
Abstract

This paper attempts to address the problem of the applicability of
mathematics in physics by considering the (narrower) question of what
make the so-called special functions of mathematical physics special.
It surveys a number of answers to this question and argues that nei-
ther simple pragmatic answers, nor purely mathematical classificatory
schemes are sufficient. What is required is some connection between
the world and the way investigators are forced to represent the world.
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Special functions include the gamma function (a generalization of
the factorial), elementary transcendental functions such as the expo-
nential, the sine, cosine, as well as the “higher” transcendental func-
tions such as, Bessel functions, the Riemann Zeta function, etc. This
list goes on and on and, in fact, continues to expand.1 Michael Berry
[11, p. 12] notes, in a paper entitled “Why are Special Functions Spe-
cial?,” that the persistence of special functions is both surprising and
puzzling.

What are they [special functions], other than just names
of mathematical objects that are useful only in situations
of contrived simplicity? Why are we so pleased when a
complicated calculation “comes out” as a Bessel function,
or Laguerre polynomial? What determines which functions
are “special”? [11, p. 12]

∗I would like to thank the philosophy of physics reading group at the University of
Western Ontario for comments. In particular, I thank Rob Corless, Bill Harper, Wayne
Myrvold, and Brian Woodcock for useful discussions. Thanks also to Michael Berry,
Penelope Maddy, and, for very detailed comments and suggestions, Christopher Pincock.

1The fact that this list continues to grow is indeed an interesting phenomenon in itself.
In an age where numerical calculations are virtually trivial on desktop or even handheld
computers, it is remarkable that some sort of analytic classification scheme should be
desirable. The conclusions of this paper may shed some light on why.
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1 Some Responses to the Question

Berry’s ultimate, though tentative conclusion, is essentially pragmatic
in nature. He recognizes that various extant classification schemes—
attempts to unify classes of different special functions in some “nat-
ural” order or hierarchy—are incomplete. They typically leave out
large classes of other functions. He says,

One reason for the continuing popularity of special func-
tions could be that they enshrine sets of recognizable and
communicable patterns and so constitute a common cur-
rency. . . . [P]erhaps special functions provide an economi-
cal and shared culture analogous to books: places to keep
our knowledge in, so that we can use our heads for better
things. [11, p. 12]

A survey of some texts and monographs on special functions ex-
hibits a wide range of responses to the question: What makes a func-
tion special? For instance, continuing in the pragmatic vein, Nico
Temme says

[u]sually we call a function “special” when the function, just
as the logarithm, the exponential and trigonometric func-
tions (the elementary transcendental functions), belongs to
the toolbox of the applied mathematician, the physicist,
or engineer. Usually there is a particular notation, and a
number of properties of the function are known. [26, p. xi]

Somewhat more restrictedly, I. N. Sneddon takes special functions to
“arise in the solution of partial differential equations governing the
behavior of certain physical quantities.” [21, p. 1] After a very brief
introduction to the Laplace equation ∇2ψ = 0 and a brief discussion
of typical solutions, Sneddon remarks that “[i]t is the study of differ-
ential equations of this kind which leads to the special functions of
mathematical physics. The adjective ‘special’ is used in this connec-
tion because we are not, as in analysis, concerned with the general
properties of functions, but only with properties of functions which
arise in the solution of special problems.” [21, p. 2] This sense of
“special” is also somewhat pragmatic—being tied to particular prob-
lems of physical interest.

However, other authors are less willing to account for the special
nature of special functions solely or simply by an appeal to their gen-
eral usefulness, their usefulness for certain special problems in certain
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situations, or because they allow for a shared common currency or cul-
ture. For example, James D. Talman, proposes to demonstrate how a
wide class of special functions are “matrix elements, or are simply re-
lated to matrix elements, of the representations of elementary groups
such as rotation groups and Euclidean groups. Many properties of the
special functions can then be derived from a unified point of view from
the group representation property.”2 [25, p. 1] Talman’s conclusion is
that

[t]he group theoretic treatment shows that the special func-
tions are special only in that they are related to specific
groups. The usefulness of group representation theory for
the solution of a variety of physical problems makes it natu-
ral that representation matrix elements are important spe-
cial functions for many problems in mathematical physics.
It may further be true that the properties that can be de-
rived group theoretically are their most important ones,
since they originate from the “geometric” properties of the
functions. [25, p. 2]

Talman’s work was inspired by lectures by Eugene P. Wigner who
states in the introduction to Talman’s book that

. . . the common point of view from which the special func-
tions are here considered, and also the natural classification
of their properties, destroys some of the mystique which has
surrounded, and still surrounds, these functions. Whether
this is a loss or a gain remains for the reader to decide. [25,
p. xii]

Clifford Truesdell’s (1948) monograph aims to “provide a general
theory which motivates, discovers, and coordinates [certain] seemingly
unconnected relations among familiar special functions [here he refers
to 35 formulas expressing the relations] . . . .” [27, p. 7] It predates
most such attempts; and focuses, as well, on a particular class of
special functions—the “familiar” ones. His work “observes and inves-
tigates a hitherto largely neglected property common to the transcen-
dents occurring most frequently in mathematical physics . . . .” [27, p.
8] This class of familiar special functions include Bessel, Legendre, La-
guerre, and Hermite functions which have the following “major formal

2Talman does admit that this group theoretic treatment leaves out a wide class of
special functions—those for which no group theoretic basis has been found.
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properties” in common:

(1) They satisfy ordinary linear differential equations of sec-
ond order; (2) they satisfy ordinary linear difference equa-
tions of second order; (3) with suitable weight functions
they form complete sets of orthogonal functions over suit-
able intervals; (4) they satisfy linear differential-difference
[recurrence] relations. The first three of these properties
after very long and thorough investigations by numerous
excellent mathematicians have yielded but slight clews [sic]
to the discovery of such relations as [those 35 mentioned
above]. Our confidence in the essential beauty and perfec-
tion of classical analysis would be shaken if in fact these
formulas were, so to speak, random effusions of the Divine
Mathematician, disjoint and chaotic, so we are driven to
conclude that they are consequences of some of the differen-
tial recurrence relations [here follows a list of twelve differ-
ential recurrence relations for Bessel, Legendre, Laguerre,
and Hermite functions.]. [27, pp. 8–9; My emphasis.]

