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ABSTRACT. 
 
In the more recent philosophy of mathematics, mathematics is seen as a cultural product. In this view, it 
is not easy to explain the high level of coherence of mathematical theories and concepts and the wide 
spread consensus among mathematicians. As these phenomena are cited in orer to negate the cultural 
relativity of mathematics, it is worth searching for explanations. In this article, attempts at explanations 
are given by looking at the historical development of mathematical concepts and theories. In the last 
section, consequences for teaching and learning mathematics are briefly discussed.  
 

0. Introduction: Mathematics as a cultural phenomenon  
 

“It is characteristic for mathematics as a scientific domain that it has disconnected from everyday life 
and the socio-cultural foundation which it has originally come from. Scarcely any other subject regards 
itself that definitively as being independent of time, values and culture. The exclusive reference on the 
formal and the abstractable [...] makes it difficult to discuss the relation between mathematics and 
cultural or social elements. Mathematics is [...] widely seen as the paradigm of the formal, the structural 
or the algorithmical and contrasted to culture – i.e. the historical, the dynamical, the informal or the 
intuitive or social: thus mathematics and culture are conceived to be extremes that are not reconcilable.“ 
(Schroeder 2000, p. 452, author’s translation) 
 

This citation provides us with a very concise characterization of mathematics as it exists in the minds 
of many non-mathematicians, and even mathematicians and mathematics teachers. However, in the 
disciplines which reflect on mathematics professionally, this characterization is questioned more and 
more. Rejecting this old, absolutist image of mathematics, philosophers of mathematics have 
established humanistic or social constructivist positions, in which mathematics is understood as a 
cultural product (cf. Ernest 1998, Tymoczko 1985, Restivo et al. 1993 for the social-constructivist 
view, or White 1993 for the humanistic position). Emphasis is put on both parts: “product“ accounts 
for the fact that mathematics must not only be discovered but must really be created by humans. 
These creations always take place in a specific cultural setting, thus it is a “cultural product“.  
 
 
One of the most prominent exponents of this position is Reuben Hersh. In his book “What is 
mathematics, really?“ (1997) he describes mathematics as a human activity:  
 

“From the viewpoint of philosophy mathematics must be understood as a human activity, a social 
phenomenon, part of human culture, historically evolved, and intelligible only in a social context.“ 
(Hersh 1997, p. 11) 
 

To understand mathematics as a cultural product means to acknowledge the human influence on 
mathematics. Nevertheless, every individual is confronted with an apparently impartial theory. Leslie 
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White has pointed out this fact and given the following explanation:  
 

“The concept of culture clarifies the entire situation. Mathematical formulas, like other aspects of 
culture, do have in a sense an ‘independent existence and intelligence of their own.’ The English 
language has, in a sense, ‘an independent existence of its own.’ Not independent of the human species, 
of course, but independent of any individual or group of individuals, race or nation.“ (White 1947, p. 
295) 
 

Thus, there is a discrepancy between mathematics as a culturally evolved product and the fact that it 
faces the individual human being as an unchangeable corpus of ideas, notions, and theorems. It is a 
specific characteristic of mathematics that its cultural roots are hidden more successfully than those 
of other cultural products (like language).  
 
 
The disconnection of mathematics and its cultural roots is strengthened by the high coherence of 
mathematical concepts and theories and a wide consensus among mathematicians. Both phenomena, 
coherence and consensus, shall be analysed in this paper, because they serve as main arguments 
opposing a culturalistic view of mathematics. By explaining them in a culturalistic framework, the 
author wants to contribute to the elaboration of a culturalistic philosophy of mathematics.  
 
 
1. The opponents’ argumentation  
 
For several years, the constructivist sociology of knowledge has disputed about the cultural relativity 
of mathematics. Sociology of knowledge is founded on the thesis that scientific theories are 
principally underdetermined. That means, for every description of empirical data there is still a scope 
left for the influence of social factors in building up theories (cf. Bloor 1991). Although there is a 
certain agreement about the contingent character of sciences, sociologists of knowledge do not 
agree whether it also applies to mathematics. David Bloor emphasizes that even in mathematics, 
concepts and proofs are not timeless but subjects of controversies and negotiations.  
 
