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Abstract

A partition {Ci}i∈I of a Boolean algebra S in a probability measure space (S, p) is called a Reichen-
bachian common cause system for the correlated pair A, B of events in S if any two elements in the
partition behave like a Reichenbachian common cause and its complement, the cardinality of the
index set I is called the size of the common cause system. It is shown that given any correlation in
(S, p), and given any finite size n > 2, the probability space (S, p) can be embedded into a larger
probability space in such a manner that the larger space contains a Reichenbachian common cause
system of size n for the correlation. It also is shown that every totally ordered subset in the partially
ordered set of all partitions of S contains only one Reichenbachian common cause system. Some open
problems concerning Reichenbachian common cause systems are formulated.

1 Reichenbach’s notion of common cause

Let (S, p) be a classical probability space with Boolean algebra S of random events and probability
measure p on S. If the joint probability p(A∩B) of A and B is greater than the product of the single
probabilities, i.e. if

p(A ∩B) > p(A)p(B) (1)

then the events A and B are said to be (positively) correlated and the quantity

Corr(A, B) ≡ p(A ∩B)− p(A)p(B) (2)

is called the correlation of A and B.
According to Reichenbach [13], Section 19, a probabilistic common cause of a correlation such as

(1) is an event C (common cause) that satisfies the four conditions specified in the next definition.

Definition 1 C is a Reichenbachian common cause of the correlation (1) if the following (indepen-
dent) conditions hold:

p(A ∩B|C) = p(A|C)p(B|C) (3)

p(A ∩B|C⊥) = p(A|C⊥)p(B|C⊥) (4)

p(A|C) > p(A|C⊥) (5)

p(B|C) > p(B|C⊥) (6)

where p(X|Y ) = p(X ∩Y )/p(Y ) denotes the conditional probability of X on condition Y , C⊥ denotes
the complement of C and it is assumed that none of the probabilities p(X), (X = A, B, C, C⊥) is
equal to zero.
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We shall occasionally refer to conditions (3)-(6) as “Reichenbach(ian) conditions”. It is standard
terminology to call (3)-(4) “screening-off” conditions and to say that C (and also C⊥) screens off the
correlation between A and B. To exclude trivial common causes we call a common cause C proper if
it differs from both A and B by more than a measure zero event. In what follows “common cause”
will always mean a proper common cause.

Reichenbach prooves the following proposition.

Proposition 1 If the events A, B, C satisfy the Reichenbachian conditions (3)-(6) then there is a
positive correlation between A and B.

The significance of Proposition 1 is that it shows in what sense a common cause explains a corre-
lation: from the assumption that A, B and C satisfy the Reichenbachian conditins one can derive
(equivalently: predict) that A and B are (positively) correlated – this is an instance of explanation
in the sense of Hempel.

Reichenbach’s proof of Proposition 1 is based on the following Lemma, which, for later purposes,
we spell out in a slightly more general form than used by Reichenbach. Before stating the lemma let
us recall that the set of events {Ci ∈ S | i ∈ I} is a partition of S if ∪iCi = Ω (Ω being the unit
in S) and Ci ∩ Cj = ∅ if i 6= j.)

Lemma: Let {Ci}i∈I be a partition of S and let A, B ∈ S be arbitrary elements. If p(A ∩ B|Ci) =
p(A|Ci)p(B|Ci) for all i ∈ I then we have

p(A ∩B)− p(A)p(B) =
1

2

∑
i6=j

p(Ci)p(Cj)[p(A|Ci)− p(A|Cj)][p(B|Ci)− p(B|Cj)] (7)

