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Abstract

Richard Jeffrey's radical probabilism (‘probability all the way down') is augmented
by the claim that probability cannot be turned into certainty, except by data that
logically exclude all alternatives. This claim is illustrated in frequentist language
by an infinite nesting of confidence levels, and in Bayesian language by means of
Jeffrey’s updating of odds.

1 Introduction

Radical probabilism is Richard Jeffrey’s emendation of logical positivistic ideas
about probability. Rudolf Carnap, the leader of the Vienna Circle and Jeffrey’s
teacher in postwar Chicago, had maintained that probability judgements consist
of two factors: a logical factor involving a prior probability that reflects our
ignorance, and an empirical factor composed of experimental evidence. The latter
may be described in phenomenalistic or physicalistic language, but the essential
feature is its trustworthiness. It is the solid bedrock upon which, using the
ignorance prior, our body of knowledge is erected in a process of conditionalization
or updating.

His admiration for Carnap notwithstanding, Jeffrey felt unhappy with this view.
Firstly he had his doubts about the non-empirical ignorance prior, realising that
the choice of a probability distribution always relies on some sort of background
knowledge; secondly he felt misgivings about the supposedly trustworthy char-
acter of the empirical component, fearing that certitude is not to be attained by
mortals. Especially the latter feelings led him to challenge the Carnapian view,
which he termed ‘dogmatic probabilism’. Dogmatic, because it proclaims that
we attach probability values only on the ground of certainties, and hence that



we learn only by conditioning on the basis of sensation or observation statements
that themselves remain unquestioned.

Radical probabilism is Jeffrey’s answer to dogmatic probabilism: it claims that
probability values need not be grounded on a certain basis. Its core is the so-
called ‘probability kinematics’, a form of updating based on the familiar Bayesian
conditionalization. Suppose we have a hypothesis H, to which we have given a
prior probability, P,q, and for which new evidence F has just come in. Then
according to Bayes, the posterior probability of H, P (H), is calculated in the
following way:

Preu(H) = P(H|E) = P(E|H) Pag(H)/P(E) 1)
where P(F) can be written as
P(E) = P(E|H)Poa(H) + P(E|=H)(1 - Poa(H)) ,

a consequence of the axioms of probability theory known as Jeffrey condition-
alization. Instead of working with probabilities directly, Jeffrey often prefers to
use odds, i.e. ratios of probabilities of hits (favourable cases) over probabilities
of misses (unfavourable cases). He writes

new odds(H) _ P(E|H) 2)
oldodds(H)  P(E|-H)’

showing that the supposedly solid basis, F, enters as a factor, which multiplies
the old odds to yield the new ones. Hence, although Eq.(1) and Eq.(2) are math-
ematically equivalent (as will be shown in Sect. 3), the latter has an important
advantage over former. For it frees us from the idea that the updating of proba-
bility values can only take place on the basis of information, F/, that is taken to
be certain. Moreover, Eq.(2) makes it easier to distinguish between other peo-
ple’s observations, which one might adopt, and their prior judgemental states, for
which one could substitute one’s own (Jeffrey 2001, 6-8).

Jeffrey often contrasted his views with those of C.I. Lewis, whose ideas on prob-
ability in this respect resemble Carnap’s. During a talk in 2001 in Siena, Jeffrey
quoted Lewis as follows:

If anything is to be probable, then something must be certain. The data
which themselves support a genuine probability, must themselves be cer-
tainties. We do have such absolute certainties, in the sense data initiating
belief and in those passages of experience which may later confirm it.
(Lewis 1946, 186; quoted in Jeffrey 2001, 11).

Jeffrey’s radical probabilism denies precisely this claim. It disavows the idea that
probabilitities are grounded in certainties under the motto: “it can be probabili-
ties all the way down, to the roots” (Jeffrey 2001, 1; Jeffrey 1992, 11).
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In this article we propose to complement Jeffrey’s claim. For in saying that prob-
abilities need not be grounded in certainties, Jeffrey told only half of the story,
thus revealing only one side of a balanced probabilistic view of the world. The
other half concerns updating on the basis of evidence, where this evidence may be
grounded in certainty, or, as Jeffrey stresses, in uncertainty. Once we assign mere
probabilities on the basis of (certain or uncertain) evidence, no amount of updat-
ing will free us from the treadmill of probabilistic statements: it is impossible to
achieve certainty. This impossibility is not an empirical matter, stemming from
the hard-gained lessons of experience. Nor is it a pragmatic or merely technical
impossibility, arising from the fact that life is short and our equipment inade-
quate. No, it is logically impossible to go from probability to certainty, on pain
of forsaking the concept of ‘probability’ itself. In this sense it is not only ‘prob-
ability all the way down’, seeking evidence for evidence and stopping on a basis
that is itself uncertain, but also ‘probability all the way up’, seeking ever finer
probability values and accepting the logical impossibility to do better than that.