An important opponent is the sociologist Bettina Heintz. She cites two indubitable phenomena to 
grant a “special epistemical status“ to mathematics: the high coherence of mathematical concepts 
and theories and the wide consensus among mathematicians (Heintz 2000). Concerning coherence, 
she writes:  
 

“In contrast to other domains that decompose into separate and partly contradictory theories, 
mathematics is still a connected ensemble. In view of the enormous specialization [...] this coherence is 
not natural by any means. Mathematics is a collective product but not coordinated centrally. There is 
no instance which would ensure that the individual results match one another. But although 
mathematicians operate relatively isolated and restrict themselves to a small domain of work, 
connections can be discovered again and again between areas which were developed independently.“ 
(Heintz 2000, p. 19, author’s translation) 
 

For Heintz, the second phenomenon, the high consensus, is even more important:  
 

“Ludwig Wittgenstein says in a famous passage that in mathematics, there is hardly a controversy, and 
if there is one, ‘it is safe to decide’ (Wittgenstein 1983: 571). In contrast to other sciences, mathematics 
does not provide any flexibility for interpretation. The conclusions of mathematics are mandatory. 
Whoever follows the rules of the mathematical method will inevitably arrive at the same result.“ (Heintz 
2000, p. 20)  
 

Starting from this estimation, her conclusions seem stringent:  
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“Modern mathematics is characterized by features that hardly leave a scope for a sociological analysis. 
[... ] A sociological perspective is legitimate and appropriate where it concerns the reconstruction of the 
development which led to that epistemical structure being typical for modern mathematics and singular 
in its coherence and argumentative rationality.“ (Heintz 2000, p. 274/275)  
 

If Heintz was right, mathematics would be inappropriate for a sociological analysis of social factors 
of influence on the scientific development, and also, even worse, totally immune against human 
influence. A human factor could only be detected in the historical development of mathematics, 
during the long processes where humans made decisions, e.g. about the style or the strictness of 
formal proofs. Due to its mandatory conclusions, contemporary mathematicians could only be 
creative in their ways of discovering theorems and proofs. In its consequence, Heintz’s thesis of the 
“special epistemical status“ claims that contingency in mathematics is only located in the ways to 
mathematical contents not in the contents itself.  
 
 
We must emphatically reject this view of mathematics, because in this account, crucial areas of 
mathematical activities are ignored. The entire process of mathematization (i.e. the question how 
initial non-mathematical problems are to be translated into mathematics), the concept formation, and 
the development of theories as well as the criteria of relevance of research questions are missing. 
How are mathematical concepts found? What influences the process of concept formation? How 
does the community decide whether a problem is adequately mathematized? Which factors affect 
the development of a theory? Who decides about the relevance of questions or theorems? In all 
these fields, the contingent character of mathematics is much more evident than in a simple limitation 
on proving.  
 
 
By distinguishing between “the front“ and “the back“ of mathematics as Reuben Hersh does (i.e. the 
way of presenting finished mathematics or the creating of mathematics, resp.), we can see directly 
that consensus is substantially restricted to “the front“:  
 
 

“There’s amazing consensus in mathematics as to what’s correct or accepted. But just as important is 
what’s interesting, important, deep or elegant. Unlike correctness, these criteria vary from person to 
person, speciality to speciality, decade to decade. They’re no more objective than esthetic judgments in 
art or music.“ (Hersh 1997, p. 39) 
 

 
Though Heintz addresses these issues in her description of mathematicians’ practice, she completely 
neglects them in her theoretical conclusions. Just as many philosophers of mathematics, even the 
sociologist Heintz has taken the easy way out and concentrated her epistemological considerations 
exclusively on proofs. In contrast, in her practical part, she describes that proofs only appear at the 
end of the mathematicians’ working process. Moreover, it is not helpful to consider the distinction 
between the context of discovery and context of justification which is usually drawn in the 
philosophy of science (see e.g. Lakatos 1976), because it is founded on the same patterns that 
reduce mathematics to proofs and the discovery of theorems or proofs. 
 
 
Rejecting Heintz’s thesis of the “special epistemical status“ of mathematics, we need a further 
analysis of the phenomena coherence and consensus. If we insist on the cultural relativity and the 
contingency of mathematical knowledge, then the coherence and the absence of real conflicts or 
revolutions in mathematics cannot be explained easily. In order to find an account for it, Fleck’s 
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philosophy of science and a suited theory of mathematical development are presented in the 
following section.  
 
