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ABSTRACT

Reichenbach’s use of ‘posits’ to defend his frequentistic theory of probability has
been criticized on the grounds that it makes unfalsifiable predictions. The justice
of this criticism has blinded many to Reichenbach’s second use of a posit, one
that can fruitfully be applied to current debates within epistemology. We show
first that Reichenbach’s alternative type of posit creates a difficulty for epistemic
foundationalists, and then that its use is equivalent to a particular kind of Jeffrey
conditionalization. We conclude that, under particular circumstances, Reichen-
bach’s approach and that of the Bayesians amount to the same thing, thereby
presenting us with a new instance in which chance and credence coincide.

1 Introduction

Many associate the frequency interpretation of probability with Richard von
Mises, despite the fact that several years before he introduced his ideas in von
Mises (1919), Hans Reichenbach had already developed his own frequentistic
probability theory in his inaugural dissertation of 1915 (cf. Reichenbach
1978, Galavotti 2003). The reason why Reichenbach’s theory was no match
for that of von Mises is not difficult to discern. For while von Mises’ pivotal
notion of the Kollektiv has its difficulties, the objections to Reichenbach’s
idea of posits are even more telling.

Suppose that, in n repeated trials, there are m occurrences of a specified
kind, so that the relative frequency of the occurrence in question is m/n. If
we let n go to infinity, then either m/n has a limit or it has not. Reichen-
bach’s opening gambit (Reichenbach 1949) is the claim that, if it has a limit,
then this limit, called p, is expected to be somewhere in the region of m/n.
Specifically, for large n, p satisfies the inequality

m

n
− δ < p <

m

n
+ δ , (1)

where δ is some margin of error. The problem is of course to find a value for
δ. What exactly does ‘somewhere in the region of m/n’ mean? If no prior
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knowledge of the system is available, Reichenbach argues, we simply guess
what δ might be, and then the whole statement (1) becomes a so-called blind
or anticipative posit. This statement can subsequently be made more precise,
resulting in an informed or appraised posit.

One of Reichenbach’s reasons for introducing posits of this kind was no
less than a pragmatic vindication of induction: a practical answer to Hume’s
claim that the uniformity of nature is indemonstrable. We cannot prove
that nature will be uniform with respect to a given sequence of events, but
if she is, in the sense that the ratio m/n has a limit, then this method of
the posit will eventually obtain that limit to any required degree of accuracy
(Reichenbach 1949, p. 446, p. 475; cf. Salmon 1966, p. 86). Although
Reichenbach had invoked the principle that nature is uniform as a synthetic
a priori in his 1915 dissertation, he later repudiated this view (Reichenbach
1951, pp. 246-247). His way of vindicating its use was to throw everything
into the conditional mood, as it were: if a sequence has a limit, then I have
a way of nailing it down. Technically, he was forced to introduce a hierarchy
of levels of probabilities: the second-order probability that the first-order
probability, p, lies in the above interval tends to unity as n tends to infinity
(Reichenbach 1949, p. 442).

Some have called Reichenbach’s theory ‘empirical frequentism’, thus sug-
gesting that it is falsifiable. The theory has however been justly criticized on
the grounds that, although m/n tends to p in the limit that n goes to infinity
(on condition that the limit exists), the speed at which this limit is attained is
unknown. Indeed wild fluctuations on the way to that limit cannot be ruled
out. Moreover, any initial segment of a sequence of trials is consistent with
any limit p: everything depends on the infinite tail of the sequence, not on a
finite initial part of it! In practice then, since we can only work with a finite
number of trials, and no estimate can be given of how many trials would be
needed to come within a given δ of p, Reichenbach’s use of these posits is
not falsifiable, a fatal shortcoming for any theory with empirical pretensions.
Even Wesley Salmon, after a working lifetime largely devoted to the defense
of his teacher, admitted defeat: “Reichenbach’s attempt to vindicate his rule
of induction cannot be considered successful. ... My attempt to vindicate
Reichenbach’s rule of induction cannot be considered successful.” (Salmon
1991, p. 105, p. 107).

These familiar failings have tended to obscure the fact that Reichenbach
also used the concept of a posit in another, and altogether more defensible
context, namely in his debate with the foundationalists of his day such as
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Bertrand Russell and Clarence I. Lewis. In Sect. 2 – 3 we will briefly sketch
this debate, and then we will investigate this new role for posits by consider-
ing three concrete cases (Sect. 4 – 6). Contrary to Reichenbach’s intuitions,
it turns out that in two of these three cases, posits are not needed at all (Sect.
4 – 5), whereas in the third case they are indispensable (Sect. 6). In each of
these cases a simplifying assumption has been made, namely that the condi-
tional probabilities in question remain constant. In Sect. 7, and later again
in the Appendix, we explain how to generalize our argument to cases where
this assumption is dropped. Finally, in Sect. 8, we show that Reichenbach’s
method is identical to Jeffrey conditionalization under a certain restriction.