Our thesis that assigning probabilities has no logical end can be made in the
vocabulary of relative frequencies, but also in that of degrees of belief. In both
of these cases, we will have either probability all the way up, or no probability
at all. To keep our distance from the ongoing debate between objectivists and
subjectivists, we make our point first in a language that is mostly employed by
champions of the frequency interpretation of probability, viz. that of statisticians
concerning confidence levels (Sect. 2). We look at the familiar situation of the
repeated tossing of a fair coin, and observe that, in order to make sense of the
definition of confidence levels, it is not enough to consider just one finite run of
tosses: we must needs consider indefinitely many nestings of runs. In Sect. 3 we
consider the testing of a hypothesis, H, on the basis of evidence E, and we do
this first by statistical means, using the formalism developed in Sect. 2; and then
we explain how the testing works for the Bayesian. In both cases, it is supposed
that the evidence, F, is not inconsistent with the negation of the hypothesis,
H (which implies P(E|-H) # 0). For if E were inconsistent with —H, then H
would necessarily be true, without any probabilistic considerations, whether of
statistical or Bayesian kinship. In Sect. 4 we summarize our findings and spell
out some philosophical consequences.

2 Confidence Limits

If one tosses a fair coin 1600 times one expects 800 heads on the average. More-
over, if one repeats the run of 1600 tosses many times, one expects that, in 19
out of 20 runs, the actual number of heads will lie between 760 and 840. On
the average, in only 5% of the runs will the number of heads be less than 760



or greater than 840. What, in the previous sentences, do the phrases “on the
average” and “one expects that” mean for a latter day frequentist?

A naive explication of the meaning of these phrases is that they find their justi-
fication in an infinite repetition of the runs of 1600 tosses. The average number
of heads, it might be maintained, would then be precisely 800, and the percent-
age of runs in which the number of heads, h, satisfies 760 < h < 840, would be
95.45% (this percentage corresponds to two standard deviations of the normal
distribution). This explication is unsatisfactory, however, for the reference to an
infinite repetition is illicit: one can at best appeal to the limit of larger and larger
numbers of repetitions. For a finite number of repetitions, the frequentist might
like to say it is wery likely that in 95% of the runs, the number of heads will
lie between 760 and 840. But what can it mean for the frequentist to say that
something is very likely, or that it has a high probability? How can he employ
these terms without circularity?

A way out of the frequentist’s quandary is to invoke the concept of the nesting of
repetitions of repetitions of runs. One defines a hierarchy of sets in the following
way: suppose that the run of 1600 tosses is itself repeated 1600 times. Instead of
saying that we ezpect the number of heads to lie between 760 and 840 in 95% of the
1600 runs, we rather divide the set of runs into a subset, called good runs, in which
h € {760,840}, and its complement, called bad runs, in which h ¢ {760,840}.
Let g; be the number of these good runs. How do we give meaning to the vague
expectation that ¢g; ~ 1520, i.e. that about 95% of the 1600 runs are good?
After all, we will not inevitably find that 1520 of the 1600 runs are good — the
number might turn out to be slightly smaller, or slightly larger. Indeed, while
the mean number of good runs is u(g;) = 1600 x 0.95 = 1520, the variance is
02(g1) = 1600 x 0.95 x 0.05 = 76, so the standard deviation itself is about 8.5.
Therefore 1503 < ¢; < 1537 at the 95% level of confidence. We must in turn
imbue this statement with meaning.

We can repeat the 1600 repetitions of 1600 throws 1600 times. The elements of the
new repetition, let us call it rep[2], are the repetitions, rep[1], of the runs of throws.
Let us call a given rep[1] good if the number, g, of good runs it contains satisfies
1503 < ¢g; < 1537, and suppose that the number of these good repetitions (rep[1])
is go. Since rep[2] contains 1600 repetitions (rep[1]), the mean and variance of go
are p1(ge) = 1600 x 0.95 = 1520 and 02(go) = 1600 x 0.95 x 0.05 = 76, i.e. g has
the same mean and variance in rep[2] as g; has in rep[l]. So 1503 < go < 1537
at the 95% level of confidence, and it is now obvious how this statement is to be
given meaning, namely by a further nesting in a new repetition — rep[3] — of
rep[2] repetitions. A good rep|2] is defined to be one in which 1503 < go < 1537,
and if g3 is the number of them, then 1503 < g3 < 1537 at the 95% level of
confidence, which in turn is given meaning in a similar way at the next level of



the hierarchy, and so on ad infinitum.