Applying Lemma (proof of which is left to the reader) with C1 = C and C2 = C⊥ one obtains

p(A ∩B)− p(A)p(B) = p(C)p(C⊥)[p(A|C)− p(A|C⊥)][p(B|C)− p(B|C⊥)] (8)

which is the formula Reichenbach uses in showing Proposition 1.
Eq. (8) implies that Corr(A, B) is indeed positive if (5)-(6) hold. Eq. (8) also shows, however,

that for Corr(A, B) to be positive (5)-(6) are sufficient but not necessary: positivity of Corr(A, B) is
implied by the positivity of the right hand side of (8); hence, what is decisive from the point of view
of the explanatory power of the comon cause is that [p(A|C) − p(A|C⊥)] and [p(B|C) − p(B|C⊥)]
have the same sign. It also is clear from (8) that a common cause can explain negative correlations in
just the same way as it can explain positive ones: if C and C⊥ are such that screening off conditions
(3)-(4) hold and [p(A|C) − p(A|C⊥)] and [p(B|C) − p(B|C⊥)] have opposite signs, then the right
hand side of (8) is negative, hence existence of such a C entails the negative correlation. All what
follows can be modified trivially in order to cover the case of negative correlation, and all statements
presented below remain valid in the case of negative correlations; however, to simplify notation we
restrict ourselves to positive correlations.

To sum up: the intuitive idea behind explaining by a Reichenbachian common cause a correlation
between A and B in a statistical ensemble is that one should be able to cut the statistical ensemble by
a pair of orthogonal events (C and C⊥) into two disjoint parts in such a way that (i) the correlation
disappears in both of the resulting subensembles (this is expressed by the two screening off conditions);
and (ii) one of the subensembles should increase the probability of both A and B (which is the content
of the requirement of [p(A|C)− p(A|C⊥)] and [p(B|C)− p(B|C⊥)] having the same sign).

2 The notion of a Reichenbachian common cause system

It is easy to see that there exist common cause incomplete probability spaces (S, p), i.e. probability
spaces that contain a pair of correlated events without containing a (proper) common cause of the
correlation. Existence of such common cause incomplete probability spaces can be a threat to what has
become called Reichenbach’s Common Cause Principle (RCCP): Given a correlation Corr(A, B) >
0, either there is a direct causal influence between A and B that can be held responsible for the
correlation, or there exists a common cause in the sense of Definition 1 that explains the correlation.
So if one sees a correlation between A and B and has good reasons to think that the correlated events
A, B in (S, p) cannot influence each other causally and yet there exists no common cause in S of the
correlation Corr(A, B), then the suspicion arises that RCCP might not hold.

Confronted with a common cause incomplete probability space (S, p) in which a direct causal
influence between the correlated events is excluded, one can have in principle two strategies aiming
at saving RCCP: One may try to argue that S is not “rich enough” to contain a common cause
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but there might exist a larger (S ′, p′) that already contains a common cause of the correlation (see
Definition 3 below for what it means to enlarge (S, p) into (S ′, p′)). It was shown in a previous paper
that this strategy always works in the sense that it is always possible to enlarge (S, p) in such a way
that the enlarged space already contains an event C that satisfies the Reichenbachian conditions (see
[4]).

Another natural idea is to suspect that the correlation between A and B is not due to a single factor
but may be the cumulative result of a (possibly large) number of different “partial common causes”,
none of which can in and by itself yield a complete common-cause-type explanation of the correlation,
all of which, taken together, can however account for the entire correlation. Explaining a correlation
by such a system of partial common causes would mean that one can partition the statistical ensemble
into more than two subensembles in such a manner that (i) the correlation disappears in each of the
subensembles, (ii) any pair of such subensembles behaves like the two subensembles determined by
the pair C, C⊥ in the Definition 1 of common cause and (iii) the totality of “partial common causes”
explains the correlation in the sense of entailing it. A mathematically explicit formulation of this
idea is spelled out in the next definition.

Definition 2 Let (S, p) be a probability space and A, B two events in S. The partition {Ci}i∈I of S
is said to be a Reichenbachian common cause system (RCC system for short) for the pair A, B if the
following two conditions are satisfied

p(A ∩B|Ci) = p(A|Ci)p(B|Ci) for all i ∈ I (9)

[p(A|Ci)− p(A|Cj)][p(B|Ci)− p(B|Cj)] > 0 (i 6= j) (10)

The above definition is a natural generalization of Reichenbach’s original definition of common cause
to the case when more than one single factor contributes to a correlation. The cardinality of the
index set I (i.e. the number of events in the partition) is called the size of the RCCS. Since C, C⊥

with a Reichenbachian common cause C is a RCCS of size 2, we call a RCCS proper if its size is
greater than 2.