Truesdell seeks to characterize the special nature of this large class
of special functions by demonstrating that they are all satisfy a sin-
gle functional differential recurrence equation that he calls the “F-
equation”:

∂

∂z
F (z, α) = F (z, α+ 1).

Upon examining the group theoretic method for treating special
functions initiated by Wigner and carried out by Talman, one sees
that the Talman/Wigner method is actually quite similar to Trues-
dell’s. Talman too employs differential difference equations having
the form of the F-equation. The main difference is the group theo-
retic “spin” (in the political sense) given to the various unifications
and classifications.

Truesdell’s insistence that special functions not be chaotic and dis-
joint effusions of the Divine Mathematician displays somewhat less of
a pragmatic answer to the question of the specialness of special func-
tions than do the others. Likewise, the group theoretic approach of
Talman and Wigner also seeks a more objective answer to the ques-
tion. Both of these (related) approaches aim to answer the question
by presenting a unifying classification scheme—a scheme that shows
what deep mathematical properties the different functions share de-
spite obvious “surface” differences.
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Surely part of an answer to the question of what makes special
functions special will be a well-motivated scheme that groups the dif-
ferent functions together according to shared mathematical features.
But does a classificatory schema, by itself, address the truly interest-
ing aspects of special nature of special functions? Don’t we want to
know why these different functions are so useful? Don’t we want to
know why the same functions appear over and over again as solutions
to disparate problems in the sciences—from fundamental physics to
chemistry, biology, economics, etc.?

A natural first response is that what makes them special in this
regard is the fact that the differential equations governing various
phenomena in these diverse areas are all of the same few general types.
Therefore, the solutions will all be quite similar. So it is no wonder
that solutions to these few general types of equations crop up over
and over again. I think that this response is fine, up to a point.
Nevertheless I think that much more can be said about the specialness
of such functions.

2 Idealization

In order to begin to motivate this claim, note that almost all applica-
tions of mathematics to physical problems involve idealized models of
some kind or other. Idealizations, in effect, allow us in many instances
to solve the complicated equations governing the phenomenon of in-
terest. In the philosophical literature, there is a traditional approach
to modeling that holds that one should try to find the most accurate
and detailed mathematical representation of the problem at hand.3

Once this is accomplished (somehow, there is no recipe), one employs
the model to make predictions or to try to explain the behavior of
interest. If the model fails to capture adequately those features of the
phenomenon one is interested in, then there are a couple of things one
can do. For instance, one can try to add more detail to the math-
ematical representation4, or one might try to adjust the parameters
already appearing in the model so as to better reflect what is going
on. Most crucially, on this point of view, the aim is to try to effect a

3I consider the work of Ronald Laymon as representative of this approach to idealiza-
tion. See for instance, his [17].

4By this I mean, one might include mathematical representations of additional factors
that may be relevant for the phenomenon under investigation.
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kind of convergence between model and reality. Ultimately, the goal
is to arrive at a complete (or true) description off the phenomenon
of interest. Thus, on this view, a model is better the more details of
the real phenomenon it is actually able to represent mathematically.
In effect, the idealizations are introduced only to be removed through
further work on those details.

This traditional view of modeling is to be contrasted with an ap-
proach (or set of approaches) that holds that a good model is one
which does not let a lot of these details get in the way. In many cases
the full details will not be needed to characterize the phenomenon of
interest, and may, in fact, actually detract from an understanding of
that phenomenon. This other (nontraditional) approach requires that
one find a minimal model—a model “which most economically cari-
catures the essential physics.” [16, p. 33] The adding of details with
the goal of “improving” the minimal model is self-defeating—such im-
provements are illusory. (I’ve written about this elsewhere and will
not go into too much detail here. [3])

Now, often the type of idealization that leads to tractable math-
ematical models involves, first, an attempt to nondimensionalize the
problem so that one can see what terms are relatively “large” and what
terms are relatively “small”. Second, one hopes that it is legitimate to
ignore the very small terms. Roughly, this can be done by letting the
small terms approach zero or by letting the large terms approach in-
finity; hence, the process here involves the taking of limits—studying
various asymptotic behaviors of the functions of interest. This is not
by any means solely an exercise in pragmatics: It is not simply a
means for finding for exactly solvable solutions. In today’s world of
extraordinary computing capabilities, this analytical practice contin-
ues to play a major role in the investigation of physical phenomena.
If all we cared about were correct and accurate numerical predictions,
then we would not bother with these analytic investigations.

Furthermore, it is often the case that the dominant features of
certain phenomenon are most effectively represented by taking limits.
For instance, consider the case of shocks.

