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ABSTRACT 
 

This is an investigation into the errors made by pupils when solving simple linear equations.  
Data was collected from a final examination and analyzed with reference to recent literature.  
After finding three error types identified in the literature, six new error types not discussed in 
the literature were identified by the researcher.  This constituted the pilot study.  An expanded 
large-scale study employing the same methodology was carried out on a sample of 246 
pupils’ answers to between three and six linear equation questions, both to test the robustness 
of these six new error types and to find examples of the Transposing error mentioned in the 
literature.  During this process the new data, and the 166 errors identified, was analyzed and, 
because of the nature of the new examination questions in this large-scale study, examples of 
the Transposing error were found and the unidentified errors were reduced to five.  Thus nine 
error types appear in the analysis of the large-scale study.  Three of these errors, Transposing, 
Switching Addends, and Division, are found to account for approximately three-quarters of 
the total number of errors.  Transposing and Switching Addends errors are classified as 
structural errors, and mechanisms are suggested for their commission, both from the literature 
and from the experiences of the researcher.  An interesting finding of this study, and one that 
may deserve further study, is that Transposing errors occur due to what may be 
oversimplification of the transposing process.  Also, the Switching Addends error appear 
more frequently in ‘algebraic’ than in ‘arithmetical’ equations, and the resulting differing 
success rates confirm the findings of the literature on the difference in difficulty between these 
two types of equation.  The findings of the large-scale study also highlight the importance of 
subordinate skills such as division, especially among younger pupils. 
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  Chapter 1 – Introduction 

 

 The purpose of this inquiry is to identify, and classify by relative frequency, the most 

common errors made by a sample of pupils in their attempts to solve simple linear equations.  The 

further analysis of the possible mechanisms responsible for these errors may facilitate the design and 

development of improved teaching strategies in the classroom.   

Linear equations are a central part of any Mathematics course, especially at Lower 

Secondary level.   Not only do they appear in their own right, but they are also an integral part of a 

wide variety of Algebraic, Geometric, and Trigonometric problems.  In Physics especially, as well as 

in other sciences and social sciences, linear equations are used in the solution of problems.   For 

example, Density is defined as Mass divided by Volume, which leads to the simple linear equation D 

= M / V. It is this equation, and other homogeneous equations from Physics such as R = V / I 

(Ohm’s Law), S = D / T (speed, distance and time), and I = W / V (power equation for 

determination of fuses in an electrical circuit), to name but a very few, where pupils have a rich 

opportunity to apply their mathematical knowledge in a physical situation in the real world, in other 

words, to use mathematics as a tool.  It follows that any attempt to analyse and improve the teaching 

and learning of this topic is important.   

In referring to a study by Livingstone & Borko (1990) into differences in actual teaching 

between novice and expert teachers,  Koehler & Grouws observe that novice teachers "had little 

knowledge of student misconceptions.  Their schemata was adequate for their own understanding, 

but was insufficiently developed....to enable them to be responsive, flexible teachers" (1992, page 

121).  Armed with knowledge of errors likely to be made by pupils, novice teachers may be able to 

improve the quality of their teaching of mathematics not only by being aware of errors or 

misconceptions, but also by alerting pupils to such errors while the initial teaching is taking place.  

Further, this potential for improvement in teaching may not be limited to novice teachers because, as 

Koehler & Grouws (1992, page 121) point out, "experts become in some ways like novices when 

teaching new content"  i.e. it is hoped that the findings of this dissertation may be helpful to novice 

and expert teachers alike, in improving the initial teaching of linear equations in four ways.   
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 First, the analysis of the range of errors made by a large sample of pupils might provide 

information to enable the development of teaching strategies, which anticipate probable, documented 

difficulties.  Second, this analysis could also give guidance to the teacher as to the development of 

the pupil's initial thought processes during the learning of the material, although the drawing of such 

inferences would have to be done with caution.  Writers of textbooks could use third, such 

information in that instead of presenting only correct material, common misconceptions and errors 

could be discussed at relevant points in model solutions (although this would have to be done 

carefully to avoid confusion).  Fourth, the teacher could match a certain pupil’s error with one from 

the list in order to better understand what the pupil did wrong. 

