to

give a general framework for it.

2. Hypotheses, conditioning and predictions. This section describes the

schemes for making predictions. It defines observations and observational hy-

potheses in terms of an observational algebra, and it presents degrees of belief

as probability assignments over this algebra. This set-theoretical underpinning

may seem unnecessary in the context of a short paper. However, as will be-

come apparent in sections 5 and 6, the underpinning is essential for a correct

understanding of hypotheses change.

The predictions range over possible observations K, a set of consecutive

natural numbers, say {0, 1}. At every time t we observe one number qt ∈ K.
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We can represent these observations in an observational algebra. Let Kω be

the space of all infinite observation sequences e:

e = q1q2q3 . . . (1)

The observational algebra Q, a so-called cylindrical σ-algebra, consists of all

possible subsets of the space Kω. If we denote the t-th element in a series e

with e(t), we can define an observation Qq
t as an element of the algebra Q as

follows:

Qq
t = {e ∈ Kω | e(t) = q}. (2)

Note that there is a distinction between the observations Qq
t and the values of

observations q. The values, represented with small letters, are natural numbers.

The observations, denoted with large letters, are elements of the algebra Q.

In the same way we can define an element in the algebra that refers to a finite

sequence of observations. If we define the ordered sequence et = 〈q1q2 . . . qt〉,

we can write

Eet
t = {e ∈ Kω | ∀t′ ≤ t : e(t′) = qt′}, (3)

Again, it must be noted that the small letters et refer to a sequence of natural

numbers, while the large letters Et are elements of the algebra and carry a

sequence of natural numbers as argument. The observations and sequences of

observations are related to each other in the natural way:

Qq
t+1 ∩ Et = Et+1. (4)

As in this equation, I normally refer to sequences of observations with the

expression Et, thereby suppressing the reference to the sequence et.

Observational hypotheses can also be seen as elements of the observational

algebra. If we say of an observational hypothesis h that its truth can be de-

termined as a function of an infinitely long sequence of observations e, then we

can define hypotheses as subsets of Kω in the following way:

H = {e ∈ Kω |Wh(e) = 1}. (5)
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Here Wh(e) = 1 if and only if the proposition h is true of e, and Wh(e) = 0

otherwise. The hypotheses can thus be an argument of the same probability

functions over the observational algebra. A partition of hypotheses is a collec-

tion H = {H0,H1, . . . HN} defined by the following condition for the indicator

functions Whn :

∀e ∈ Kω :
∑

n

Whn(e) = 1. (6)

This means that the hypotheses Hn are mutually exclusive and jointly exhaus-

tive sets in Kω.

Belief states are represented with probability functions over Q. They take

observations Qq
t , sequences Et, and hypotheses Hn as arguments. The functions

are defined relative to a partition H and a sequence of known observations et:

the function p[H,et] represents the belief state upon observing Et under the

assumption of a partition H. It can be constructed by conditioning a prior

probability function p[H,e0] on the observations Et:

p[H,et]( · ) = p[H,e0]( · |Et). (7)

Because of this, we have p[H,et](Et) = 1. Updating the probability by simple

conditioning is known as Bayes’ rule. Both the probabilities assigned to obser-

vations and those assigned to hypotheses can be updated for new observations

in this way. The probability before updating is called the prior probability, and

the one after updating the posterior.

To calculate the predictions, we can employ a partition of hypotheses, and

apply the law of total probability:

p[H,et](Q
q
t+1) =

∑
n

p[H,et](Hn) p[H,et](Q
q
t+1|Hn). (8)

The terms p[H,et](Q
q
t+1|Hn) are called the posterior likelihoods of Qq

t+1 on the

hypotheses Hn. The prediction is obtained by weighing these posterior likeli-

hoods with the posterior probability over the hypotheses, p[H,et](Hn).