 
2. Approaches to an explanation  
 
 
In order to explain the phenomena coherence and consensus, let us first consider Ludwig Fleck’s 
philosophy of science he developed in 1935 in his book “Entstehung und Entwicklung einer 
wissenschaftlichen Tatsache: Einführung in die Lehre vom Denkstil und vom Denkkollektiv“ (English 
edition: Genesis and development of a scientific fact). Today, Fleck is widely recognized as a pioneer 
of the constructivist-relativist tendencies in the philosophy of science and of the sociologically-
oriented approach to the study of the evolution of scientific and medical knowledge. He deserves this 
recognition and respect all the more as during his lifetime his philosophical achievement, passed 
completely unnoticed, until the well known historian of science Thomas Kuhn recognized Fleck’s 
main work as a source of inspiration of his “The Structure of Scientific Revolution“ (1970). As Fleck 
is not well known in the philosophy of mathematics, his work shall be described in some detail.  
 
2.1 Fleck’s theory of the thought-collectives and thought-styles  
 
Fleck can be called a pioneer of culturalistic epistemologies, because he has not only considered the 
subject and the object of perception but he added the conditions of perception as a third important 
component to all epistemology. According to his theory, the conditions of perceptions are determined 
by the existing standards of knowledge which are not located in the individual but in the collective. 
He describes an  
 

“interaction between the perceived and the perception: the already perceived influences the way of new 
perceiving; perception enhances, regenerates, reinvents the perceived. Thus, perception is not an 
individual process of theoretical consciousness, it is the result of a social activity, because the 
particular standard of perception exceeds the individual’s limits.“ (Fleck 1935, p. 54, author’s 
translation) 
 

Fleck outlines this idea in a case study of the changing concept of syphilis in the medical history. 
With this example he demonstrates, how the development of a scientific fact is influenced by the 
culturally determined ways of thinking. 
 
In order to describe the intersubjective character of perception and science in general, he has 
developed the notions of thought-style (Denkstil) and thought-collective (Denkkollektiv). The 
thought-collective is defined as a community possessing a common thought-style. This style develops 
successively, and is connected to its history at every stage. It creates a certain definite readiness and 
dictates what and how the members of the thought-collective can observe. Thought-style is defined 
as a directed perceiving by which perceptions are processed. It is characterized by  
 

• “common attributes of the problems of interest for the collective,  
•  
• common judgments what is considered to be evident;  
•  
• common methods as media of perceiving.  
•  
• Eventually, it is accompanied by a technical and literary style of a knowledge system.“    
  
•  



 5

 

(Fleck 1935, p. 130) 
 

The thought-styles in which individuals think are the results of their theoretical and practical 
education. Passing from teacher to student, they are certain traditional values which are subjected to 
a specific historical development and specific sociological laws.  
 
If a certain thought-style is sufficiently elaborated, it does not only determine the perception but also 
what is considered to be true. Therefore, truth is located in the intersubjective dimension:  
 

“The notion of truth in its classical significance, as a value independent of the subject of cognition and 
of social forces, compels one to accept truth as an unattainable ideal, and the history of science teaches 
us besides that we do not approach that ideal, even asymptotically, for the development of science is 
not unidirectional and does not consist only in accumulating new pieces of information, but also in 
overthrowing the old ones. Thus classical theories of cognition ought to distinguish between: (1) the 
ideal, unattainable truth, (2) the official ‘truths’ which ‘should’ somehow approach it, (3) illusions and 
mistakes. At the same time they have to admit that there is no general criterion of truth. [...].The 
epistemology which is the science of thought-styles, of their historic and sociological development, 
considers the truth as the up-to-date stage of changes of thought-style.“ (Fleck 1936, p. 111, translated 
by the editors)  
 

We can learn a lot from Fleck’s theory of thought-collectives and thought-styles for mathematics: In 
Fleck’s view, the sciences are specific, thought-collective ensembles which are especially stable. If 
we consider mathematics to be this such a thought-style, Fleck gives us interesting answers to our 
question why there is this wide consensus and this high coherence. According to Fleck, these 
phenomena give no evidence for a “special epistemical status“, but they are to be understood in 
correlation to the standard of a discipline:  
 