We do not claim that an experimenter must actually indulge in a nesting of
confidence levels, let alone an infinite one. We have merely tried to formulate, on
behalf of the frequentist as it were, a sort of justification for the use of confidence
testing itself. Apart from the question as to whether this justification, or indeed
the method itself, is thought to be kosher or not, our point is that the appeal to
infinite nesting is inescapable. For if it is uncertain whether any toss of the coin
will result in a head or a tail, then it is logically impossible for the nesting of sets
to terminate. To demonstrate this fact, we show first that a contradiction would
ensue if the nesting were to terminate at the first level. Having introduced the
idea, we then generalize it to the case that termination occurs at any level at all.

Suppose first that it is not merely likely that the number of good runs in the
first repetition, rep[l], satisfies 1503 < ¢; < 1537, but rather it is certain that
g1 lies in this interval. Then no further nesting would be required; but it could
be, in a given experiment, that the first 1599 repetitions of 1600 tosses have only
produced 1502 good runs. Since there must be at least 1503 good runs, according
to the supposition, the last repetition must of necessity be good, which means
that the number of heads produced in this last run must satisfy 760 < g; < 840.
However, the first 1599 tosses in this last run might have produced only 759
heads, and since the run must be good, the last throw must result in a head. But
this is inconsistent with the fact that any particular toss could give a tail.

We now generalize the proof to the case that the nesting terminates at any finite
level, rather than the first one. If there exists an nth-order nesting, at which
the number, g,, of good repetitions (rep[n — 1]) must satisfy 1503 < g,, < 1537
precisely, then a contradiction ensues with the assumption that it is uncertain
whether any toss will produce a head. To show this, we suppose per impossibile
that 1503 < g, < 1537 must hold. It could still happen in an experiment that,
among the first 1599 of the repetitions (rep[n — 1]), only 1502 were good, so
the above supposition would then imply that the 1600th repetition (rep[n — 1])
must be good. But it could also be the case that this repetition itself is such
that, of its first 1599 repetitions (rep[n — 2]), only 1502 are good, so that the
1600th repetition (rep[n—2]) must be good, since otherwise the 1600th repetition
(rep[n — 1]) would not be good, whereas in the situation sketched, and according
to the supposition, it must be good. Clearly this reasoning can be iterated back to
the second repetition (rep[2]), in which it could similarly devolve that the 1600th
repetition (rep[1]) must be good, so then the number of heads thrown in this last
run must satisfy 760 < h < 840. As before, it could be that only 759 heads
have been produced in the first 1599 throws of this 1600th run of rep[1], and this
means that the last throw must result in a head. But this is inconsistent with
P(h) < 1. The original supposition, that there exists an nth-order, at which the



nesting terminates, has thus produced a contradiction, so it must be discarded.

Hence the infinite nesting is a sine qua non of the uncertainty in the results of
the elementary trials (the tosses of the coin). If there is probability at the basic
level (other than zero or one), then there is probability at all higher levels. In
this sense, frequentism implies probability all the way up. We will now show that
a similar implication holds in Bayesianism too.

3 Bayesian Updating

Suppose that there are two machines, each producing trick coins that are biased.
We imagine that the first machine is so adjusted that it produces coins that are
biased in such a way that, on tossing one of them, the probability of a head is 3,
that of a tail 1. The second machine produces coins such that the probability of
a head is only %, that of a tail % Suppose that all the coins produced by the two
machines in a day are mixed in a bag, and that one coin is selected from it. Does
it come from the first or the second machine?

The statistician, using confidence limits as in the previous section, would throw
the coin many times, let us say 1600 times, and note the number of heads, h,
resulting from the 1600 tosses of the coin. If the coin came from the first machine,
the mean value for h is 1200, but of course the actual value will in general deviate
from this value, so the statistician will also calculate the standard deviation,
/1600 x 2 x 2 ~ 17. At the 95% level of confidence, it is expected that h will
lie within two standard deviations of 1200, i.e. it will lie between 1166 and 1234.

If the coin came from the second machine, however, the mean value for A is now
only 640, and the standard deviation is /1600 x 2 x 2 ~ 19.5. At the 95% level
of confidence, it is in this case expected that h will lie within twice this standard
deviation of 640, i.e. it will lie between 601 and 679.

At a confidence level of 95%, it is easy to decide which machine produced the
coin, since the two standard deviation intervals do not overlap. Indeed they do
not do so at the 99% confidence level, corresponding to three standard deviations
either. By nesting runs, one can increase the probability that the coin came from
one machine, rather from the other, but clearly certainty — probability 1 — can
never be achieved.