Both posterior probabilities of equation (8) can be obtained from a Bayesian

update of the prior probability p[H,e0] according to expression (7). In this paper
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the likelihoods do not change upon conditioning:

p[H,et](Q
q
t+1|Hn) = p[H,e0](Q

q
t+1|Hn). (9)

That is, the observations influence the predictions only via the probability over

the hypotheses. Part of the input probabilities for generating the predictions

p[H,et](Q
q
t+1) are therefore the likelihoods p[H,e0](Q

q
t+1|Hn).

The predictions are further determined by the probability assignment over

the hypotheses, p[H,et](Hn). This probability can be determined by means of

the relation

p[H,ei](Hn) = p[H,ei−1](Hn)
p[H,ei−1](Q

q
i |Hn)

p[H,ei−1](Q
q
i )

, (10)

where q equals the last number in the sequence ei. Note that the denominator

p[H,ei−1](Q
q
i ) can be rewritten with equation (8), substituting t = i− 1. Recall

further that the likelihoods p[H,ei−1](Q
q
i |Hn) are in this paper equal for all se-

quences ei−1, as expressed in equation (9). The posterior probability p[H,et](Hn)

can therefore be determined recursively by the prior probability p[H,e0](Hn) for

all n, and the likelihoods p[H,e0](Q
q
i |Hn) for all n and i ≤ t. These are the other

input probabilities for generating the predictions.

In sum, predictions can be generated if we assume hypotheses, their likeli-

hoods, and a prior probability over them. The prior and the likelihoods are first

used to determine the posterior probability over the partition. The likelihoods

are then used together with this probability over the partition for generating

the prediction itself. The whole construction that uses hypotheses to generate

predictions is called the hypotheses scheme.

3. Contaminated cows. This section gives an example of a hypotheses sche-

me. Needless to say, the case presented falls short of actual scientific cases in

many respects. The focus here is on the conceptual issues rather than on actual

applications.

Consider a veterinary investigating a herd of cows during an epidemic, clas-

sifying them into contaminated and uncontaminated. The farmer claims that
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the herd has been treated with a drug that reduces the risk of contamination.

It is an accepted fact about the epidemic that the average incidence rate among

untreated cows is 0.4, as more than half of the cows shows a natural resistance

against contamination from other cows. The incidence rate among treated cows

is 0.2 on average, because the drug is not always effective. The aim of the in-

vestigation is to decide whether the cows have been treated with the drug, and

further to predict the incidence rate of the contamination in the herd.

The observations of the veterinary consist in test results concerning a num-

ber of cows. The result of testing cow t can be that it is contaminated, qt = 1,

or that it is not, qt = 0. The test results can then be framed in the observa-

tional algebra. The veterinary may set up a scheme using a partition D of two

hypotheses on treatment with the drug, in which D1 means that the cows are

in fact treated and D0 means that they are not. It must be noted that these

hypotheses are not linked to observations directly, since the observations only

concern contaminations of cows. The relation that treatment bears to the ob-

servations is given by the incidence rates, and this relation is purely statistical.

For the observational content of the hypothesis on treatment D1 we may take

Wd1(e) =


1 if f(e) = 0.2,

0 otherwise,
(11)

where f(e) is the relative frequency of results qt = 1 in the infinite sequence

e. The hypothesis D0 may be defined in a similar way using f(e) = 0.4. A

more precise definition is that the hypotheses comprise all so-called Von Mises

collectives for the given incidence rates, but for present purposes the loose

definition suffices.

Being sets in the observational algebra, the hypotheses can also appear as

arguments in the probability functions p[D,et]. The fact that the veterinary is

undecided on whether the farmer has treated his cows can be reflected in

p[D,e0](D0) = p[D,e0](D1) = 0.5. (12)
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Hypotheses on other relative frequencies, which are strictly speaking part of

the partition, are thus given a zero probability. The likelihoods of cow t being

contaminated on the hypotheses that it has or has not been treated are

p[D,e0](Q
1
t |D1) = 0.2, (13)

p[D,e0](Q
1
t |D0) = 0.4. (14)

These likelihoods are determined by the hypotheses. I further assume that the

estimated incidence rates are not affected by the running investigations, so that

equation (9) holds.