Let’s say we are interested in understanding the behavior of a gas
as it moves through a tube. See figure 1. If a collection of the molecules
are given a push (say by blowing into the tube at one end), then they
will begin to catch up to those in front resulting in a more densely
populated region separating two regions of relatively less molecular
density. Across this region, molecules will exchange momentum with
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Figure 1: Modelling Shocks

one another as if “some kind of permeable membrane were present.”
The region occupied by this “membrane” is a shock. Of course it is
very difficult to track the behavior of the individual molecules as they
move through the tube and undergo the collisions in the shock region.
(This is not to say that computational simulations cannot approxi-
mately track such behavior.) But, often the applied mathematician
will approach the problem by taking a continuum limit. This is a
model in which the collection of molecules in the tube is treated as a
continuous fluid. Such a limit will shrink the shock region onto a two
dimensional boundary. Upon either side of the boundary, the behav-
ior of the fluid will be governed by the relevant (partial) differential
equations of fluid mechanics. However, the behavior across the bound-
ary is not governed by any differential equation at all, but rather by
algebraic “jump conditions”—singular behavior across the boundary.

One might think (if you held the more traditional approach to
modeling) that the idealization of the collection of molecules to a
continuous fluid would to make the boundary region unimportant to
the physics. After all, the boundary shrinks to two dimensions and is
not “law governed.” (All those ignored molecular details ought to be
put back in!) Traditional (covering law) accounts of explanation hold
that laws do the essential explanatory work, and initial conditions and
boundary conditions are given a sort of secondary status. Further, as
the boundary is a place where the laws apparently break down, how
can the boundary function in a covering law explanation?
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Mark Wilson has argued that this view—the view that the bound-
ary becomes unimportant to the physics—is mistaken. In fact, the
boundary is the most important feature when it come to understand-
ing the behavior of interest. As Wilson notes “the allegedly ‘sup-
pressed details’ have become crushed into a singular (hence not law-
governed) factor that still dominates the overall behavior through the
way in which it constrains the manner in which the ‘law governed re-
gions’ piece together.”[30] The idea is that such boundaries dominate
the physics and that often the mathematical modeler’s search focuses
on those features to explain what is going on. The limits often yield
boundaries that shape or constrain the phenomena. And, it is the
elucidation of these shapes that is important for understanding.

In the next section I consider a more detailed example. However,
before getting to this, let me try to make a few constructive remarks
about how to understand this talk of “dominant features of phenom-
ena.”

It is an incontrovertible fact that nature presents us with patterns
and regularities. And, much of scientific theorizing involves trying
to understand how these regularities arise. This is not to say that
every pattern we observe reflects a genuine lawful feature of the world.
Humans are all too ready to see patterns in just about anything.5

Neither is it to say that we are interested only in investigating “real”
regularities and patterns. Sui generis phenomena are, of course, also
worthy of investigation. As an example of the latter one might think of
studying the nature of the transient behavior in a particular electrical
circuit before it settles down to a steady state.

Nevertheless, most often it seems that our attention is captured by
regularities—repeatable phenomena. It is, in part, the repeatability of
phenomena that makes it dominant. That is to say, the repeatability
is a salient feature that itself leads us to ask about what is responsible
for that repeatability. When we couple this feature—the salience of
the phenomenon—with the fact (mentioned above) that for all but the
simplest empirical generalizations we need to idealize so as to find a
adequate mathematical representation, we gain a fuller understanding
of the meaning of “dominant feature.” The goal of mathematical
modeling is to capture these salient features of the regularity in a
mathematical formula. The repeatability of the phenomenon places

5Terrence Fine, in his excellent discussion of computational complexity, randomness,
and probability, puts the point as follows: “Too keen an eye for pattern will find it any-
where.” [15, p. 120]
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a constraint on the nature of the mathematical model. The model
must be sufficiently robust or stable under certain kinds of changes to
reflect the fact that the phenomenon is repeatable in various situations
where many details have changed. The world is constantly changing
in myriads of ways, nevertheless, we see the same patterns over and
over again in different situations. Idealizing is a means for focusing
on exactly those features that are constitutive of the regularity—those
features that we see repeated at different times and in different places.
Equivalently, idealization, understood in this way, is most broadly seen
as a means for removing details that distract from such a focus—those
details that can change without affecting the dominant, repeatable
behavior of interest.

The mathematical operation that represents the removal of such
irrelevant details involves the taking of limits. For instance, in the ex-
ample just considered, the continuum limit provides a means for ignor-
ing details about molecular interactions in the development of shocks.
Most importantly, the taking of limits in this way often imposes math-
ematical constraints on the equations or formulas that represent the
phenomenon of interest. In particular, as just noted, it requires our
models to exhibit the appropriate kind of stability under perturbation
of various details. Thus our attempt to represent the dominant fea-
tures of the phenomenon—genuine features of the world—dictates to
some extent the nature of the appropriate mathematical representa-
tion. That representation, in turn, leads us to investigate in detail, the
nature of the imposed constraints. It turns out that in many instances
such investigations lead to the discovery of singularities—or places of
mathematical “breakdown.” The example of shocks is just one such
instance.

The next example illustrates further this interplay between the
dominant features of a phenomenon, their mathematical representa-
tion, and the constraints imposed upon the representation by our at-
tempt to focus upon those dominant features.

3 Airy’s Equation

In 1838 George Biddell Airy [1] derived a definite integral from the
undulatory or wave theory of light from which one can determine
the variation in intensity of light near a caustic of geometrical or ray
optics. The term “caustic” literally means “burning surface” and in
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nature they are extremely bright lines and surfaces caused by the
natural focusing of light. They are, in a very obvious sense “dominant”
features of light phenomena.

In ray optics, a caustic is an envelope of a family of rays. Unlike
the focal point of a lens which is destroyed if the shape of the lens is
even slightly perturbed, many caustics of interest are stable against
such small perturbations.6 The simplest example is called a “fold”
caustic, and the ray theory account of the rainbow has it that the
main intense bow is located on a fold caustic. See figure 2. One can
see that on the “lit” side, there are two rays through every point, while
on the dark side of the bow no light rays exist.