 To make it more useful, an informative error analysis could include the relative frequency by 

type of each classified error. It may then be possible to establish a frequency hierarchy of common 

errors.  This would be of special help to the teacher of a large class, allowing her to both anticipate 

the more frequent errors and to enable her to identify the most important intervention points.  For 

instance, if error X is the most frequently-made in the study, the teacher could demonstrate to the 

class during the initial presentation of simple linear equations exactly what many other pupils believe 

(erroneously) to be the next step in the solution.  Conversely, class time might not be wasted in 

attempting to forestall what appears to be, according to the studies, relatively infrequent errors. 

 This dissertation provides a brief overview of the current literature pertaining to error 

analysis in Algebra, and presents and discusses the findings of two analyses of errors found in linear 

equation questions, based on a pilot study and a large-scale study.  There are already examples in 

the literature of large-scale studies in this particular field.  It is hoped that this study will add to the 

results of researchers such as Kieran (1984, 1989, 1992) and Matz (1981)  who identify and 

classify errors, by introducing relative frequency of errors made.  However it will not go into the 

exhaustive detail as did Carry et. al. (1980), who analysed in such detail that it is not in a concise 

enough form to be used by the classroom teacher.  The aim is that the study will build on the work 

and ideas of these and other researchers in such a way that the practicing teacher may quickly form 

an opinion on what to look out for in the teaching of this topic, while being careful not to assume 

unwarranted generalisability, for reasons including the fact that the study was conducted using 

samples of students only from Bermuda.  
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         Chapter 2 - Review of Literature 

 
2.0    For the sake of clarity, some findings of this study, as they relate to the literature, will be 
anticipated in this chapter, with full details to follow in subsequent chapters.  

 

2.1  Error Analysis in Mathematics. 

 There is an extensive literature on error analysis in general, and in linear equations in 

particular.  Hiebert & Carpenter (1992, page 88) have summed the former up in the following way: 

"One of the potential implications of research on students' errors is that instruction might be designed 

to address directly the specific deficits that the error analysis helps us to diagnose."  

 However, it may be worth noting that researchers are well aware of the possibility that too 

much can sometimes be inferred by the teacher from an analysis of errors.  Bell-Gredler (1986, page 

211).) points out that "Childhood logic (according to Piaget) is transductive; it does not follow the 

rules of deductive or inductive thinking". Kieran (1989, page 44) reinforces this idea:  "With 

beginning algebra students on tasks involving algebraic expressions, Greeno (1982) found that 

students' performance appeared to be quite haphazard, for a while at least".  These two statements 

would appear to mitigate against elevating error analysis to an exact science.  In support of this, 

Ernest & Bayliss (1995, page 40) observe that "We can never know what a learner knows and/or 

understands.  We can at best make inferences based on a limited number of performances and 

behaviours".  The natural question which follows - why analyse what may be a “haphazard” 

situation? - may be answered by Carry  et. al. :  

 
The reader should therefore attend to the errors themselves as much as to the 
classification, treating the classification as a suggestion concerning mechanism 
behind the error that might by explored more fully.  Also, the grouping in many 
cases reveals a pattern of similarities among errors that may be important in 
identifying mechanisms. (1980, page 42) 

 One of the main concerns of mathematics teachers is the improvement of pupils' learning and 

understanding.  Error analysis can prove to be a useful tool in this process as, according to 

Labinowicz, "a child's errors are actually natural steps to understanding" (quoted in Brooks, 1993, 

page 83).  Perhaps this development of understanding through error-making is more common in the 
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study of mathematics (and the sciences) than in other school subjects.  Mathematical errors can 

provide valuable insight for the teacher into the pupils' thinking as well as for the students themselves, 

for "unless students are forced to confront explicitly the conflict between their misconceptions and 

the scientific principles they have learned, the connections may never by made; the misconceptions 

and the scientific principles may coexist as separate islands of knowledge" (Hiebert and Carpenter, 

1992, page 89). 