With these values in place, the veterinary can start to predict the incidence

rate in the herd, and decide over the treatment efforts by the farmer. Imagine

that the first five test results are positive,

e5 = 11111. (15)

Subsequent updating on these test results yields the following probabilities and

predictions:

Number of tests t 0 1 2 3 4 5

p[D,e5](D1) 0.50 0.33 0.20 0.11 0.06 0.03

p[D,e5](Q1
t+1) 0.30 0.33 0.36 0.38 0.39 0.39

The probability that the farmer has treated his cows diminishes, and the prob-

ability that the next test result is positive tends to 0.4.

The conclusions expressed in the above values are that the farmer very

probably did not treat his cows, and that a random cow from the herd has a

probability close to 0.4 of being contaminated. It must be stressed, however,

that these conclusions follow from the test results only if they are combined

with the hypotheses scheme D. The scheme offers two possible hypotheses,

and the observations are used to divide the probability between them. It is

only relative to the partition D that most probability settles on D0 after e5,

so that the predictions are equal to the likelihoods that D0 prescribes for the
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test results. This example thus illustrates that the hypotheses in the scheme

determine a range of probabilistic patterns, from which the observations may

select the best fitting one. The hypotheses partition functions as an assumption

on what patterns can be picked up in the observations. The partition may

therefore be called an inductive assumption.

Finally, it can be noted that the partition of hypotheses is associated with

the theory underlying the scheme. In this case it concerns a classification of

a state of the cows into treated and not treated. Both these concepts come

with specific observational contents, which define the relevant patterns in the

observations. There is no conceptual space within the hypotheses scheme, at

least not as it is set up in the above, to conclude anything other than that the

cows are treated or not treated. In order to create this conceptual space, we

must add hypotheses to the scheme.

4. Careless vaccination. This section shows how the hypotheses employed

in the above scheme can be changed. I describe this change, and illustrate that

it allows us to derive different conclusions and predictions.

Imagine that the veterinary becomes suspicious of the test results. After all,

more than half of the cows are normally immune. The sequence of test results

must therefore be a rather unusual stochastic fluctuation on the average relative

frequency of 0.4. The veterinary therefore decides to reconsider the inductive

assumptions that underly the scheme, and to run a number of additional tests

with an adapted scheme. In particular, she investigates the drug that the farmer

claims to have used, and finds that it is a vaccinate with a rather unstable

quality. In most cases it works very well, even reducing the risk of contamination

to 0.025, but careless use turns the vaccinate into a substance that causes a

portion of 0.9 cows to be, or at least to appear, contaminated after treatment.

The hypotheses that the veterinary wants to add to the scheme are that the

drug has been used either carefully or carelessly.

The additional hypotheses may be collected in a separate partition C, with
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C1 for careful and C0 for careless treatment. Both hypotheses only apply to the

case in which the cows have actually been treated, D1. The combined partition

is B = {B0, B10, B11} in which B0 = D0, B10 = D1 · C0, and B11 = D1 · C1.

Hypothesis B0 is again defined with the relative frequency of 0.4, and the new

hypotheses B10 and B11 can be defined with 0.9 and 0.025 respectively. These

three relative frequencies define the new partition.

It is notable that the hypotheses B10 and B11 cannot be viewed as intersec-

tions D1∩C0 and D1∩C1: judged from the definition using relative frequencies,

the original set D1 and both sets B10 and B11 are disjoint. The relation between

the old and the new hypotheses is a rather different one. We must imagine that

within every infinite sequence e ∈ D1, that is, within every possible world in

which all cows are treated, we make a further selection of the observations

qt into those concerning cows that have been vaccinated with care, and those

concerning cows that have been vaccinated carelessly. So B10 and B11 can be

distilled from the old one by breaking up every e ∈ D1, for which f(e) = 0.2,

into two subrows e0 and e1 by means of a place selection, taking care that the

relative frequencies of the two subrows are 0.9 and 0.025 respectively, and by

grouping these subrows into B10 and B11. Because 0.025 < 0.2 < 0.9, such

place selections can always be constructed.