The next proposition shows that a Reichenbachian common cause system also has explanatory
power exactly in the sense in which a single common cause does:

Proposition 2 Let the partition {Ci}i∈I of S be a Reichenbachian common cause system for the
pair A, B. Then the elements A and B are positiely correlated.

Proof: The statement in the proposition is an immediate corollary of Lemma and the definition of
the notion of Reichenbachian common cause system.

3 Existence and uniqueness of Reichenbachian common
cause systems

It is not obvious that proper Reichenbachian common cause systems exist. It is not difficult however
to give an example of a probability space (S, p) containing a pair of correlated events A, B for which
there exists no common cause in S but there exists in S a Reichenbachian common cause system of
size 3 (see [8]). This example also shows that the intuition mentioned in Section 2 is correct: there
are cases when an explanation of a correlation with the help of a single common cause is impossible
within the bounds of a given event structure; yet the event structure is rich enough to contain a
proper RCCS that can explain the correlation. It is not difficult however to find probability spaces
that contain neither a (proper) common cause nor a proper Reichenbachian common cause system.
As it was mentioned in Section 2 it is known that such common cause incomplete probability spaces
can always be extended in such a way that the extension contains a common cause of the given
correlation. More is true, however: on can show that any probability space can be extended in such
a way that the larger probability space contains a Reichenbachian common cause system consisting
of a large number of events. Before spelling out the precise proposition let us recall the definition of
an extension (S ′, p′) of a probability space (S, p):

Definition 3 (S ′, p′) is called an extension of (S, p) if there exists an injective lattice homomorphism
(embedding) h:S → S ′ (preserving also the orthocomplementation) such that

p′(h(X)) = p(X) for all X ∈ S (11)

Proposition 3 Let (S, p) be a classical probability space and n be an arbitrary finite natural num-
ber greater than 2. There exists then an extension (S ′, p′) of (S, p) such that (S ′, p′) contains a
Reichenbachian common cause system of size n.
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(See [8] for the long and tedious proof of this proposition.)
Proposition 3 shows that RCCS’s of arbitrary finite size exist.

Problem Do Reichenbachian common cause systems of countably infinite size exist?

The answer to the above question is not known; we conjecture that RCCS’s of infinite size also
exist.

A given correlation Corr(A, B) in probability space (S, p) can possess two or more Reichenbachian
common causes. Similarly, a correlation can have more than two proper Reichenbachian common
cause systems (this being a consequence of Proposition 3); however, the different RCCS’s cannot be
arbitrarily located in the event structure S. To formulate the proposition constraining the location
of RCCS’s in S, consider the set P of all partitions of S. Let P1 = {C1

i }i∈I and P2 = {C2
j }j∈J be

two partitions in P. The partition P1 is defined to be finer than P2 (equivalently: P2 is defined to
be coarser than P1) (notation P1 ¹ P2) if for every C2

i ∈ P2 there exist C1
ji
l
∈ P1 (ji

l ∈ L ⊆ J)

such that C2
i = ∪ji

l
∈LC1

ji
l
. P1 is called strictly finer (coarser) than P2 if P1 is finer (coarser) than P2

and P1 6= P2. The relation ¹ is a partial ordering on P, and the terminology “(strictly) finer” and
“(strictly) coarser”) applies to RCCS’s as well since RCCS’s are partitions.

Proposition 4 If {Ci}i=n
i=1 is a Reichenbachian common cause system in (S, p) for the pair A, B,

then there exists in (S, p) neither strictly finer nor strictly coarser Reichenbachian common cause
system for A, B.