2 Reichenbach versus C.I. Lewis

From 1930 until his death in 1953, Reichenbach was strenuously engaged
in a debate with C.I. Lewis, staunch defender of a ‘strong foundationalist’
program in epistemology. The debate apparently started with a letter that
Reichenbach wrote to Lewis on July 29, 1930. Although this letter is now
lost, we roughly know its content from Lewis’s answer to it, written one
month later, and today kept at the University of Pittsburgh. Lewis’s letter
makes clear that Reichenbach had objected to the idea, defended in Lewis’s
Mind and the World Order of 1929, that an event can only be probable if we
assume other events to be certain; in Lewis’s view, these other events consist
of sense data.1 Reichenbach’s disagreement with this position is profound.
He denies that sense data must be certain, and he disputes that an event
can only be probable if it is ultimately grounded in events that are certain,
sense data or otherwise. In Reichenbach’s opinion there is nothing incoherent
in the concept of an infinite sequence of events, where each event is made
probable by its predecessor, never reaching certain ground.

Lewis in turn fiercely disagreed and re-explained his view with gusto, first
in letters and conversations, later also in journals and at conferences. The
dispute reached its climax at the forty-eighth meeting of the Eastern Division
of the American Philosophical Association in December 1951, where both
Lewis and Reichenbach read papers that were subsequently published in The
Philosophical Review of April 1952.

1Rather than talking about probable or certain events, one might talk instead about
the probability or certainty of propositions. In Atkinson and Peijnenburg (2006) it has
been shown that, in the relevant modal systems, the two ways of talking are equivalent.
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The essence of the dispute concerns the very existence of a foundation in
epistemology, rather than the specific nature thereof. The central question
is not whether sense data are certain, even though Lewis would give an
affirmative answer, and Reichenbach a negative one. The central question
rather is: ‘Can events be probable without being ultimately connected to a
foundation that is certain, whether this foundation be sensory or not?’.

In the next section we will present this disagreement in a formal and
more precise way. We also explain how Reichenbach invokes a different type
of posit to attack Lewis’s stance.

3 Alternative Posits

Suppose that the occurrence of an event A0 is made probable by that of an-
other event A1. The probability of A0 is given by the rule of total probability:

P (A0) = P (A0|A1)P (A1) + P (A0|¬A1)P (¬A1) . (2)

If A1 is in turn made probable by A2, the rule must be applied a second time:

P (A1) = P (A1|A2)P (A2) + P (A1|¬A2)P (¬A2) . (3)

Does it make sense to continue this procedure, allowing for events made
probable by other events, made probable by still other events, and so on,
ad infinitum? Of course the question is not whether we can go on applying
the rule in practice, but whether we can do so in principle. Lewis’s answer
to this question is that we cannot. He claims that the iteration must stop
eventually. For some finite n, if An is made probable by An+1, the latter must
be certain: P (An+1) = 1. Once we have arrived at this certain point, the
total probability rule has the simple form P (An) = P (An|An+1), so there is
nothing more to iterate. Denying the necessity of such a termination, Lewis
argues, would amount to abnegating the very concept of probability; in the
above case, such a denial would imply that the probability of the event with
which we began, P (A0), is equal to zero (Lewis, 1952, p.172).

Reichenbach demurs, claiming that the above sequence not only can, but
must go on indefinitely. This raises the question as to how we might calculate
the probability of A0. If P (A0) is the outcome of an infinite regression, how
can we compute its value? Again, the question is not just a matter of practice,
but also of principle. Is not the calculation of such an infinite regression too
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complex for us to bring to completion? After all, insertion of Eq.(3), together
with

P (¬A1) = P (¬A1|A2)P (A2) + P (¬A1|¬A2)P (¬A2) (4)

into the right-hand side of Eq.(2) leads to an expression with four terms,
namely

P (A0) = P (A0|A1)P (A1|A2)P (A2) + P (A0|¬A1)P (¬A1|A2)P (A2) +

P (A0|A1)P (A1|¬A2)P (¬A2) + P (A0|¬A1)P (¬A1|¬A2)P (¬A2) . (5)

A repetition of this manoeuvre to express P (A2) and P (¬A2) in terms of
P (A3) and P (¬A3) produces eight terms, and after n + 1 steps the number
of terms is 2n+1. This yields a lengthy expression that seems at first sight
hard to compute in simple closed form.

Perhaps Reichenbach saw this difficulty. At any rate he does not even
attempt to engage in the task: nowhere does he try to find a usable expres-
sion in the limit as n goes to infinity. Instead, he chooses to make a guess as
to what P (An+1) might be for a given, fixed n. If nothing is known about
An+1, this guess is a blind posit. But if, on the other hand, some empirical
information is available that serves to delimit the possible values of P (An+1),
the guess is not a wild one, and the posit becomes appraised. The idea is
that blind posits can become appraised by testing them in suitable empir-
ical situations. Of course, even appraised posits will never be more than
conjectural: their very nature as posits prevents them from ever becoming
certain or categorically true. A posit will never be more, so to speak, than
the antecedent in a conditional statement.