“The more a field of knowledge is elaborated, the more it is developed, the smaller are the differences 
[...] It is, as if the scope for development was shortened with the growth of nodes, as if more resistance 
appeared, as if the room for free thinking was restricted.“ (Fleck 1935, p. 110) 
 

This idea is followed by the notion ‘active and passive joining’ (Kopplung): “every active part of 
knowledge corresponds to a passive joining which results mandatorily.“ (Fleck 1935, p. 110). The 
more active parts of knowledge belong to a thought-style, the more passive joinings evolve. Thus, 
according to Fleck, we can understand mathematics as a field of knowledge which is elaborated to a 
high degree. His short thesis  
 

“The deeper we go into a field of knowledge, the stronger it is bound to a thought-style 
(Denkstilgebundenheit).“ (Fleck 1935, p. 109) 
 

gives a good explanation for the high consensus: Mathematics is a thought-style which is well 
elaborated and has a long tradition. This enforces constraints of thought (Denkzwang). It is 
characterized by common attributes of the problems which are interesting to mathematicians, 
common assessment of values and common methods which are used for mathematical cognition.  
 
To sum this up, we do not need the “special epistemical status“ as a reason for consensus of 
mathematicians and coherence of mathematics. The degree of elaboration of the mathematical 
thought-style supplies a more convincing explanation. More than in other fields of knowledge, the 
active elements of mathematical knowledge produce passive joinings. Thus the evolution of the 
mathematical thought-style has superseded contingency to a high degree. Nevertheless, this process 
can never end in the complete elimination of contingency in mathematics.  
 
In addition to these explanations given by Fleck’s theory, historical investigations can help us to 
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understand the phenomena coherence and consensus in mathematics. One important contribution 
has been made by Philip Kitcher in specifying some interesting characteristics of the development of 
mathematics.  
 
2.2 Changes of thought-styles in mathematics – historical investigations  
 
In his book “The nature of mathematical knowledge“ (1984), Philip Kitcher compares mathematical 
change and scientific change. In analogy to Fleck’s concept of thought-style, Kitcher defines the 
notion mathematical practice:  
 

“We view a mathematical practice as consisting of five components: a language, a set of accepted 
statements, a set of accepted reasonings, a set of questions selected as important, and a set of meta-
mathematical views (including standards for proof and definition and claims about the scope and 
structure of mathematics).“ (Kitcher 1984, p. 229)  
 

As Fleck investigates the progress in science as transition of thought-styles, Kitcher describes 
mathematical change as transition from one mathematical practice to the next:  
 

“The problem of accounting for the growth of mathematical knowledge becomes that of understanding 
what makes a transition from a practice <L,M,Q,R,S> to an immediately succeeding practice 
<L’,M’,Q’,R’,S’> a rational transition.“ (Kitcher 1984, p. 229) 
 

He shows in various historical examples that these transitions are mostly initiated by discrepancies of 
the components of the mathematical practices. By changing one or more components, they can by 
re-equilibrated. For example, theorems are retained valid by changing the language: Instead of 
rejecting a theorem when counter-examples were found, mathematics often restricts the concerned 
notions in such a way that the theorem becomes valid again (this mechanism has been described in 
detail in Lakatos’ book “Proofs and Refutations“ 1976).  
 

“So, where in the case of science we find the replacement of one theory by another [...], in the 
mathematical case there is the adjustment of language and a distinction of questions, so that the 
erstwhile ‘rivals’ can coexist with each other. Mathematical change is cumulative in a way that scientific 
change is not, because of the existence of a special kind of interpractice transition.“ (Kitcher 1984, p. 
229)  
 

Kitcher considers this mechanism for producing consensus and coherence to be characteristic for 
mathematics. It helps to avoid explicit discontinuities. Though singular components of the 
mathematical practices must be revised in order to face inconsistencies, mathematical practices are 
rarely completely abandoned.  
 
In short: coherence in mathematics emerges, because mathematicians immediately search for 
solutions to level inconsistencies whenever they appear. In consequence, inconsistencies do not exist 
in mathematics, because they are not tolerated.  
 