The ray theory is capable of locating (only approximately, as it
turns out) the primary bow of a rainbow—the caustic surface—but it
fails to adequately account for the intensities that one observes. In
fact, on the ray theory a caustic is a line on which the intensity of light
is strictly speaking infinite. This represents a kind of discontinuity
or singularity in the theory. In addition the ray theory is incapable
of describing the so-called supernumerary bows—bows resulting from
wave interference—that are sometimes seen as faint arcs of alternating
pink and green on the lit side of the main rainbow arc.

Airy recognized that the singularity at the caustic was an artifact
of the ray theory, and by properly incorporating effects of diffraction
using the wave theory, he was able to derive the definite integral of
equation (1).

Ai(x) ≡ 1
π

∫ ∞

0
cos

(
t3

3
+ xt

)
dt. (1)

The square of this, |Ai(x)|2, gives the intensities of the various
supernumerary bows of the rainbow caustic and properly represents
the smoothing of the ray theory singularity. [1, p. 1838]

Figure 3 [10, p. 1185] gives an idea of how well the square of
Ai(x) can locate and describe the intensities of the wave patterns (the
supernumerary bows) decorating the rainbow caustic.

Using a convergent series representation of this function, Airy was
able to compute values for Ai(x) for x between -5.6 to +5.6, where x
is the distance along a normal to the caustic, negative values on the
lit side, positive values in the shadow. Airy’s series converges for all

6The mathematical demonstration of this stability involves investigating various struc-
tures in the ray theory. Thus, this involves examining the wave theory in the shortwave
λ→ 0 limit.
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Figure 2: Fold Caustic

values of x and, as a result of this convergence, we may take it to be an
exact representation of the Airy function. Unfortunately, this range
of values allows one to locate only the first two dark bands on the lit
side of the caustic. Because of the slow convergence of the series Airy
was unable to extend his calculations beyond this limited range.

George Gabriel Stokes was intrigued by this problem. In 1850,
in the first of several discussions having their genesis in Airy’s caus-
tic paper, he noted that despite the fact that Airy’s series converges,
“. . . when [x] is at all large the calculation becomes exceeding labori-
ous.” [24, p. 329] Stokes was motivated, therefore, to express the Airy
integral as a solution of a differential equation in a form that would
exhibit “what terms are of most importance when x is large . . . .” [24,
p. 331] On the surface it appears that Stokes’ motivation for searching
for this form of an asymptotic solution—one which turned out to be
what he called “semi-convergent” or divergent—was primarily prag-
matic in nature. The convergent expansion was just too unwieldy to
use. Nevertheless, I believe that the end results of Stokes’ efforts have
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Figure 3: Airy Function and Supernumerary Bows

more import than this simple pragmatic motivation suggests. He was
motivated largely by a desire for physical understanding—a desire to
display in the most perspicuous fashion those structures or features
that dominate the phenomenon of interest ; namely, the rainbow.

4 Stokes on the Airy Integral

Let me, therefore, discuss Stokes’ work and his motivations in a bit
more detail. As just noted, his motivation appears at first blush to be
largely pragmatic in nature: The convergent series expansion, while
exact for all values (real and complex) and, hence, definitive of the
function, does not lend itself to easy calculation when the value of its

12



argument is at all large. As we’ve seen Airy was able to calculate the
locations of only the “first two dark bands in a system of spurious
rainbows, whereas Professor Miller was able to observe 30 of these
bands.” [24, p. 329] Stokes writes:

After many trials I at last succeeded in putting Mr Airy’s
integral under a form from which its numerical value can
be calculated with extreme facility when [x] [the distance
from the geometrical caustic] is large, whether positive or
negative, or even moderately large. [24, p. 330]

The next sentence, however, is even more interesting: “Moreover the
form of the expression points out, without any numerical calculation
the law of the progress of the function when [x] is large.” [24, p. 330]
This suggests that there is more to Stokes’ solution than simply ease
of calculation. Had Stokes had large supercomputers at his disposal,
there still would be compelling reasons for engaging in this asymptotic
investigation—namely, that such investigations can often highlight im-
portant mathematical structures that are hidden in (or obscured by)
the exact, convergent expansion.

Stokes derived his asymptotic (divergent) expansion by finding the
differential equation for which the Airy integral (1) was a solution and
by using what is now known as the WKB method. He examined the
general case where the argument can be complex and arrived at the
following differential equation:

d2u

dz2
− zu = 0. (2)

Stokes reasoned as follows (and, at base, this is the type of asymp-
totic reasoning behind the WKB method): Let us focus on large values
of |z| which reflects our interest in being able to describe the locations
and intensities of the bows relatively far from the caustic. If we in-
crease |z| by a small increment δz, the proportionate increase of |z|
will be small. That is, for large |z| we can effectively regard z as
a constant. If we make this assumption, then equation (2) has the
approximate solution:

u(z) ≡ Ai(z) ≈ Ae−
2
3
z

3
2 +Be

2
3
z

3
2 , (3)

where A and B are arbitrary constants. Stokes noted immediately
that “[t]he approximate integral [(3)] points out the existence of cir-
cular functions . . . in the true integral.” [24, pp. 334–335] In fact, the
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approximate “solution” (3) shows that when z is real and positive, the
behavior of the solution to equation (2) can be exponential in char-
acter and when z is real and negative, its behavior will be oscillatory
or trigonometric in character—whence the expression “circular func-
tions in the true integral.” To get the complete asymptotic expansion,
Stokes multiplied the two exponentials (or circular functions) by a se-
ries in descending powers of z and solved for various constants. In
fact, Stokes discovered that there were two such asymptotic expan-
sions that satisfy the differential equation (2) valid in different sectors
of the complex plane. This posed a problem which occupied him at
various times throughout the rest of his life. This was to try and
understand what is now known as the “Stokes Phenomenon.” It is
essentially the question of how the two distinct series are related to
one another. I’ve written about this elsewhere [2]. The details are,
tangentially relevant to the current discussion of the specialness of
special functions.