It should be noted that the above use of blind and appraised posits is
quite different from the one that we described in the first section. True, here
as well as there, posits are used to determine the probability of an event, and
here as well as there, posits are conjectures and as such subject to further
adjustment. Nevertheless their functions are quite different. In Sect. 1 posits
were used to determine the probability of an event on the basis of relative
frequencies, and this use has been rightly criticized. But the posits that
Reichenbach deploys to counter Lewis’s position determine the probability
of an event, P (An), on the basis of the probability of another event, P (Am),
and such a use is perfectly defensible. To keep the distinction clear, we will
call the former ‘posits of the first kind’ and the latter ‘posits of the second
kind’ or ‘alternative posits’.
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Reichenbach himself does not explicitly distinguish between posits of the
first and second kind. However, that there are indeed two kinds of posit
can be clearly distilled from his multifarious writings. In some of these, he
refers merely to posits of the first kind (e.g. Reichenbach 1951); in others he
is solely talking about posits of the second kind (Reichenbach 1952); and in
Reichenbach (1949), which contains his considered opinions on probability, he
uses first the one and then the other without mentioning the shift. But as we
have seen, the two types clearly differ in character. Moreover, Reichenbach’s
motivation for using each type also appears to be quite different.

Reichenbach’s main motivation for using his posits of the first kind springs
from his adherence to a frequentistic theory of probability. As he sees it,
there are two major philosophical objections to frequentism (Reichenbach
1951, pp. 236-237). The first is that it assumes inductive inference, and
hence presupposes the unjustifiable principle of the uniformity of nature.
The second is that a frequentistic probability theory cannot handle single
cases: how can I ever come to know what my chances of surviving my cancer
are, if these chances are stated in terms of relative frequencies? Reichenbach
was convinced that both objections could be overcome by bringing his posits
of the first kind into play (Reichenbach 1951, p. 241; cf. Reichenbach 1949,
vii-viii). We have expressed our reservations regarding these posits in Sect.
1, and we do not believe that they can resolve either of the two objections.

Posits of the second kind are mainly used in the context of the debate with
C.I. Lewis. Here Reichenbach’s motivation is not to defend a frequentistic
theory of probability, but to attack foundationalism in epistemology, at least
in the form in which it occurs in the writings of Lewis (and also Russell).
In the next section we will show that Reichenbach was correct in criticizing
Lewis’s position. For Lewis was indeed mistaken: it is not true that an infinite
sequence of probabilities, supported by probabilities indefinitely, necessarily
converges to zero. However, we will also show that this does not imply that
Reichenbach was right in claiming that we always need posits (of the second
kind) when dealing with infinite sequences. As will become clear in Sect. 4,
we can dispense with such posits when n goes to infinity, and as we show
in Sect. 5, the same holds when n is large but finite. Reichenbach failed to
notice this, perhaps because he did not realise that he had used his posits in
two essentially different ways. Or perhaps he did realise it, but was daunted
by the exponential explosion of terms that occurs in calculating the outcome
of the infinite regression. However this may be, and whatever philosophical or
mathematical reasons Reichenbach might have had, we will introduce below
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a minimal but useful change of notation that enables us to complete the
calculations without too much effort.

4 Dispensing with Posits, Part 1

The complication of the exponentially increasing number of terms, of which
Eq.(5) was the first illustration, can be drastically reduced by replacing
P (¬A1) in Eq.(2) by 1− P (A1), and then write this equation as

P (A0) = P (A0|¬A1) + [P (A0|A1)− P (A0|¬A1)]P (A1) . (6)

A similar treatment can be applied to Eq.(3), which then becomes

P (A1) = P (A1|¬A2) + [P (A1|A2)− P (A1|¬A2)]P (A2) , (7)

and so on. These changes, small as they may be, turn out to have significant
consequences. For they enable us to obtain a closed and usable expression
for P (A0) in all situations, no matter whether the number of steps is finite
or infinite. To see how this works out in detail, let us consider a concrete
example.

Imagine colonies of a bacterium growing in a chemical environment known
to be favourable to a particular mutation of practical interest. The bacteria
reproduce asexually, so that only one parent, the ‘mother’, is sufficient to
produce a child, the ‘daughter’. The probability that a mutated daughter
descends from a normal, not mutated mother is known to be very small (say
0.02); but the probability that a mutated daughter descends from a mutated
mother is on the other hand high (say 0.99). We are told that each colony,
or batch, develops from a different, single ancestor; but it is not known, for
a given batch, whether the ancestor was normal or mutated. Now we select
a bacterium from a random batch. What is the probability that the selected
bacterium is a mutant?