This thesis is supported by the work of Raymond Wilder who has analysed mathematics as a 
developing, cultural system (Wilder 1969, Wilder 1981). He emphasizes the cultural relativity of 
mathematics:  
 

“Because of its cultural basis, there is no such thing as the absolute in mathematics; there is only the 
relative.“ (Wilder 1981, p. 148) 
 

Anyhow, mathematics is not arbitrary and real discontinuities can only be found on the meta-level, as 
he postulates in agreement with Crowe (1975):  
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“Revolutions may occur in the metaphysics, symbolism and methodology of mathematics, but not in 
the core of mathematics.“ (Wilder 1981, p. 142) 
 

On this fact, Heinz’s and Wilder’s positions coincide. But for Wilder, the absence of revolutions does 
not imply that mathematical knowledge grows cumulatively, because the patterns of development are 
more complicated. When he describes these patterns, he does not focus on standards of strictness 
for proofs nor on other aspects on the meta-level but he concentrates on central elements in 
mathematics: mathematical objects, concepts and theories. Over the centuries, they undergo radical 
changes in their meaning and their role within the theories. On the basis of historical case studies, 
Wilder tries to specify “laws“ of this evolutionary process and figures out different characteristic 
mechanisms. Besides the mechanisms abstraction and generalization which have often been 
described, he attaches importance to consolidation by which he means the unifying of theories or 
concepts (cf. Wilder 1981, p. 87).  
 
By using the notion hereditary stress, Wilder characterizes the culturally determined phenomena 
that initiate the evolution of theory and concepts, such as mathematical or non-mathematical 
problems, a changing conception of nature, discovered inconsistencies or paradoxes, growing 
demands for strictness etc. In addition, there is the mechanism of diffusion of ideas and methods by 
which mathematical thoughts are transferred from one domain to the next. It is an important 
condition for processes of consolidation.  
 
On the whole, Wilder considers these evolutionary processes to be embedded into their cultural 
background. Therefore, his patterns of change heavily put the singular achievements of individual 
mathematicians into a culturalistic perspective (instead of celebrating them as genius discoverers, as 
usual in the historiography of mathematics). Starting from the observation of multiple discoveries and 
the “before his time“-phenomenon (i.e. concepts or ideas which fail to attract attention at their time 
and are rediscovered and appreciated later), Wilder describes to what degree individual thinkers rely 
on the cultural environment. He concludes the following:  
 

“The individual mathematician cannot do otherwise than preserve his contact with the mathematical 
culture stream; he is not only limited by the state of its development and the tools which it has devised, 
but he must accommodate to those concepts which have reached a state where they are ready for 
synthesis.“ (Wilder 1981, p. 145) 
 

Thus, according to Wilder, the cultural influence on every individual thinker provides another 
explanation for the phenomena consensus and coherence: If all further developments in mathematics 
are based on the same cultural background, they coincide significantly in most cases. And when 
inconsistencies appear, they initiate processes of consolidation which ensure consistency again.  
 
Paul Ernest has described these patterns of mathematical change in his “generalized logic of 
discovery“ (built on Lakatos‘ “logic of discovery“, Ernest 1998). He considers this process of 
discoveries to be a dialectical, cyclic process in which definitions, proposals and relations are 
discussed in the community. Along this social process, the proposals are accepted or rejected. 
Rejection initiates modifications of the original proposal (cf. Ernest 1998, p. 149-160). The 
community always acts in a scientific and epistemic cultural context, “including problems, concepts, 
methods, informal theories, proof criteria and paradigms, language, and metamathematical views“ 
(Ernest 1998, p. 151).  
 
Just as Kitcher, Wilder and Ernest emphasize the important role of well-working mechanisms that 
re-establish coherence in mathematics. Thus, they do not consider coherence to be a surprising 



 8

 

phenomenon that legitimize the hypothesis of the “special epistemical status“ but to be an aim which 
mathematicians consequently strike for again and again.  
 