The likelihoods of the hypotheses may again be equated to the relative

frequencies that define the hypotheses:

p[B,e0](Q
1
t |B10) = 0.9, (16)

p[B,e0](Q
1
t |B11) = 0.025. (17)

In order to arrive at the overall incidence rate of 0.2 for treated cows, the

veterinary may further assume that a portion of 0.2 of all farmers do not treat

the vaccinate with the necessary care, as 0.2× 0.9 + (1− 0.2)× 0.025 = 0.2. I

come back to this choice in section 6. Finally, using the probability assignment

after five tests, the combined probability of treatment with the drug and the
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lack of care is

p[B,e5](B10) = 0.03× 0.2 = 0.006 (18)

It must be noted that with the employment of B, the probability over the

observational algebra really undergoes an external shock: instead of allocating

0.030 probability on the set D1, we now allocate 0.006 on B10 and 0.024 on

B11.

With these new hypotheses and the associated inductive assumptions, the

veterinary can run a number of additional tests. Let us say that the next ten

test results are all positive too,

e15 = 111111111111111. (19)

Subsequent updating on these test results yields the following probabilities and

predictions:

Number of tests t 5 7 9 11 13 15

p[B,e15](B10) 0.01 0.03 0.14 0.49 0.80 0.95

p[B,e15](Q1
t+1) 0.39 0.42 0.47 0.62 0.80 0.88

Now the probability for B10 approaches 1, while the predictions for a cow in

the herd to be contaminated tend to 0.9. Clearly these values differ from those

that were to be expected on the basis of D.

The conclusions expressed in these values are that the farmer did treat his

cows with the drug, but that he did not apply it with the necessary care. The

further conclusion is that the incidence rate of the epidemic in his herd is 0.9.

Again, these conclusions are drawn from the test results in combination with

the inductive assumptions of partition B. It is only when compared to the other

members of the partition that the hypothesis B10, which prescribes an incidence

rate of 0.9, fits the test results best. For present purposes, however, it is most

notable that these conclusions differ from those derivable from D.
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5. A framework for changing partitions. The above illustrates how we

can change a partition of hypotheses during an update procedure. This section

gives a general framework for such changes, and draws attention to the need

for new criteria of rationality to guide them.

On the change of partition itself I can be relatively brief. Let us say that the

old partition H = {H0,H1, . . . ,HN} consists of hypotheses Hn with likelihoods

p[H,et](Q
q
t+1|Hn) = θq

n, (20)

The addition of a partition F = {F0, F1, . . . , FM} to this partition generates a

combined partition G = H × F , which consists of N × M hypotheses Gnm =

Hn ·Fm. Each of these hypotheses may be associated with a relative frequency

of the observation q, denoted γq
nm, so that

p[G,et](Q
q
t+1|Gnm) = γq

nm. (21)

The details of the partition change may be such that for some of the Hn we

have that γq
nm = θq

n for all q and m. We can then collect the hypotheses Gnm

under the single index number n, as for example B0 above. More in general,

if two hypotheses Gnm and Gn′m′ are such that γq
nm = γq

n′m′ for all q, we can

merge them into a single hypothesis. In the extreme case in which for all q the

γq
nm vary only with m, the change of partition comes down to a replacement of

H by F .