To answer this question, interpret A0 in Eq.(6) as the event or proposition
that the selected bacterium, a0, is a mutant, and A1 as the event that its
immediate ancestor, i.e. its mother, a1, was a mutant. Thus a0 is the selected
bacterium, a1 is its immediate ancestor, and P (A0) is the probability that
the selected bacterium is a mutant.

We know that P (A0|A1) = 0.99 and P (A0|¬A1) = 0.02 . In words: the
probability that a0 is a mutant is 0.99 if its mother, a1, was mutated, and it
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is 0.02 if a1 was normal, i.e. not a mutant. If we insert

α ≡ P (A0|A1) = 0.99 and β ≡ P (A0|¬A1) = 0.02

into Eq.(6), we get as the probability that a0 is a mutant

P (A0) = β + (α− β)P (A1) . (8)

However, we can only use Eq.(8) to compute P (A0) if we know the value of
P (A1), i.e. the probability that the mother is a mutant. How do we compute
that value? The answer is of course that we must apply the same procedure
to Eq.(7). That is, we must insert α and β into that equation, thus obtaining
as the probability that a1 is a mutant

P (A1) = β + (α− β)P (A2) . (9)

But the story does not end here. In order to compute P (A2), we must know
P (A3), and so on, ad infinitum (assuming for a moment that each bacterium
has infinitely many ancestors). We have here a case of which the framework
has already been sketched in the previous section, and it is not difficult to
imagine how Lewis and Reichenbach would react to it. Lewis denies that an
infinite sequence makes sense, for either it is incomputable or it will converge
to zero. Reichenbach, on the other hand, believes that such a sequence is
useful, although he does agree with Lewis that its infinite number of terms
hinders its computability. As we have seen, he proposes to truncate the
sequence by making a blind posit, and then to compute the probability on
the basis of that.

Our position deviates from both. Against Lewis we claim that infinite
sequences like the one above do make sense. For not only can they be com-
puted, the resulting outcomes need not be zero either. Against Reichenbach
we hold that the computation can be executed without truncations and with-
out using any posit at all. The latter possibility arises from the small but
significant change that we made at the beginning of the present section.

To make this clear, let us first generalize Eqs.(6)-(7) to

P (Am) = P (Am|Am+1)P (Am+1) + P (Am|¬Am+1)[1− P (Am+1)] (10)

which gives the probability that am is a mutant. With α and β in place
Eq.(10) reads

P (Am) = β + (α− β)P (Am+1) . (11)
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It has been assumed here that the conditional probabilities, α and β, are the
same from generation to generation. This assumption is reasonable (although
by no means necessary) in the case of bacteria being grown in controlled
laboratory conditions. In the wild, variations of temperature and nutrient
availability could be accommodated by allowing α and β to change from one
generation to another. In Sect. 7 and in the Appendix we shall discuss the
generalized case where α and β may vary; in the present and in the next two
sections, however, we suppose α and β to be constant.

Let us now apply the rule expressed in this equation to m = 0, 1, 2, 3, ..., n.
The result is a finite series that can be summed, yielding

P (A0) = β + (α− β) [β + (α− β) [β + (α− β) [ . . . ] ] ]

= β
[
1 + (α− β) + (α− β)2 + . . . (α− β)n

]
+ (α− β)n+1P (An+1)

=
β

1− α + β
+ (α− β)n+1

[
P (An+1)−

β

1− α + β

]
. (12)

Here the value of P (A0) is ultimately derived from one single term, the re-
mainder term (α−β)n+1P (An+1), containing the probability that the primal
mother an+1 of a certain batch of bacteria is a mutant (see Eq.(8)). How-
ever, the value of this remainder term cannot be computed unless we know
the value of P (An+1), the probability that the primal mother of a0 is a mu-
tant. Does this mean that Lewis was right in claiming that Eq.(12) can only
be solved if we assume that P (An+1) = 1? Or that Reichenbach was right
when he argued that we have to make a blind posit concerning P (An+1), in
order to be able to calculate P (A0)?

The answers are ‘no’ and ‘no’. To see this, let us consider the infinite
case. The standard way to investigate the convergence of an infinite series
is first to look at a finite series of, say, n + 1 terms only, with a remainder
term, and then to investigate what happens as n tends to infinity. Applying
this procedure to Eq.(12), we observe that, since 0 < α − β < 1, the factor
(α − β)n+1 becomes smaller and smaller as n becomes larger and larger.
In the formal limit that n tends to infinity, we find that the series has an
infinite number of terms, and that the terms in the second and third lines of
Eq.(12) that contain the unknown P (An+1) tend to zero, and hence disappear
completely.