It is important to understand that Stokes’ approximation argu-
ment was guided mainly by physical intuitions about the nature of the
phenomenon. In coming up with this alternative series representation
of the Airy integral he, in effect, was trying to display in a mathe-
matically perspicuous fashion the important features of the rainbow
at distances relatively “far” from the ray-theoretic singularity—the
caustic.7

It is instructive to note the manifest difference between Airy’s
convergent expansion and Stokes’ asymptotic, divergent expansion.
The leading terms of Stokes’ series describe the salient features of
the rainbow—features which Airy’s convergent series does not reveal.
The information in the convergent series representation which, recall,
is definitive of the function, is decoded only through lengthy numerical
calculations and is not manifest in the form of the terms in the series.
The difference is obvious when one examines the two series “side by
side.” Here is Airy’s convergent series:

Ai(z) = A

{
1 +

9z + 3
2 · 3

+
92z6

2 · 3 · 5 · 6
+

93z9

2 · 3 · 5 · 6 · 8 · 9
+ · · ·

}
+ B

{
z +

9z4

3 · 4
+

92z7

3 · 4 · 6 · 7
+

93z10

3 · 4 · 6 · 7 · 9 · 10
+ · · ·

}
(4)

7Recall that Airy was able to locate only the first two bows—those closest to the caustic.
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Here is Stokes’ series:

Ai(z) ≡ Cz−
1
4 e−2z

3
2

{
1− 1 · 5

1 · 144z
3
2

+
1 · 5 · 7 · 11
1 · 2 · 1442z3

− · · ·
}

+ Dz−
1
4 e2z

3
2

{
1 +

1 · 5
1 · 144z

3
2

+
1 · 5 · 7 · 11
1 · 2 · 1442z3

+ · · ·
}

(5)

Note how the first terms in Airy’s series are the constant A and the
expression Bz. These terms tell us virtually nothing about important
features of the function. The first terms of Stokes’ series, on the other
hand, convey much more information. In fact, as we have already seen
in equation (3), the first two terms of Stokes’ series tell us much about
the oscillatory and exponential aspects of the rainbow.

That the “solution,” (5), and in particular, its leading terms, ex-
plicitly exhibits the oscillatory and exponential character of the “true
integral,” is a crucial component of our understanding of the physical
phenomenon of interest. Our understanding of the patterns present
in the rainbow is provided by the relatively transparent mathematical
representation of these dominant characteristics.

In contrast, while Airy’s convergent series provides an “exact” so-
lution to equation (2) for all values of |z|, virtually no information
about the dominant physical features of the phenomenon is conveyed
by the analytical form of the terms of the series. Of course, this is
why the convergent series is practically worthless for calculating the
locations of the bows in the rainbow for all but those very near to the
caustic.

Let me briefly comment upon the similarities between this detailed
discussion of the work of Airy and Stokes on trying to understand
certain features of the rainbow and the earlier, less detailed, discussion
of shocks. The spacings of the light and dark bands in the rainbow
and the intensities of these bows are universal phenomena. That is
to say they are the same in all rainbows, no matter how the rainbows
are formed.8 Thus, these are stable dominant features of the rainbow
phenomenon and that is one main reason for our studying them in
the first place. Our understanding of these universal features requires
an investigation into the asymptotics (the limit of short wavelength)
of the Airy function as it is only in this asymptotic regime that we
can explain why these properties are universal. I’ve discussed this at
length elsewhere [6, 4], but the idea is that the universality in the

8For a discussion of this notion of universality, see [6].
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behavior of rainbows depends upon the stability of the fold caustic (a
mathematical structure) under perturbation. The caustic structure is,
in effect, a boundary between two theories—the wave theory and the
ray theory of light—and plays a constraining role very much like that
played by the two dimensional boundary in the shock problem of the
last section. In that example the boundary emerged when we took
the continuum limit. In this example, idealized caustic emerges when
we take the short wave limit. In both situations, the limits focus our
attention on the crucial explanatory features at play, and allow us to
ignore countless other physical details that serve only to obscure the
most important aspects of the situations.9

5 Asymptotic Expansions and Special

Functions

Let us now return to the discussion of the nature of special functions.
Note first that the Airy function is a special function and has wide

ranging applicability. That is to say it crops up in many diverse prob-
lems of applied mathematics: It appears in problems of optics and
electromagnetism (as we’ve just seen), in fluid dynamics, for instance
in the description and characterization of solitons, in barrier penetra-
tion (tunnelling) problems in quantum mechanics, etc.10 It is, there-
fore, an extremely useful function—one whose analytical properties
are well-worth knowing.

I think it is fair to say that the standard view of asymptotic rep-
resentations of various functions is that they are particularly useful.
They provide quite accurate numerical values even when one consid-
ers very few terms in the series. For example, most applications of
the WKB method retain only the first term in the asymptotic ex-
pansion. On the other hand, because the late terms of such series
typically diverge, they have historically been taken to be inherently

9To add just a bit more detail note that Stokes’ divergent series representation is
accurate for large values of |z|; that is, it describes the behavior of light relatively far
from the caustic of geometrical optics. Near the caustic (at z = 0) the representation
breaks down. Nevertheless, the understanding of the universal nature of the patterns of
light in a rainbow requires the asymptotic investigation of the light in the neighborhood
of the caustic. The singularity—the boundary between wave and ray optics—constrains
the solutions away from the singularity on either side.