With the introduction of new hypotheses, the probability over the obser-

vational algebra undergoes an external shock. First, the probability over the

hypotheses themselves changes. But since the new hypotheses have different

likelihoods, the probability over most other elements of the algebra changes

as well. It is in this paper assumed that at the time of change τ , the new

probability assignment over the hypotheses observes the following restriction:∑
m

p[G,eτ ](Gnm) = p[H,eτ ](Hn). (22)

That is, the probability assignment arrived at by updating over H is taken over

into the new partition G. This restriction serves to link every collection ∪mGnm
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to the original hypotheses Hn, but it can be dropped if further details of the

partition change permit it. Finally, within the limits set by this restriction, the

probabilities of the hypotheses Gnm can vary freely.

It can be noted that the change in probability due to partition change is not

one that can be represented as Bayesian conditioning. Conditioning determines

how to adapt probability assignments if for some observation Qq
t or Et the

probability is externally fixed to 1. It is quite different to set the probability

of a number of hypotheses Hn to zero, and to redistribute this probability

over new hypotheses Gnm. A partition change is therefore an external shock

to the probability assignment to which we cannot apply Bayesian updating.

Now there are many arguments to the effect that Bayesian updating is the

only rational way to adapt a probability assignment to new information, but

these arguments do not apply in this case. It seems that the possibility of

partition change necessitates new criteria of rationality, and the definition of

an associated update operation.

6. Distance between partitions. This section answers the need for a ratio-

nality criterion and an associated update operation. In particular, it elaborates

on a distance function between the old and the new partition, and shows how

to minimize this distance during the partition change.

Williamson (2003) argues that changes in the assignment must be conser-

vative, that is, as small as possible, and further that such conservatism can be

explicated by a minimization of the cross-entropy distance function between the

old probability p0 and the new probability p, under the restrictions imposed by

the external shock. The distance function is defined by

∆(p, p0) =
∑
U

p(U) log
p(U)
p0(U)

, (23)

where the index U runs over all sets in the finite algebra over which p0 and

p are defined. As elaborated in Kullback (1959) and Paris (1994, 120–126),

minimizing this distance under the external restrictions effectively minimizes
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the information change that is induced in the probability assignment by the

external shock. Interestingly, the operation of minimizing cross-entropy coin-

cides with the operation of a Bayesian update in the case that some probability

p[H,et](Q
q
t ) is restricted to 1. It therefore accords with Bayesian statistical in-

ference to adopt the minimization of cross-entropy as the update operation in

cases of partition change.

We are not yet done with the update operation for partition change. For one

thing, the above distance function blows up if the algebra contains an infinite

number of elements, as is the case for the algebra Q. We need to select a

finite collection of elements of the algebra, for which we may then minimize

the distance between the old and the new probability assignment. As already

indicated in the example, it is rather intuitive to choose a minimization of

the distance between the likelihoods of Hn and of the associated collection

∪mGnm: the likelihoods fully express the hypotheses, and the distance between

the likelihoods is therefore an intuitive measure for the closeness of the two

partitions.

A further reason for choosing this collection can be found in the relation

between the old and the new hypotheses. Recall that the likelihoods of obser-

vations Qq
t in Hn are determined by the relative frequencies of the observations

q ∈ K within the possible worlds for which Hn is true. With the change of

hypotheses, we effectively make a further division of these possible worlds into

the hypotheses Gnm: each infinite sequence of observations e ∈ Hn, having a

relative frequency θq
n, must be split into M infinite subsequences em, having

relative frequencies γq
nm, and these subsequences can then be incorporated into

separate hypotheses, em ∈ Gnm. Because the hypotheses Gnm are derived from

the original hypotheses Hn in this way, we may expect the relative frequency

associated with the aggregate ∪mGnm to be the same as, or at least close to,

the original relative frequency associated with Hn.