In the limit of an infinite number of terms in the series, corresponding to
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an indefinite iteration of Eq.(10), we find

P (A0) =
β

1− α + β
=

0.02

1− 0.99 + 0.02
=

2

3
,

with the values given above for the conditional probabilities α and β. Thus we
conclude that, after an infinite number of generations, the batch of bacteria
is two thirds mutated. The series is, although infinite, perfectly computable,
yielding a number that is not zero. Moreover, this conclusion required no
truncation or blind posit at all (cf. Peijnenburg 2007).

5 Dispensing with Posits, Part 2

We have seen how Reichenbach would proceed when confronted with an
infinite series. First he would truncate the series by making a blind posit
(in our example: for the probability that the (n + 1)st ancestor of a0 was a
mutant), and then he would use that posit to compute what he wanted to
know (in our example: the probability that a0 was a mutant). Apparently
his philosophical devotion to the method of posits was so strong that he did
not consider the possibility of calculating the outcome of an infinite number
of iterations.

In addition, there is something else that Reichenbach did not mention.
Not only can we generally dispense with posits when n is infinite, sometimes
we do not even need posits when n is finite but large. The difference between
the two situations is slight but subtle. In the infinite case, posits are not
needed because the terms containing the unknown probability dwindle away
to nothing. In the finite case, however, posits can be ignored if we have a
satisfactory approximation for the probability of interest, i.e. as long as we
have a value that, although imprecise, is acceptable for our purposes, which
is so when we can estimate an error or uncertainty that is sufficiently small.

Take again our batch of bacteria and imagine it to be sampled after,
shall we say, 150 generations. Assuming that no record of the whole history
exists, we need a posit here if we want a precise value for P (A0). However,
this would be to forget that in most scientific contexts an imprecise value
is all that is required. And such a value, with small error estimates, can
often easily be supplied without any posit at all: it certainly can be readily
produced in our example. This becomes clear when we substitute n = 149,
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α = 0.99 and β = 0.02 in Eq.(12), thereby obtaining

P (A0) = 0.667 + (0.97)150 [P (A150)− 0.667] . (13)

While it is true that we would now need P (A150) in order to find a precise
value for P (A0), in practice we can make an acceptable estimate without a
posit. For the maximum value that P (A0) can have is obtained by replacing
P (A150) by 1, and the minimum by replacing it by 0. Thus P (A0) is certainly
not greater than 0.667 + (0.97)150 × 0.333 = 0.670, and it is not less than
0.667 − (0.97)150 × 0.667 = 0.660. After 150 generations of growth, any
batch will be within a percent or so of being two thirds mutated, whether
the original mother bacterium was a mutant or not. This information would
presumably be all that an experimenter, or a supplier of mutant bacteria,
would need.

6 Using Posits

In the previous sections we saw how, in a favourable situation, we can get
along without the use of blind posits. Now we will address a problem where,
on the contrary, it is essential to make a blind posit and to replace it subse-
quently by an appraised one. As before, we will present our case by giving a
concrete example.

Consider the male inhabitants of Northern Ireland, who may or may not
be Anglicans. Let α be the probability that a man is an Anglican, given that
his father is one, and β the probability that he is an Anglican, given that his
father is not an Anglican. We assume again that α and β are the same from
generation to generation. Although this assumption is not as reasonable as
it was in the case of the bacteria, we will make it for reasons of simplicity. A
more realistic situation, in which these conditional probabilities change from
generation to generation, could be accommodated, but we will not do that
in this example.

Let P (A0) be the probability that a man, selected at random in Northern
Ireland today, is an Anglican. Let P (A1) be the probability that his father,
and P (A2) that his grandfather were Anglicans. Finally, going back to the
time of the foundation of Eire and the beginning of what became known as
the Irish Troubles, let P (A3) be the probability that the great-grandfather
of our man was baptized in the Anglican tradition. This situation can be
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represented as a short finite series, namely as an equation like (12), which
we here rewrite for n = 2:

P (A0) = β + (α− β) [β + (α− β) [β + (α− β)P (A3) ] ]

= β
[
1 + (α− β) + (α− β)2

]
+ (α− β)3P (A3)

=
β

1− α + β
+ (α− β)3

[
P (A3)−

β

1− α + β

]
. (14)

Suppose that α = 0.8 and β = 0.1. In this case we certainly need to make a
guess for P (A3), the probability that the great-grandfather was an Anglican,
in order to find out the value of P (A0). Moreover, it matters very much
which posit is used for P (A3), because P (A3) = 0 results in P (A0) = 0.219,
while P (A3) = 1 yields P (A0) = 0.562. To obtain an accurate value for
P (A0), we evidently need an accurate posit for P (A3). How are we to obtain
it?