What would a subjectivist, in this case a Bayesian, make of this problem? For
him, probabilities are degrees of belief in alternative options or hypotheses. In
our example, there are two hypotheses, namely Hy, that the coin came from the
first machine, and Hs, that it came from the second machine. The initial degree



of belief that the coin came from the first machine is changed, or updated, on
the basis of evidence, the result of 1600 tosses of the coin, in accordance with the

formula
P(E|Hy)Py(H,)

(ETH,)Po(Hy) + PE|Hy) Py(Hy) ¥
Here P(H,|FE) is the conditional probability that hypothesis H; is true, given the
evidence, E, namely that h heads resulted from a run of 1600 tosses (that is, the
conditional probability that the coin came from the first machine). P(E|H;) is
the probability of scoring h heads in 1600 tosses of a coin from the first machine,
while P(FE|H,) is the corresponding probability of scoring A heads in 1600 tosses
of a coin from the second machine. Finally, Py(H;) is the initial degree of belief
that the coin came from the first machine, and Py(H,) is the initial degree of
belief that it came from the second machine. Since it is supposed that the coin
did indeed come from one or other of the machines,

P(H1|E) = P

In parallel with the updating (3) of the degree of belief that the coin came from
the first machine, we have

(E|Hy)Py(H,) + P(E|Hz)Py(Hy)

as the updating of the degree of belief that the coin came from the second machine,
and of course P(H,|E) + P(H3|E) = 1. If the Bayesian has no reason to give
more credence to one supposition rather than the other, he will make the prior
probabilities equal: Py(H;) = Py(H,) = 3, but this is not necessary. He may
have extra information, for example that the first machine was turned on an hour
before the second, while they were turned off together, and in this case he may
well choose Py(Hi) to be greater than 3.

P(H2|E) = P

Following Jeffrey, we shall for convenience rewrite Eq.(3) in terms of odds rather
than probabilities. The odds associated with a hypothesis are defined as the ratio
of the probability that the hypothesis is true to the probability that it is false.
Thus the prior odds, Qy(H;), for hypothesis 1 are

_ Py(Hy) _ Py(Hy) (6)
Py(Hs) 1 — Py(Hy)
The updated, or posterior odds are similarly

_PULIE)_ PULID)
OURIE) = POr, ) = T PO E) o

On dividing Eq.(3) by Eq.(5), and with use of Eq.(6) and Eq.(7), we obtain
P(E|H,)

Q(H1|E) = m QO(Hl)' (8)

Qo(Hy)
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As Jeffrey has noted, such an expression for posterior odds separates neatly into
a factor that is uniquely determined by the evidence (in this case the number of
heads in 1600 throws), and the subjective prior odds. Note that while Jeffrey’s
expression (8) has been derived from the Bayes formula (3), the derivation can
be equally well run in the opposite direction. In other words, Jeffrey’s updating
of odds is precisely equivalent to Bayes’ updating of probabilities.

As intimated earlier, we assume that the evidence E is not flatly inconsistent
with Hy, for that would logically imply H;, without any probabilistic consider-
ations. From Eq.(8) we observe that the posterior odds can only be infinite if
Qo(H;) = o0, since P(E|H,) # 0 by assumption. For the case of the coin and the
two machines in particular, P(F|H3) is nonzero for any h between 0 and 1600
inclusive. So the only way that one can achieve an infinite posterior odds is to
start with infinite prior odds. In other words, the posterior probability can only
be one if the prior probability is one. Just as it is logically impossible to achieve
certainty by the nesting of confidence levels when one starts from an uncertain
hypothesis, so it is logically impossible by Bayesian updating to achieve certainty
from an uncertain prior.

4 Envoi

We have seen that Jeffrey’s ‘probability all the way down’ may be augmented by
another adage, ‘probability all the way up’. The two maxims are by no means the
same. Whereas the former states that the base of our knowledge can be uncertain
to its deepest roots, the latter implies that once we start assigning probability
values to hypotheses, we will never achieve certainty either. Jeffrey’s motto can
be seen as an argument against foundationalism in epistemology, at least in the
form that occurs in for example C.I. Lewis’s work. Our adage ‘probability all the
way up’, on the other hand, functions more as an argument for the thesis that the
difference between ‘probable’ and ‘certain’ (or between inductive and deductive
reasoning) is strict rather than gradual. No matter how many times, on the basis
of incoming information, we refine probability values, it is logically impossible
to achieve certainty. For if in due course we were to reach certainty, then the
whole enterprise of giving probability values to hypotheses would collapse at the
lowest level, as we have shown. This is the reason for our claim ‘probability all
the way up or no probability at all’, and we observe here another distinction
between Jeffrey’s view and ours. As Jeffrey admits, it is perfectly possible to
update probability values from a basis that is taken to be certain, i.e. it can be
probability all the way down, but it need not be so. Probability all the way up,
on the other hand, must be endorsed, on pain of deserting the field of probability
altogether.



Despite their differences, the two views of probability, all the way down and all
the way up, round out the account. Taken together, they complete the story
and substantiate the balanced probabilistic world-view that Hans Reichenbach
surely had in mind when he wrote “all we have is an elastic net of probability
connections, floating in open space.” (Reichenbach 1938, 192).
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