Any hypothesis prescribes the likelihoods for infinitely many observations

Qq
τ+t, associated with different times t ≥ 0. However, these likelihoods are in
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this paper constant, and it seems natural to define the distance between the

partitions as the distance between the likelihoods at a single time τ + t. For p0

we can use the old likelihoods p[H,eτ ](Q
q
τ+t|Hn). For p we use the aggregated

likelihoods, given by

γq
n = p[G,eτ ](Q

q
τ+t| ∪m Gnm)

=
∑
m

p[G,eτ ](Gnm)∑
m p[G,eτ ](Gnm)

p[G,eτ ](Q
q
τ+t|Gnm) (24)

=
∑
m

ρnmγq
nm. (25)

Here the ρnm are defined by the fraction in equation (24), so that
∑

m ρnm = 1.

The γq
n are a function of these ρnm.

We can now use the distance function to find the aggregated likelihoods

p[G,eτ ](Q
q
τ+t| ∪m Gnm) that are closest to the likelihoods p[H,eτ ](Q

q
τ+t|Hn), for

any time t. These distances are defined for each hypothesis Hn separately:

∆n(ρnm) =
∑

q

γq
n log

γq
n

θq
n
. (26)

The distance is a function of the fractions ρnm, which determine how the proba-

bility of Hn is distributed over the Gnm. The update operation after a hypothe-

ses change is to find, for every Hn separately, the values of ρnm that minimize

the distance function ∆n.

This can be employed to provide a further underpinning for the choice of the

probabilities p[B,e5](B10) and p[B,e5](B11) in the example. It was stated there

that the veterinary chooses these probabilities in order to arrive at the overall

incidence rate of 0.2. Note that the distance between the likelihoods of H and

the aggregated likelihoods of G is zero and therefore minimal if we find values

for ρnm so that γq
n =

∑
m ρnmγnm = θq

n. In the case of the partitions D and

B, the equation simply becomes 0.9 × ρ10 + 0.025 × (1 − ρ10) = 0.2, for which

ρ10 = 0.2 is the solution.

It must be stressed that the above is not the full story on partition change.

There are many cases of partition change that are not covered by the above

framework, but that can in principle be treated in a similar way. One such case
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deserves separate attention here. The above example presents a probability as-

signment that is not open-minded: almost all hypotheses on relative frequencies

are given a zero probability. This may cause the impression that the framework

for partition change can only be applied if the old probability assignment is not

open-minded. It may be hard to see what other hypotheses can be added if, for

instance, the prior probability already includes all possible hypotheses on rela-

tive frequencies. However, the above framework can also be used to change a

partition of all hypotheses on relative frequencies into a partition of hypotheses

that concern Markov processes. The application of the framework for partition

change is thus not limited to cases in which the prior is not open-minded.

7. Concluding remarks. The above shows how we can frame a partition

change, and provides a procedure to render this change rational, employing a

distance function between the partitions. I complete the paper with a sum-

mary and some remarks on the proposed framework in the context of Bayesian

statistical inference.

The proposed framework enables us to adapt the hypotheses that function

in a scheme for making predictions. By writing down the predictions in terms

of such hypotheses schemes, I locate the theoretical structure underlying the

predictions inside the probability assignment. Theoretical developments can

therefore be framed as external shocks to the probability assignment represent-

ing the opinions, just as new observations. I then argue that the operation

that updates the assignment for the external shock is a generalized version of

Bayesian conditioning, namely cross-entropy minimization. The framework is

therefore a natural extension of Bayesian statistical inference. On the whole,

the paper proposes an answer to the problem that Bayesian statistical inference

cannot accommodate theory change.

The paper may also fulfill a role in an older discussion between inductivists

and Popperians: the above basically shows how we can encompass a notion of

conjecture within an inductivist setting. It is a typical feature of Carnapian
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inductive logic that there is no room for an explicit formulation of inductive

assumptions, as such assumptions are part and parcel of the choice of language.

Conjectures can therefore not be captured within a Carnapian logic. However,

the above framework locates the premisses in the hypotheses schemes, and

further allows us to change them. It provides a truly nonmonotonic probabilistic

inductive logic, in the sense that the inductive assumptions may be altered

underway. It is hoped that this paper is a first step in freeing inductive logic

from its dependence on language.
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