 

2.2  Procedural and Structural Views of the Nature of Algebra. 

 There are several features of linear equations which are not immediately apparent to the 

pupil and may even not be appreciated by novice teachers.  Prior to the study of linear equations, 

solution methods for such tasks are of a procedural nature in that "arithmetic operations are carried 

out on numbers to yield numbers" (Kieran, 1992, page 392).  An example of such a procedural 

approach would be found in the solution to    2x + 1 = 5    where various numerical values for  x  

might be tried until a solution is found.  As Kieran notes, "the objects that are operated on are not 

the algebraic expressions, but their numerical instantiations" (1992, page 392).  However, at this 

stage of a pupil's mathematical education, the introduction of formal algebra requires, according to 

Kieran (1992, page 392), a teacher-directed move away from a procedural approach towards a 

structural approach.  Here the term structural "refers to a different set of operations that are carried 

out, not on numbers, but on algebraic expressions" (Kieran, 1992, page 392).  For example, the 

solution to  

3x + 2  = 15  

         can involve the step 

          3x + 2 - 2  = 15 - 2 

which has nothing to do with either the final solution or any numerical instantiation.  This step, which 

requires a grasp of the structure of an equation, must normally be understood if there is to be 

success in questions of the form  ax + b = cx.  It should be noted that there does exist the possibility 

of solving an equation of this type (defined below and referred to throughout as an ‘algebraic’ 

equation as opposed to an ‘arithmetical’ equation)  by a procedural approach such as trial and 

improvement.   
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If, as Kieran states "the implicit objectives of school algebra are structural" (1992, page 

392), then an effective teacher should have a clear understanding of the shift from the procedural 

towards the structural.  

 

2.3  Arithmetical Equations and Algebraic Equations.  

 Filloy & Rojano (in Kieran, 1992, page 402) refer to an "arithmetical" equation having the 

form  ax + b = c,   an "algebraic" equation having the form   ax  +  b = cx,   and the transition from 

one to the other.   

In this study, the two questions    5x – 1 = 38       and       4x – 2 = x – 1      (Questions 4 

and 5 respectively) were suggested by Filloy and Rojano's classification of linear equations, and an 

analysis of these two questions in the light of their theories will be attempted. 

 

2.4  Syntax and Semantics. 

 Having recognized that a particular equation is ‘algebraic’ rather than ‘arithmetical’, to use 

the terms as defined above, the pupil is now faced with a further choice because  of the dual nature 

of the equals sign as detailed by Matz :  

 
Syntactic similarity between semantically different statements like: 
 
    4x + 12 = 4 (x + 3) 
 
     and 
 
      3x + 3 = 2x + 7 
 
presents a serious obstacle....When students first study a sample solution to a non-
trivial equation, they are often still working under the preconception that each 
individual line is a tautology; i.e., habit leads them to 'read' across each line of the 
solution.  As a result they expect that some transformation has turned the expression 
on the left-hand side of the equal sign into the expression on the right-hand side.  
This expectation leads to total confusion.  Very poor students conclude that the 
equality statement embodies an obscure new transformation and so invent some 
explanation for the collection of lines that constitute the solution.  Most realize (when 
the problems become nontrivial) that the line is obviously not even an equality in the 
original tautological sense and begin to look in another direction for 
correspondences.  Unlike tautologies, constraint equations are not universally true 
statements.  The equals sign in an equation does not connect equivalent expressions.  
Instead the left- and right-hand side expressions are two distinct descriptions, neither 
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of which is really a property of the unknown, but their equality constrains the 
unknown.  (1981, page 140) 
 

 To clarify, Matz’s first equation    4x + 12  =  4(x + 3)  is a tautology because the left hand 

side and the right hand side are syntactically equivalent, whereas the second equation   3x + 3  =  2x 

+ 7    is not a tautology but rather requires a solution using new procedures.   Here Matz has 

described a major structural confusion which can arise in solving linear equations - a point that may 

be well worth making to the beginning teacher.  Indeed, it may valuable to stress to students as well 

according to Mevarech and Vitschak (1983) "who showed that the (college) students they tested 

had a poor understanding of the meaning of the equals sign" (Kieran, 1992, page 399). This will 

serve to clarify the alternative uses of the equals sign and, if it is done in an explicit way, may help to 

give many pupils a more structural understanding of linear equations. 

 Confusion in going from arithmetic to algebra can also arise at a less esoteric level.  For 

instance, "Matz (1982) argues that as 3¾  is to be interpreted as 3 + 3/4 it is not unreasonable that 

the student should interpret the algebraic expression, 3x  as   

3 + x." (Sleeman, 1982, page 392).  Thus there is plenty of room for confusion and misinterpretation 

in the initial study of linear equations.  We shall now examine frequent errors both from the literature, 

denoted throughout by (Lit), and from the pilot and large-scale studies conducted by the researcher 

(New).  