One way of doing that is the following. Imagine that we already know,
for example on the basis of an Irish ecclesiastical census, the percentage of
males who at the present time are Anglicans, i.e. we already have an accurate
value of P (A0) at hand. Then of course we do not need P (A3) to compute
P (A0), but it might happen that we wish to know the value of P (A3) for the
calculation of other quantities of interest. If so, we can use our knowledge of
P (A0) to compute P (A3), and to do that we invert Eq.(14):

P (A3) =
β

1− α + β
+

[
P (A0)−

β

1− α + β

]
/(α− β)3 . (15)

Here P (A3) plays the role of an appraised posit that is moreover perfectly
successful: it is the value of great-grandfather’s probability that would have
yielded precisely the correct value for P (A0). For example, if one in two
males are currently Anglicans in Northern Ireland, i.e. P (A0) = 0.5, we
find from Eq.(15) that P (A3) = 0.82; thus 82% of the male population in
great-grandfather’s day were Anglicans.

This appraised posit, P (A3) = 0.82, cannot of course be employed to
determine P (A0) without circularity; but we could use it to evaluate certain
other things we might wish to know, for example the probable income of the
Anglican church in Northern Ireland shortly after partition, or the degree of
emigration to England in the following generation, and so on.
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7 Dispensing with Uniformity

Up to this point, all our arguments have been made under the uniformity
assumption that α and β remain constant throughout the entire chain of
reasoning. As we have seen, this assumption comes naturally in the case
of bacteria cultivated in the laboratory, but it is somewhat artificial when
dealing with Anglican Irishmen. More often than not, the conditional prob-
abilities α and β will change from generation to generation.

Let us therefore now drop the uniformity assumption, and suppose that
α and β vary with n. We can express this by adding an index:

αn = P (An|An+1) and βn = P (An|¬An+1), (16)

where αn and βn may now depend nontrivially on n. In the limit as n tends
to infinity, the second line of Eq.(12) implies

P (A0) = β
[
1 + (α− β) + (α− β)2 + (α− β)3 + . . .

]
. (17)

In (17) α and β are constant, and the generalization to nonuniform condi-
tional probabilities is

P (A0) = β0 +
∞∑

n=1

γ0γ1 . . . γn−1βn , (18)

where we have put γn = αn−βn for convenience. While it is clear that Eq.(17)
is a special case of Eq.(18), the correctness of the latter equation still needs
to be established. In fact, the proof of (18) requires some computational
efforts, and these are given in the Appendix, notably in Eqs.(26)-(28).

Eq.(18) is only correct under the condition that the series converges. This
condition puts some relatively mild restrictions on the allowable expressions
that we use for βn and γn. However, many examples can be given in which
the entire series is not only convergent, but also explicitly summable. An
example is βn = bzn and γn = a(c + n)/(1 + n), where a, b, c and z are
constants, all lying in the interval (0,1). For then we find

P (A0) = b(1− az)−c ,

with further restrictions to guarantee that P (A0) < 1. With these formulas
for βn and γn, it is the case that both αn = bzn + a(c + n)/(1 + n) and βn

depend on n. As n tends to infinity, αn tends to a and βn to 0, on condition
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that z < 1. More complicated, but still explicitly summable forms for βn

and γn can be given that generate a hypergeometric series. However, we
will not give the details, since they are irrelevant for the main point that we
are making, namely that our argument in no way requires αn and βn to be
uniform, i.e. to be independent of n.

8 Bayesian Updating and Appraised Posits

It has been known since at least the 19th century, and perhaps even the
17th century, that the word ‘probable’ is ambiguous: it can be either objec-
tive (‘ontological’) or epistemological (‘subjective’). It is moreover common
knowledge that both are interpretations of Kolmogorov’s axiomatic scheme.
However, when it comes to the question of the relation between the two
interpretations, there is much dissent. Are they basically the same, in the
sense that the one can be reduced to the other? Or are they completely
disjunct, and is it merely a coincidence that we use the word ‘probability’
for both? Each view has had its advocates. Whereas Carnap for example
embraced a ‘disparity conception’ of probability, others claimed an ‘identity
view’, espousing a reduction in one of the two possible directions.2

Today many people realise that neither a disparity nor an identity view
is particularly fruitful, since the former makes it difficult to understand why
both interpretations obey the same ‘syntax’ (Kolmogorov’s axioms), while
the latter neglects their far-reaching differences in the field of semantics. In
recent years several attempts have been made to pave a third way, one that
incorporates the strong and eliminates the weak aspects of both interpreta-
tions. The most promising of these attempts provide bridges between the
objective notion of chance and the subjective concept of credence or degree
of belief. Thus David Lewis’s Principal Principle states that, if the chance
that an event e occurs were known to be r, and no other relevant evidence
were available, then your credence that e occurs had better be r as well
(Lewis, 1980). And Howson and Urbach, to mention another example, have
deftly clothed von Mises’ objective theory of chance in subjectivist, Bayesian
raiment (Howson and Urbach 1989, pp. 344-347).