Proof: Assume that {C2
j }j=m

j=1 is a RCCS strictly coarser than the RCCS {C1
i }i=n

i=1 (n > m). There

exist then a C2
j such that for some C1

i
j
l

∈ P1 with ijl ∈ L and L having the cardinality of at least 2,

we have C2
j = ∪

i
j
l
∈L

C1

i
j
l

. Consider the probability measure space (SC2
j
, p(•|C2

j )) where

SC2
j

= {X ∩ C2
j | X ∈ S} (12)

and where p(•|C2
j ) is the conditional probability measure of p with respect to the conditioning event

C2
j . By the definition of {C2

j }j=m
j=1 as a Reichenbachian common cause system, the events A and B

are statistically independent with respect to the probability measure p(•|C2
j ), i.e.

p(A ∩B|C2
j ) = p(A|C2

j )p(B|C2
j ) (13)

On the other hand, the events C1

i
j
l

(ijl ∈ L) form Reichenbachian common cause system in (SC2
j
, p(•|C2

j ))

with respect to the events (A∩C2
j ) and (B∩C2

j ); hence, by Proposition 2 there is a positive correlation
between (A ∩ C2

j ) and (B ∩ C2
j ) in the measure p(•|C2

j ) i.e. we have

p((A ∩ C2
j ) ∩ (B ∩ C2

j )|C2
j ) > p(A ∩ C2

j |C2
j )p(B ∩ C2

j |C2
j ) (14)

which contradicts (13). So the assumption of existence of two, different RCCS’s that are in the
finer-coarser relation has led to contradiction, so the proposition is proved.

4 Concluding remarks

We can express the content of Proposition 4 in the following way: any totally ordered subset of
partitions in (S, p) contains only one Reichenbachian common cause system for a given fixed pair of
events A, B ∈ S. So while there may exist many RCCS’s for a given correlated pair, the different
RCCS’s provide different sorts of explanations of the correlation between A and B. In particular,
different Reichenbachian common cause systems cannot be “put together” to form a “finer” RCCS
that would provide a more “detailed” explanation of the correlation. This also implies that the
partition of (S, p) generated in the natural manner by different Reichenbachian common causes Ci ∈ S
does not yield a RCCS; hence the non-uniqueness of Reichenbachian common causes cannot be
explained by saying that the different common causes are just coarse-grained manifestations of a
deeper, finer underlying Reichenbachian common cause system.

Given two correlations Corr(Ai, Bi) > 0 (i = 1, 2) in (S, p), the event C ∈ S is called a com-
mon common cause of the two correlations if it is a common cause of both Corr(A1, B1) > 0 and
Corr(A2, B2) > 0. It is known that common causes are not in general common common causes, i.e.
that there exist two correlations in a probability space that cannot have a common common cause
(see [7] and [1] for results concerning necessary and sufficient conditions implying the existsence of
common common causes). The notion of a Reichenbachian common common cause system also is a
meaningful concept and it would be interesting to find necessary and sufficient conditions for a set of
correlations to have a Reichenbachian common common cause system.
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Motivated by considerations somewhat different from the one in this paper, the problem of a
common cause system is raised also in [9], where a common cause system (called “multiple common
cause”) is defined to be a finite partition possessing the screening off property (eq. (9)) only (plus
some mathematically not explicit requirement concerning the spatiotemporal location of the events
Ci (i = 1, 2, . . . n) and A, B, see Definition 3.3 in [9]). Thus the notion of RCCS defined in the present
paper is different from the one proposed in [9]. We wish to point out in this regard that without
some requirement in addition to (9) – such as (10) –, the notion of common cause system becomes
trivial: for instance, the set of atoms in any finite Boolean algebra form a partition for which the
screening off condition (9) holds; hence all probability measure spaces with a finite Boolean algebra
possess a common common cause system, which seems counterintuitive. A Reichenbachian common
cause system as defined in the present paper is a much stronger notion.

Reichenbach’s notion of common cause can naturally be adapted to quantum probability spaces
(L, p), where L is a non-distributive, orthomodular lattice and where p is an additive (generalized)
bounded measure on L (see [12], [10], [11], [4], [6]; for some other attempts see [2] and [3]). The notion
of Reichenbachian common cause system also can easily be generalized to the non-commutative
case along the ideas followed in this paper. Problems and questions concerning non-commutative
Reichenbachian common cause systems paralelling the ones treated here also can be formulated, no
results are known, however, on the non-commutative case.
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T 043642 and T 025880.
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