 

2.5  The Deletion Error (Lit). 

 An example of an error that has frequently been seen is simplifying, say 2yz - 2y to z  

(because 2yz – 2y may be wrongly equated to 2y + z  - 2y  =  z).   That these errors are not 

restricted to novice algebra students is indicated by the research of Carry, Lewis, and Bernard 

(1980).  In their study of the equation-solving processes used by college students, they found that 

this type of error, which they called the Deletion error, was the most prevalent one that students 

made when simplifying expressions at various steps in the equation-solving process. In discussing this 

error, Carry et. al. suggested that "some students are overgeneralising certain mathematically valid 

operations, arriving at a single generic deletion operation that often produces incorrect results" 

(Kieran, 1992, page 398).  This Deletion error of Carry et. al. is corroborated by Matz (1981, page 
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99) who cites error number 29, in her list of thirty-three algebra errors, as of the type 3x + 5 = y + 3 

yielding x + 5 = y (in which 3x - 3 has become simply x).  "Matz (1979) has pointed out that in 

working with algebraic expressions, students tend to 'slap a veneer of names on an arithmetic base, 

but all the work remains in the arithmetic'." (quoted in Kieran, 1992, page 398).  This is a 

straightforward explanation of the possible source of the Deletion error.   

There may be another, more structural mechanism for the production of the Deletion error, 

which actually ties in with a previously-uncatalogued error, the Other Inverse Error. 

 

2.6  The Other Inverse Error (New). 

 From roughly the same mechanism that may produce the Deletion error of Carry et. al. 

(1980) might come the Other Inverse error, as named by this researcher, in which 4x = 1  becomes  

x = 1 - 4.  In this example the additive inverse has been employed instead of the multiplicative 

inverse i.e. the pupil used the Other Inverse. This may be similar to what could be happening to 

produce the Deletion error, where 3x - 3 becomes simply  x, as the pupil may see 3 and -3 as 

"inverses" and so she cancels them out, exactly as she would if they were side by side and the "x" 

was not there.  Another interpretation of a possible mechanism at work here stems from the pupil 

seeing 3x, as Sleeman (1982) points out, as 3 + x.  That they are not inverses in this case is a fact 

that needs to be made clearer to beginning algebra students.  In fact, both the Deletion errors and 

Other Inverse errors may possibly be reduced in frequency by heightened teacher emphasis in just 

one area i.e. that of reinforcing the idea of inverses.  The Other Inverse error is not present in the 

literature, the main justification for its inclusion in this study being that it appears on eight occasions in 

the large-scale study reported here. 

 

2.7  The Redistribution and Switching Addends Errors (both Lit).  

 When the pupil tries to follow the taught process of doing the same to both sides of an 

equation, two other errors may appear: 

   
The Redistribution  error, where x + 37 = 150 is judged to have the same solution 
as x + 37 - 10 = 150 + 10, and the Switching Addends error, where x + 37 = 150 
is judged to have the same solution x = 37 + 150   (Kieran, 1992, page 402). 
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In her study into algebra novices' views of the equivalency of equations, Kieran (1984) found that 

pupils who made these two errors (Redistribution and Switching Addends) were more likely to be 

"transposers", as opposed to "trial and improvers". Transposing, as its name suggests, is a change 

side-change sign technique. This suggests that the transposers may actually by less sure of the 

underlying structure of an equation than those used to using what might appear to be the less 

sophisticated trial and improvement method.  We may be seeing here confusion between two points 

of view.  That is, the pupil may know about and have, in the past, used two methods: “transposing” 

and “trial and improvement”.   