2Frank Ramsey is often ranked with Carnap in this matter. Galavotti however argues
that, according to Ramsey, probability in physics can be accounted for in terms of belief of
a special sort. Therefore it would be a mistake to call Ramsey a dualist (Galavotti 2005,
p. 204).
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In this section we propose to contribute to the general project of con-
necting chance and credence by showing that Reichenbach’s objectivistic ap-
proach is intimately linked to subjectivistic Jeffrey conditionalization. More
specifically, we will prove that, notwithstanding substantial epistemological
and methodological differences, the two approaches can yield the same result:
what we shall call ideal posits à la Reichenbach are equal to what we shall
call invariant Jeffrey updates.

For simplicity we show this equivalence here for a single step, rather than
a sequence of them. The general proof, for any number of steps, and also
without the assumption of uniformity, is to be found in the Appendix.

If it is not sure whether A1 has occurred or not, we can assign a certain
probability to that occurrence, which we designate Pold(A1). Supposing the
conditional probabilities P (A0|A1) = α and P (A0|¬A1) = β , to be known,
the Bayesian updating of Pold(A1) to Pnew(A1) is made by identifying the
latter with P (A1|A0), i.e. Pnew(A1) ≡ P (A1|A0), where

P (A1|A0) =
P (A0|A1)Pold(A1)

P (A0|A1)Pold(A1) + P (A0|¬A1)Pold(¬A1)

=
αPold(A1)

β + (α− β)Pold(A1)
. (19)

The above classic or Bayesian updating is based on the assumption that
there is no doubt that A0 has indeed occurred. A0 is, as it were, incoming
indubitable evidence that is used to improve the estimate of A1’s probability
of occurrence.

Jeffrey’s generalization of this updating starts from the idea that incoming
evidence, A0, will always carry its own modicum of uncertainty. Instead of
Pnew(A1) ≡ P (A1|A0), we write, following Jeffrey’s lead,

Pnew(A1) = Pold(A1|A0)Pnew(A0) + Pold(A1|¬A0)Pnew(¬A0) , (20)

where Pold(A1|A0) is modelled on the Bayesian update (19), namely

Pold(A1|A0) =
P (A0|A1)Pold(A1)

P (A0|A1)Pold(A1) + P (A0|¬A1)Pold(¬A1)

=
αPold(A1)

β + (α− β)Pold(A1)
. (21)

Similarly, Pold(A1|¬A0) is defined by the Bayesian update

Pold(A1|¬A0) =
P (¬A0|A1)Pold(A1)

P (¬A0|A1)Pold(A1) + P (¬A0|¬A1)Pold(¬A1)
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=
(1− α)Pold(A1)

1− β − (α− β)Pold(A1)
. (22)

The suffix ‘old’ on Pold(A1|A0) and Pold(A1|¬A0) is intended to stress the
fact that they are functions of Pold(A1), the old or pre-update value of the
probability of A1’s occurrence. It is supposed that the known conditional
probabilities α = P (A0|A1) and β = P (A0|¬A1) are unequal, α 6= β, for
otherwise the events A0 and A1 would be probabilistically independent of
one another, and it would be senseless to try to use knowledge about the one
to update knowledge about the other.

With the identifications (21) and (22), the Jeffrey update (20) becomes

Pnew(A1) =
αPold(A1)Pnew(A0)

β + (α− β)Pold(A1)
+

(1− α)Pold(A1)[1− Pnew(A0)]

1− β − (α− β)Pold(A1)
. (23)

We say that the Jeffrey updating is invariant with respect to A0 if the
new value of the probability of A1’s occurrence is equal to the old value, i.e.

Pnew(A1) = Pold(A1) . (24)

Evidently this is the best possible value of Pold(A1), in the sense that up-
dating it by means of Pnew(A0) has no effect at all. When this condition of
invariance is satisfied, one can cancel Pold(A1) out from both sides of Eq.(23),
on condition of course that Pold(A1) 6= 0. After some algebra one finds

(α− β)
[
1− Pold(A1)

][
Pnew(A0)− β − (α− β)Pold(A1)

]
= 0 .

Under our assumption that α 6= β, and on condition that Pold(A1) 6= 1, the
first two factors above do not vanish, and so the third factor must be zero,
i.e.

Pnew(A0) = β + (α− β)Pold(A1) . (25)

For a single step, Eq.(25) is precisely Reichenbach’s formula for the perfectly
successful appraised posit, i.e. the appraised posit Pold(A1) that leads to
the exact probability Pnew(A0) (cf. Eq.(8)). Such an appraised posit that
leads to the exact probability we will call an ideal posit. The example of the
Irish great-grandfather’s probability of being an Anglican, which was tailored
to the known probability associated with contemporary Irish males, was an
ideal posit in the case of three steps rather than one.
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As to the inverse proposition, i.e. that Eq.(25) implies Eq.(24), this is also
readily proved. If Eq.(25) holds, the denominators in Eq.(23) are respectively
Pnew(A0) and 1− Pnew(A0), so the latter equation degenerates into

Pnew(A1) = αPold(A1) + (1− α)Pold(A1) = Pold(A1) .