Against the background of these historical investigations, we must pose the question for coherence in 
a different way: In a culturalistic perspective, we do not need to ask why mathematical theories are 
coherent but why it is always remade coherent and how this is possible. Without being able to solve 
these questions finally, some approaches can be sketched how to find an answer:  
 
2.3 Ontological and socio-philosophical approaches  
 
Why can coherence be re-established more easily in mathematics than in other sciences? One 
important reason is the ontological nature of mathematics. Whenever necessary, mathematical 
theories have been detached from reality. In this way, refutations of theorems can be answered by 
changing (mostly restricting) the concerned mathematical concepts. Hence, one reason for the 
possibility of coherence is the convertibility of mathematical concepts, not the a priori nature of 
mathematical objects. Whereas scientific concepts must correspond to reality, mathematical 
concepts can be detached from reality in order to avoid complete refutations. Mathematicians do 
prefer coherence within the theory to conformity with reality. This preference has even been 
formalized in Hilbert’s notion of truth as freedom of contradiction, in short: consistency (cf. e.g. Thiel 
1995).  
 
At this point, we come to the second level of explanation: Asking why mathematicians prefer 
coherence to conformity with reality, we must consider the prevalent view of mathematics. When a 
community is convinced (as platonist or others) that inconsistencies cannot appear, the participants 
will make great efforts to remove them whenever they do appear. Following this line, the prevalent 
view of mathematics has proved to be a “self-fulfilling prophecy“ again and again.  
 
Beyond, we can find the typical human need for certainty and truth. As long as the objectivist view 
of mathematics is not questioned, this want can be perfectly satisfied by mathematics.  
 
Last but not least, we must mention the mechanism of out-sourcing as a mechanism to assure 
coherence. Over the centuries, mathematics has outsourced many (usually applied) sub-domains 
when they developed their own ways of thinking and working (cf. Laugwitz 1972). By considering 
them not to be a part of mathematics anymore, inconsistencies or conflicts could be removed in an 
easy way. Even today, there are disciplines of mathematics (like scientific computing or other parts 
of experimental mathematics) whose standards have been removed from the widely accepted 
mathematical standards. There are lively discussions whether they are still parts of mathematics or 
whether the mathematical community can begin to accept such differences (cf. Heintz 2000).  
 
3. Conclusions and Consequences for the  Learning of Mathematics 
 
It turned out to be characteristic for mathematics that its cultural relativity can be hidden more easily 
than those of other cultural achievements (like language). Because of the high coherence and the 
wide consensus, the human dimension and cultural origin of mathematics is obscured more 
successfully than in other sciences. Accounts for these phenomena can be found by launching 
historical investigations as the argumentations of Fleck, Wilder and Kitcher prove.  
 
Searching for reasons of these dehumanizing mechanisms, we have found the basic human need for 
certainty: It is just the human desire for security that produces a dehumanized discipline leaving no 
place for the individual. Here, we encounter a contradiction which is not only typical for the relation 
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of humans and mathematics but an intrinsic part of the human nature.  
 
This tension between the human origin of mathematics and its dehumanization has important impacts 
on all processes of learning mathematics. It becomes obvious whenever mathematics is presented to 
learners as a finished theory, whenever learners cannot find an individual approach to mathematics.  
 
Although it is very important to experience the fascinating coherence of mathematical theories 
(otherwise mathematics would not be that intriguing), there is hardly an individual access when 
mathematical theories are always presented as completely consolidated, perfect, and coherent. Then, 
all the difficulties and conflicts which have appeared in the process of concept formation and 
mathematization are hidden.  
 
In the light of the complicated ways of mathematical concept formation, we should not be astonished 
that learners must also undergo these difficulties, conflicts, processes of generalization and 
consolidation (without postulating the misleading idea of phylogenesis equals ontogenesis!). What we 
need is a classroom culture in which these processes can take place instead of completely polished 
lessons without any difficulties or mistakes (cf. Prediger 2001). Students should have the opportunity 
to experience the development of mathematics with its changes and processes of consolidation, 
otherwise they can not acquire an adequate view of mathematics. There is no place for individual 
access in a perfectly presented mathematical theory.  
 
On the whole, the problem of the subjective relevance of mathematics is one of the most difficult 
problems, at least in German mathematics education (cf. Bauer 1995). The prevalent change in the 
philosophy of mathematics brings with it important chances for mathematics education: If the human 
dimension of mathematics is not denied any longer, there is a better chance of allowing it to emerge 
more consequently in mathematics classrooms.  
 