10See [28] for an extensive discussion of the Airy function and its applications.
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vague and without any coherent meaning. Contemporary understand-
ing of asymptotic expansions rejects this skeptical assessment of the
meaningfulness of asymptotic expansions, and, in fact, one can see,
already in Stokes’ own work, the seeds of this modern point of view.

One particular remark of Stokes’ indicates his uneasiness with dis-
missing asymptotic, divergent series as meaningless despite their ex-
treme pragmatic usefulness. In discussing (what is now called) the
Stokes Phenomenon—the discontinuous change in expression (in dif-
ferent phase sectors) that accompanies the asymptotic representation
of a continuous function—Stokes notes that “[a] semi-convergent [di-
vergent] series (considered numerically, and apart from its analytical
form) defines a function only subject to a certain amount of vague-
ness . . . .” [23, p. 285] Stokes’ parenthetical remark here seems to
say that while there is numerical vagueness in asymptotic expansions,
there may be exact formal information captured in the full asymptotic
expansion. This view is, in effect, the starting point for R. B. Dingle’s
[14] important investigation into the derivation and interpretation of
asymptotic expansions.

Dingle observes that

asymptotic expansions are normal, immediately compre-
hensible, functions of their variables in so far as functional
form is concerned. The dissimilarity with convergent ex-
pansions lies in the impossibility of assigning a precise nu-
merical value to the sum (except in the infinite limit) be-
fore interpretation of the divergent sequence of late terms.
A complete asymptotic expansion of a function f(x) may
therefore be defined as an expansion containing an asymp-
totic series which formally exactly obeys—throughout a
certain phase sector—all those relations satisfied by f(x)
which do not involve any numerical value of x other than
on the infinite circle |x| → ∞: for instance,

(i) Functional form as |x| → ∞, i.e. boundary conditions
on f and its derivatives at infinity.

(ii) Differential, difference and integral equations.
(iii) Relations involving other parameters incorporated, such

as recurrence relations between orders. [14, pp. 19–20]

Dingle calls this observation “the ‘non-numerical compliance’ def-
inition of a complete asymptotic expansion.” [14, p. 19] In maintain-
ing that a complete asymptotic expansion for a given function f(z) is
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not inherently vague or meaningless because of the divergence of the
asymptotic series in the expansion, Dingle commits himself to pro-
viding an interpretation of the late terms of the series. In general
an asymptotic power series

∑
an/z

n appearing in a complete expan-
sion typically exhibits the following behavior: For fixed large value
of z the series converges rapidly for a finite number of terms N , the
error after N terms being less than the (N + 1)st term. However,
despite this initial convergence, the series ultimately diverges. (This
is why Stokes calls such series “semi-convergent” and it is also why
they are so useful for numerical calculations.) The so-called “late
terms” of the series are those that are left out in such an “optimal”
truncation. As I said, Dingle is committed to providing an interpre-
tation of these late terms. Such an interpretation removes the aura of
vagueness or lack of meaning that traditionally surrounded the use of
asymptotic/divergent expansions.

Dingle’s interpretive scheme is based on a theorem of Darboux
from 1878. Suppose a function f(z) is singular at some set of points
{zi}.11 Then the radius of convergence of the power series for f(z) is
ρ = min|zi|. Supposing that f(z) converges within some circle and so
can be expanded within that circle as a power series

∑∞
0 anz

n. Let
zi be a branch point or pole on or outside this circle. Then near zi
one can write f(z) = (zi − z)−pifi(z). Here pi is a positive integer if
zi is a pole or pi is fractional if zi is a branch point, and fi(z) can be
written as a Taylor series in zi − z:

fi(z) = fi(zi)− (zi − z)f ′i(zi) + (zi − z)2fi
′′(zi)/2!− · · · .

Given this Dingle [14, pp. 140–141] shows that the coefficients an of
zn for n� pi will be proportional to

(n+ pi − 1)!/n!(pi − 1)!zn+pi
i .12

Darboux’s theorem shows that the late terms in a convergent Tay-
lor expansion depend only on the behavior of the function in the imme-
diate neighborhood of the singularity closest to the point of expansion.
Dingle showed that this fact extends to asymptotic (that is, divergent)
series as well. Therefore, almost without exception the late terms of
divergent asymptotic series will have the same form. In fact, the late
terms (n� 1)

11This means that at the zi’s, f has a pole or branch point.
12Note that this has the general form of (n+ constant)!/(variable)n.
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of any asymptotic power series will transpire to be express-
ible in a standard limiting form (n+constant)!/(variable)n,
the accuracy of this limiting representation increasing with
n . . . . This conclusion . . . is critically important in two
ways: first, because it provides a valuable lead on how
asymptotic power series and expansions containing them
might best be defined; and second, because is shows that
substantially a single theory of interpretation will apply
equally to late terms of all such asymptotic series. [14, p.
4, with a slight change in notation.]