Thus if the Reichenbach posit is ideal, then the corresponding Jeffrey update
is invariant, and the converse.

Note that the equivalence between ideal posits and invariant updates
also applies if α = β. In fact, the proof of the equivalence is then completely
trivial. For if α = β, then A0 and A1 are independent, as we remarked. And
once we have independence, the Jeffrey update is trivially invariant and the
Reichenbach posit is trivially ideal: Pnew(A0) is always equal to β. For this
reason, we are always interested in the case where α 6= β, so that A0 and A1

are not independent of one another.
Earlier we remarked that the equivalence between ideal posits and in-

variant updates, together with such rules as the Principal Principle, might
contribute to a rapprochement between talk about credence and talk about
chance. The equivalence to which we lay claim is an implication of Reichen-
bach’s and Jeffrey’s assumptions (together with an implicit use of the Prin-
cipal Principle), inasmuch as the former apply to chance and the latter to
credence, receiving its justification from the proof that has been sketched
above and that in its generality is given in the Appendix below.
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Appendix

It will be shown that if Reichenbach’s ideal posit is imposed, then the cor-
responding Jeffrey update for the probability of the occurrence of the event
An+1 is invariant; and, conversely, if the Jeffrey update is invariant, then
P (An+1) is given by Reichenbach’s ideal posit.
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Jeffrey’s update of the probability of An+1, from an old value, Pold(An+1),
to a new value, Pnew(An+1), can be written

Pnew(An+1) =

{
P (A0|An+1)Pnew(A0)

Pold(A0)
+

P (¬A0|An+1)Pnew(¬A0)

Pold(¬A0)

}
Pold(An+1) .

(26)
Here Pold(A0) is not in general equal to Pnew(A0), rather it is the following
function of the conditional probabilities, and of Pold(An+1):

Pold(A0) =
n∑

m=0

QmP (Am|¬Am+1) + Qn+1Pold(An+1) , (27)

where Q0 = 1 and

Qn =
n−1∏
m=0

P (Am||Am+1) ,

for n ≥ 1. Here the Jeffrey relevance of Am+1 to Am is defined by

P (Am||Am+1) = P (Am|Am+1)− P (Am|¬Am+1) . (28)

If Pold(An+1) were the correct value for the probability of the occurrence of the
event An+1, then Pold(A0), as defined by Eqs.(27)–(28), would be the correct
value for the probability of the occurrence of the event A0 (see Atkinson and
Peijnenburg (2006) Appendix).

The ideal Reichenbach posit is defined by

IRP : Pnew(A0) = Pold(A0) , (29)

where the right-hand side is to be understood through its definition (27)–(28).
The invariant Jeffrey update is specified by

IJU : Pnew(An+1) = Pold(An+1) . (30)

We shall show that IRP and IJU are equivalent.

Proof of the implication IRP −→ IJU:
If Pnew(A0) = Pold(A0) , then these probabilities may be cancelled out from
the numerators and denominators in Eq.(26), yielding

Pnew(An+1) = {P (A0|An+1) + Pnew(¬A0|An+1)}Pold(An+1) = Pold(An+1) ,
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which is IJU. Q.E.D.

Proof of the implication IJU −→ IRP:
The Jeffrey update (26) can be rewritten

Pnew(An+1) =

{
1 +

[Pnew(A0)− Pold(A0)][P (A0|An+1)− Pold(A0)]

Pold(A0)Pold(¬A0)

}
Pold(An+1) ,

so if Pnew(An+1) = Pold(An+1) , then one or other of the factors in the numer-
ator of the above fraction must vanish. Either Pnew(A0) = Pold(A0), which is
IRP, or P (A0|An+1) = Pold(A0). In the latter case, since

Pold(A0) = P (A0|An+1)Pold(An+1) + P (A0|¬An+1)Pold(¬An+1) ,

which can be rewritten

Pold(A0) = P (A0|An+1)−
[
P (A0|An+1)− P (A0|¬An+1)

]
Pold(¬An+1) ,

it follows that Pold(A0) = P (A0|An+1) implies P (A0|An+1) = P (A0|¬An+1),
since Pold(¬An+1) 6= 0. This means that A0 and An+1 are independent. In
this case Pnew(A0) = P (A0|An+1) independently of the value of Pold(An+1),
so that Pnew(A0) = Pold(A0), which is again IRP. Q.E.D.

Summarizing, the Ideal Reichenbach Posit for chances is equivalent to the
Invariant Jeffrey Update for credences, subject only to the constraints that
neither Pold(An+1) nor Pold(A0) have either of the extreme values 0 or 1.
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