As early as 1983, Lerman has asked how the change in the philosophy of mathematics could change 
mathematics education (Lerman 1983). He contributes some convincing suggestions in the field of 
problem-solving, but the approach should be widened to a holistic, integrated vision of a human 
oriented, subjectively accessible mathematics education. I have made some first approaches in my 
articles “Mathematiklernen als interkulturelles Lernen. Entwurf für einen didaktischen Ansatz“ and 
“Mathematics learning is also intercultural learning“ (Prediger 2001a and 2001b). But there is still a 
vaste area of important work to do.  
 
Literature  
 
Bauer, L.: 1995, ’Objektive mathematische Stoffstruktur und Subjektivität des Mathematiklernens‘, in: Steiner, H.-G. & 
Vollrath, H.-J. (eds.): Neue problem- und praxisbezogene Forschungsansätze, Aulis, Köln, 9-16.  
 
Bishop, A. J.: 1991, Mathematical enculturation. A cultural perspective on mathematics education, Kluwer Academic 
Publ., Dordrecht. 
 
Bloor, D.: 1991, Knowledge and social imagery (second edition), University of Chicago Press.  
 
Ernest, P.: 1998, Social Constructivism as a Philosophy of Mathematics , State University of New York Press, New York. 
 
Fleck, L.: 1935, Entstehung und Entwicklung einer wissenschaftlichen Tatsache: Einführung in die Lehre vom Denkstil und 
vom Denkkollektiv , Benno Schwabe Co., Basel (English edition: Genesis and Development of a Scientific Fact, The 
University of Chicago Press, 1979).  
 
Fleck, L.: 1936, ’The Problem of Epistemology‘, in Cohen, R.S. & Schnelle, T. (eds.): Cognition and Fact - Materials on 



 10

 

Ludwik Fleck , Reidel, Dordrecht 1986. 
 
Heintz, B.: 2000, Die Innenwelt der Mathematik. Zur Kultur und Praxis einer beweisenden Disziplin, Springer, New York. 
 
Hersh, R.: 1997, What is Mathematics, really? Jonathan Cape, London. 
 
Kitcher, P.: 1984, The nature of mathematical knowledge, Oxford University Press, New York.  
 
Kuhn, T.S.: 1970, The Structure of Scientific Revolutions (second edition), University of Chicago Press, Chicago.  
 
Lakatos, I.: 1976, Proofs and refutations: the logic of mathematical discovery, Cambridge University Press.  
 
Laugwitz, D.: 1972, ’Anwendbare Mathematik heute‘, in: Meschkowski, H. (ed.): Grundlagen der modernen Mathematik , 
Wiss. Buchgesellschaft, Darmstadt, 224-252. 
 
Lerman, S.: 1983, ’Problem-solving or Knowledge-centred: The Influence of Philosophy on Mathematics Teaching‘, 
International Journal Math. Edu. Sci. Technol. 14(1), 59-66. 
 
Prediger, S.: 2001a, ’Mathematiklernen als Interkulturelles Lernen. Entwurf für einen didaktischen Ansatz‘, in: Journal für 
Mathematikdidaktik 22(2), 123-144. 
 
Prediger, S.: 2001b, ’Mathematics Learning is also Intercultural Learning‘, in: Intercultural Education 12 (2), 163-171. 
 
Restivo, p. & van Bendegem, J.P. & Fischer, R. (eds.): 1993, Math Worlds. Philosophical and Social Studies of 
Mathematics and Mathematics Education, State University of New York Press, New York.  
 
Schroeder, J.: 2000, ’Mathematik‘, in: Reich, H. & Holzbrecher, A. & Roth, H.J. (eds.): Fachdidaktik interkulturell. Ein 
Handbuch, Leske + Budrich, Opladen, 451-468.  
 
Thiel, C.: 1995, Philosophie und Mathematik. Eine Einführung in ihre Wechselwirkungen und in die Philosophie der 
Mathematik, Wiss. Buchgesellschaft, Darmstadt. 
 
Tymoczko, T. (ed.): 1985, New Directions in the Philosophy of Mathematics, Birkhäuser, Boston. 
 
Wilder, R. L.: 1981, Mathematics as a cultural system , Pergamon Press, Oxford et al.  
 
White, L. A.: 1947, ’The Locus of Mathematical Reality: An anthropological footnote‘, Philosophy of Science 14, 289-303.  
 
White, A. M.(ed.): 1993, Essays in humanistic mathematics, MAA Notes, Mathematical Association of America, 
Washington, DC.  
 
 