To illustrate further what John Boyd calls “Darboux’s Princi-
ple”13, consider the class of functions

f(ε) ≡
∫ ∞

0
exp(−t)Φ(εt)dt, (6)

where Φ(z) has the power series expansion

Φ(z) =
∞∑

n=0

bnz
n. (7)

It follows that

f(ε) ∼
∞∑

n=0

anε
n; (8)

where an = n!bn. [13, pp. 29–30]
Boyd points out that since the coefficients, an, of the divergent

expansion (8) are just those of the power series Φ (equation (7)) times
n!, it has to be the case that those coefficients are controlled by the
singularities of the function Φ(z)

as surely as those [bn] of the power series [(7)] of Φ it-
self. In particular, the singularity of the integrand which is
closest to t = 0 must determine the leading order of the co-
efficients of the divergent expansion. This implies that all
f(ε) that have a function Φ(z) with a convergence-limiting
singularity of a given type (pole, square root, etc.) and a
given strength (the constant multiplying the singularity) at

13This is the principle that the asymptotic expansion in degree n for the coefficients an

of a series may be derived solely from knowledge of the singularities of the function f(z)
that the series represents.
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a given point zc will have coefficients that asymptote to a
common form, even if the functions in this class are wildly
different otherwise. [13, p. 30]

Dingle’s results show that it really almost does not matter what
the nature of the singularity of the function is—whether it is a pole, a
branch point, a logarithm, etc. Nor does it matter whether the asymp-
totic expansion derives from an integral representation, the WKB
method, from a differential equation, etc. In virtually all cases, the
late terms in the asymptotic expansions will have one of four ba-
sic forms that he calls “terminants.” Essentially, Dingle’s program
(further developed by others including Berry [9, 8], Olver [19], Olde
Daalhuis [18], et al.) explicitly shows how a vast range of functions—
including a majority of the so-called special functions—are such that
they can be transformed through asymptotic analysis so as to exhibit
a common or universal pattern; namely,

• Function = first n terms of asymptotic series + nth × terminant.[14,
p. 411]

As Dingle says, “it is the Darboux theorem which lies at the heart of
the reasons why this common pattern exists.” [14, p. 411]

Dingle’s book provides evidence of just how general this method
(and its further elaboration by others) really is. He shows how to
derive asymptotic expansions for many different functions, including
those definable by convergent expansions such as the incomplete fac-
torial function, the exponential integral, the confluent hypergeometric
function, the Fermi-Dirac integral, spherical Bessel functions, Her-
mite polynomials, Legendre polynomials, etc. He shows how to derive
asymptotic expansions for other (special) functions that arise from
various integral representations related to the Laplace integral. He
shows how to derive asymptotic expansions for solutions to various
types of homogeneous differential equations, and for solutions to var-
ious types of inhomogeneous differential equations, etc. The point is
that the range of problems and functions that can be given asymptotic
representations is extremely broad; yet, all of these representations re-
quire to the same method of asymptotic interpretation that we have
discussed in this section.

John Boyd, in the paper cited above, provides a 2 1/2 page table
exhibiting the range of problems and functions to which the interpre-
tive scheme initiated by Dingle applies. [13, pp. 42–44] It includes,
many problems from physics including (among others) quantum tun-
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nelling, problems in nonlinear optics, and critical phenomena. Boyd
states that “Dingle’s ideas of generic forms for the late terms in asymp-
totic series and universal terminants now seem as important to the rise
of exponential asymptotics as the comet-crash(?) that put an end to
the dinosaurs was in biology.” [13, p. 79] But he recognizes that this
insight was indeed slow in coming.

The point I would like to emphasize here is that if one examines
special functions from an asymptotic point of view—looking for rep-
resentations of the functions in terms of formally exact asymptotic
expansions—one encounters a deep universal classificatory scheme. In
effect, it is the universality of the terminants—the fact that the late
terms in virtually all such expansions behave the same way—that can
be taken as indicative of the specialness of the functions. Local facts
about singularities of the different functions have global, that is, uni-
versal consequences.

6 Special Functions and the World

The discussion so far has led us to a different, and perhaps, better
mathematical classification of a very broad class of special functions.
It is a classification that takes the formally exact asymptotic repre-
sentations of the functions as basic and unifies the class through the
common interpretation of the late terms in the expansions of the spe-
cial functions. But how does this help us answer the questions posed
above in section 1. Recall that these were the following: Does a clas-
sificatory schema, by itself, address the truly interesting aspects of
special nature of special functions? Don’t we want to know why these
different functions are so useful? Don’t we want to know why the same
functions appear over and over again as solutions to disparate prob-
lems in the sciences—from fundamental physics to chemistry, biology,
economics, etc.?

Now Berry provided a somewhat rhetorical answer to such ques-
tions about the specialness of special functions. Recall that he says:
“What are they [special functions], other than just names for math-
ematical objects that are useful only in situations of contrived sim-
plicity?” [11, p.12] In asking this question, he appears to be asserting
that what makes them special (in addition to any classificatory scheme
based upon common mathematical properties) is their usefulness for
understanding simplified situations in the world. To a certain extent I
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think this is correct. However, the simplified situations in which spe-
cial functions are useful are far from contrived. I have tried to argue
here (and, in more detail, elsewhere) that most applications of math-
ematics to the description and explanation of physical phenomena do
involve simplifications of a sort. They involve, almost always, ideal-
izations in which certain parameters take on a limiting value of zero
or infinity. They involve, that is to say, asymptotics. Furthermore, I
believe, in many instances such limiting idealizations are essential for
obtaining genuine scientific explanation and understanding. [5, 7]

Given this it seems reasonable to maintain that many special func-
tions are special for more than simple pragmatic reasons. They are not
special simply because they appear in the physicist’s, applied math-
ematician’s, and engineer’s toolboxes. Furthermore, special functions
are not special simply because they share some deep mathematical
properties. Recall this is the point of view of Truesdell and of Tal-
man/Wigner. On their proposals, what makes some functions special
is that despite “surface” differences, they are each solutions to the
“F-equation” (for Truesdell), or they possess similar group represen-
tations (for Talman and Wigner). While these classificatory schemes
suffice to bring some order to the effusions of the Divine Mathemati-
cian, they do not fully capture the special nature of the special func-
tions.14

From the point of view presented here, the shared mathematical
features that serve to unify the special functions—the universal form
of their asymptotic expansions—depend upon certain features of the
world. What Truesdell, Talman and many others miss is how the
world informs and determines the relevant mathematical properties
that unify the diverse special functions.

