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If the quantum states of measured pairs are entangled, then there are triplets of experimental
configurations for which Bell’s original inequality is violated. This paper gives a concise
characterization of the entire range of possible triplets of polarization measurements on
entangled photon pairs for which the inequality is violated.
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Quantum entanglement is a key formal feature common to many of the well-known conceptual
conundrums that arise in quantum mechanics including the famous paradoxes of Einstein,
Podolsky, and Rosen (EPR) [1] and Schrödinger’s cat [2]. The latter is a particularly graphic
illustration of the well-known measurement problem. Quantum entanglement (EPR-correlations)
typically occurs when two or more quantum systems interact, though interaction is not a
necessary condition for it to occur (as in fermion systems). The state of an entangled system is
represented as a nonfactorizable superposition of product states; whereas, that of an unentangled
systems is represented as a product state. The EPR paradox, particularly Bohm’s version of the
paradox [3], is the source of continued speculations about nonlocal action-at-a-distance and the
incompatibility of quantum mechanics and the special theory of relativity [4]. The measurement
problem is the source of continued questioning of the adequacy of quantum mechanics to explain
the emergence of classicality [5]. The original Bell inequalities [6] and reformulated versions [7]
are extremely useful tools for exploring the nonlocal [8] and nonclassical [9] character of
entangled systems. This essay uses one of the original Bell inequalities to characterize
extensively (though not exhaustively) the range of violations of Bell’s inequality by pairs of
photons that have entangled polarization states. This account of the range of violations is much
more extensive than any of the existing accounts.

It is useful to begin the discussion with a brief characterization of expectation values
associated with polarization measurements on single photons. Recall that the expectation value
for an experiment A is defined to be A a pi ii

n= ∑ =1 , where { , , }a an1 L  is the set of possible
outcomes of A and be { , , }p pn1 L  is the associated set of probabilities. Let Pv be an experiment
that consists of measuring elements of an ensemble of photons for linear polarization in the v-
direction, where v is an angle θ from the y-axis in the xy-plane. Pv has two possible outcomes, v

and v⊥  (“linearly polarized in the v-direction” and “linearly polarized in the v⊥-direction”),
which are assigned the numerical values +1 and –1, respectively. If the pre-measurement photon
moves in the z-direction and is linearly polarized in the y-direction, then the probability
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associated with the measurement outcome +1 is cos2 θ , and that for –1 is sin2 θ . It follows that
Pv = −cos sin2 2θ θ, which simplifies to cos 2θ .

The pertinent type of experiment here is Puv , which consists of a compound measurement
on members of an ensemble of photon pairs. The indices u, v correspond to directions in the xy-
plane, the angle between them is θuv. The elements of a given pair are emitted in opposite
directions along the z-axis from a common source S. One element of the photon pair is measured
for Pu  and the other for Pv. Each measurement has two possible outcomes, as indicated above,
and as before they are assigned the numerical values +1 and –1. S emits one component of the
photon pair in the z-direction towards a measuring device R, which measures photons for Pv, and
the other component of the pair in the opposite direction towards another measuring apparatus L,
which measures photons for Pu . The outcome of Puv  for a given photon pair is defined as the
product of the value obtained at L with that obtained at R. Thus, Puv  has two possible outcomes,
+1 (meaning that the numerical outcomes at L and R are the same) and –1 (meaning they are
different). If S emits photon pairs in the entangled polarization state

Φ = +( )⊥ ⊥1
2

yy y y , (1)

then the probability that Puv  yields the outcome +1 is sin2 θuv  and that for the outcome –1 is

cos2 θuv . It follows that Puv uv uv= −sin cos2 2θ θ , which simplifies to − cos2θuv.

The original version of Bell’s inequality [6] involves three experiments. Each of the three
is similar to Puv  in that it involves a pair of measurements. The experiments are related in that
each has exactly one measurement component in common with each of the other two, as in the
triplet P P Puv vw uw, ,{ }, where u, v, w are three distinct directions in the xy-plane. In what

follows, triplets of experiments E E Eab bc ac, ,{ }, which involve compound measurements that are

related in the manner indicated, are referred to as “Bell triplets.” The Bell inequality establishes a
relationship that must hold between the expectation values associated with the elements of a Bell
triplet, if certain locality conditions are satisfied:

1 0+ − − ≥E E Ebc ab ac . (2)

It turns out that Bell’s inequality is violated by numerous quantum-mechanical Bell-triplets.

The Bell triplets of interest here is the class of triplets of experiments P P Puv vw uw, ,{ } on
photon pairs that are prepared in the entangled polarization state (1). Such triplets violate Bell’s
inequality to varying degrees. The purpose of this essay is to specify triplet types and then to
show the extent to which the various triplet types violate (2). The triplet P P Puv vw uw, ,{ } may be
classified with respect to a single parameter q that relates the three angles θuv, θvw, θuw. It may
be assumed without loss of generality that θ θ θuw uv vw= + . Thus, there is real number q,
0 1< <q , such that θ θuv uwq=  and θ θvw uwq= −( )1 . Violations of Bell’s inequality for triplets
of type q may be explored for the range of angles 0 2< <θ πuw . It is useful to examine a

particular case. To do so, let q = 1
2  and let 2 2θ θ θ φuv vw uw= = = . Now consider the function

f φ φ φ φ( ) = − − −1 2cos cos cos . (3)
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It follows that Bell’s inequality is violated for Bell triplets of type - 1
2  whenever f φ( ) < 0 . The

diagram of f φ( ) below shows the range of angles for which Bell’s inequality is violated.
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Figure 1: q = 1
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Figure 1 shows that that Bell’s inequality is violated when 0 2< <φ π  and when 3
2 2π φ π< < .

Equation (3) is easily generalized to Bell triplets of type-q. The relevant function is

fq q
q

qφ φφ φ( ) = − − − −1 22 2
1cos cos cos . (4)

Four additional cases follow (Figures 2-5) that correspond to the set of q-values 1
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The entire set of q-types may be represented using either a three-dimensional graph or a contour
graph by regarding (4) as a two parameter function of φ and q (see Figures 6-7 below).
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The valleys of quantum nonlocality are in white and the peaks of local realism are in black
(Figures 6-7). The peaks are three times as high as the valleys are deep, though the valleys
outnumber the peaks two-to-one. The largest quantum valley is the one that occurs when the
angle φ (that is, θuw) equals one radian, in which case the corresponding valley of quantum
nonlocality occurs for nearly the entire range of q-values, 0 1< <q . It is not as obvious which q-
value has the most robust nonlocal character for the range of φ-values, 0 2≤ ≤ πφ . One way to

make this determination is to calculate the area enclosed by fq ( )φ  underneath the y-axis for that

range. The function from q-values to areas is plotted below in Figure 8.
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Figure 8

There are two distinct peaks, one at q = 0 11.  and the other at q = .67.
The significance of the specific values where quantum nonlocality is maximized and

where local realism is maximized are subjects for additional research. It is likely a new focus for
speculations regarding quantum nonlocality and the emergence of classicality.
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