As I noted, in many investigations of physical phenomena we find
dominant physical features—those features that constrain or shape
the phenomena. These are things like shocks and the highly intense
light appearing in the neighborhood of ray theoretic caustics. They
are features that are most effectively modeled by taking limits.15

14In fact, the schemes of Truesdell (and of Talman and Wigner) will not be as broadly
unifying as the asymptotic unification provided by Dingle, Berry, and others. For in-
stance, the Truesdell scheme does not included so-called higher order diffraction catastro-
phe integrals—a sequence of special functions of which the Airy integral is just the first
order. (Michael Berry, private communication.) For a discussion of this hierarchy see [12].

15Note that such dominant features need not possess robust observability. Tunnelling
phenomena in quantum mechanics, for example, also require asymptotics for their de-
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Limiting idealizations are most effective for examining what goes
on at places where the “laws” break down—that is, at places of sin-
gularities in the governing equations of the phenomena. These “phys-
ical” singularities and their “effects”—how they dominate the ob-
served phenomena—are themselves best investigated through asymp-
totic representations of the solutions to the relevant governing equa-
tions. The example of the Airy integral is a case in point. By using
Stokes’ asymptotic representation we get superb representations of the
nature of the diffraction relatively far (large |z|) from the dominating
“physical” singularity—the caustic.

Here one can easily see the interplay between the “physical” sin-
gularities and the mathematical singularities. The ray-theoretic sin-
gularities need to be dealt with by the wave theory—this is just what
Airy did in deriving his integral equation. However, as I noted, this
ray-theoretic singularity dominates the physical phenomenon. As a re-
sult, the mathematical singularities in the representative asymptotic
equations constrain the structure of the solutions to the governing
equations and their asymptotics provides the unification necessary to
give an interesting answer to the question of why those solutions—the
special functions—are special.

A clear statement of this point of view can be found in the Fore-
word to a recent discussion of special functions and singularities. Al-
fred Seeger describes the connections as follows:

In mapping a complex physical situation onto manageable
mathematics, location and character of the singularities re-
flect the essentials of the situation, whereas the param-
eters not directly associated with the singularities usually
carry incidental information, e.g. on the physical properties
of the specific material under consideration. Recognizing
this led to a new appreciation of the importance of asymp-
totic expansions and of the Stokes’ phenomenon. On the
mathematical side, it is the singularities of the differential
equations resulting from the mapping that determine the
character of the solutions. [20, p. vii]

The arguments above are meant to support this point of view. I
have argued that the combination of the complexity of the physical sit-
uation with the fact that, in spite of its complexity, the world presents

scription and explanation. “Dominant” does not necessarily mean “powerful.” As the
discussion above tries to show, it means (at least) repeatable and, hence, stable.
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us with regular, stable features to be accounted for, requires that we
idealize in a certain way. This allows us to focus on what Seeger
here calls the “essentials of the situation.” In turn, our attention is
focused on certain singularities in the relevant mathematical equa-
tions which require asymptotic investigations. This interplay between
physics and mathematics—mediated by singularities—has not, in my
opinion, been sufficiently appreciated in the philosophical literature.

Further, as I begin to discuss in the next section, this interplay is
important for understanding at least one fundamental problem in the
philosophy of mathematics.

7 Conclusion: Special Functions and

the Philosophy of Mathematics

Therefore, let me make a few comments about how I think this dis-
cussion of special functions may shed some light on one of the most
difficult problems in the philosophy of mathematics.

The problem is what Wigner famously calls “the unreasonable ef-
fectiveness of mathematics in the natural sciences.” He claims that
the “appropriateness of the language of mathematics for the formula-
tion of the laws of physics” is a “miracle”—“a wonderful gift which
we neither understand nor deserve.” [29, p. 237] The study of the
asymptotics of special functions and the reasons for their usefulness
in mathematical physics may very well help to dispel the appearance
of the miraculous (and for some, the divine).

Mark Steiner in his book, The Applicability of Mathematics as a
Philosophical Problem [22], argues that contemporary mathematical
physicists employ various strategies—particularly, analogical strategies—
in forming and discovering new theories about unobservable aspects
of the world. He is concerned to show that these analogical strategies
are fully anthropocentric—that is, that they depend for their success,
upon humans having a special place in the world. Steiner’s argu-
ments involve extended examples in which he tries to show just how
disconnected the world really is from the mathematical descriptions
we employ to represent it. In large part he aims to maintain the
miraculous nature of the applicability of mathematics to the world by
demonstrating repeatedly that physicists employ analogies in discov-
ery that are tied primarily to the formalism of existing theories and
that cannot in any way be taken to be physically motivated.
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If the above account of what makes special functions special pro-
vides an answer to the why-questions about the usefulness and ubiq-
uity of such functions, then I think that we can, to some extent, begin
to understand the wonderful gift of the applicability of mathematics.
We have seen that the very nature of many phenomena that are inves-
tigated places constraints on the nature of those investigations. The
dominant and real features of phenomena require that we employ lim-
iting idealizations in forming the mathematical equations with which
we may represent the phenomena.

Truesdell was concerned to show that the Divine Mathematician
does not present us with a set of special functions that fail to be
unified in some appropriate way. We need, on his view, to maintain
our faith in the “essential beauty and perfection of classical analysis”
and this can only happen if there is some nonrandom unification of
the special functions. I hope that the discussion here leads us to
question the anthropocentric role of the mathematician’s appreciation
for beauty (or formal analogy) as an important criterion for what
arguably should be paradigm examples of mathematics’ applicability
to the world; namely, the special functions.
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