In this case an interesting dichotomy may be explored by this observation, and emphasised 

by another study: Greeno (1982) pointed out that novice algebra students often cannot check a 

finished equation except by doing the same work all over again.  They appear to be unaware that the 

solution may be inserted into the original question (or, for that matter, in any of the equations in the 

equation-solving chain).  This is consistent with Bloom’s hierarchy in which checking/evaluation is 

viewed as a higher order skill than applying procedural knowledge.  This piece of research may yield 

more than the obvious implication  i.e. that it reinforces the view that the novice pupil lacks a true 

structural understanding of the linear equation.  Also, from a purely psychological viewpoint, it may 

imply that the pupil is being expected to take two differing views during the solution of one problem, 

one view during solution and another during the check, so that there may be a case for treating this a 

mild example of cognitive dissonance in the learning of algebra  i.e. having been taught to solve an 

equation one way (by some form of transposing), and therefore rejecting the trial and improvement 

technique, the pupil is then expected to re-adopt the trial technique (and consequently reject the 

transposing technique) to check the answer.  Perhaps it could be argued that cognitive dissonance 

could help to explain why Greeno's pupils could not check their work by numerical instantiation 

having arrived at the solution through some other taught method.  However, a stronger case could be 

made that this conflict between “transposing” and “trial and improvement” may help to explain the 

difficulty pupils have in shifting between two perspectives for different purposes within the same 

problem.  

 

2.8  The Transposing Error (Lit). 
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 In looking at this error, Kieran points out that the "emphasis (on symmetry) is absent in the 

procedure of transposing....There is some evidence to suggest that many students who use 

transposing are not operating on the equation as a mathematical object but rather are blindly 

applying the Change Side-Change Sign rule." (1992, page 400). The researcher has been aware of 

the “Change Side-Change Sign” approach, in which this error surfaces in equations involving a 

denominator such as: 

 
       x  + 3 = 5  
       2 

=>    x + 3 = 10  

The Transposing error was not detected in the pilot study reported here. This may be 

because of the nature of the test item:  5x + x + 2 = 3x + 12.  In this question there is no 

denominator.  

Thus, in order to investigate the existence of the transposing error, a new test item 

 
                        5 +  x  =  2 
                                 2 
 

was employed in the large-scale study.  As will be seen later in an analysis of the data, since this 

transposing error was made by one quarter of the fourth year, it may be inferred that the taking of 

this short-cut  (simply taking the '2' across to yield 5 + x = 4 and hence a solution of  x = -1) falls 

within the range of what is suggested by Hiebert and Carpenter: "In school mathematics, students 

rely on invented strategies to solve a variety of problems."(1992, page 74).  In this case, especially 

in the fourth year, pupils appear to be over-generalising an often-used "rule" which works perfectly 

well in simple equations such as 
      x  =  3                                                    

 2 
 

=>        x  =  6 

and which may be reinforced in trigonometry, during mathematics studies in the third and fourth 

years of secondary schooling (Bermudian syllabus), in such examples as: 
 
                 x   =   sin 60         
                                              3 
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               =>  x   =   3 sin 60. 

Here the pupil may have constructed her own mechanism, putting the denominator on the other side 

and thinking this can always be done because it can often be done, confirming Hiebert & 

Carpenter’s finding that "it is now well accepted that students construct their own mathematical 

knowledge rather than receiving it in finished form from the teacher or a textbook" (1992, page 74).  

How students construct this knowledge may thus depend on the students’ previous knowledge and 

experience, as stated by Ausubel: "The most important single factor influencing learning is what the 

learner already knows" (quoted in Orton, 1992, page 35).  This brings up an important point, 

outlined in the discussion, which may help explain the large numbers of transposing errors made by 

older pupils  i.e. with so many examples from trigonometry in which simple transposing does work, 

pupils may begin to think that it always works, no matter what equation is to be solved. 

 

2.9  The Number Line Error (New). 

 In learning to solve simple linear equations, there are many subordinate skills, one of which is 

the ability to simplify expressions such as  - 3 + 1.   Obtaining  – 4,  perhaps by attempting to use 

the real number line or by attending to the numbers first then the sign, was an error was made 

sufficiently often (especially by the younger pupils) to warrant its own category, which will be called 

the Number Line error.  Care must be taken in teaching about the real number line, for as Orton 

notes, “Nuffield (1969), in introducing integers, criticized such devices as temperature scales which 

took children some way into a study of integers but had to be rejected when it came to multiplication 

and division.” (1992, page 69).  

The background to the teaching and learning of the topic, simple linear equations, has been 

widely written about.   Manipulatives and algorithms can be helpful, as can an appreciation of some 

of the difficulties encountered by pupils.  Note that for the purposes of this study, errors using 

manipulatives and algorithms will not be classified as errors per se. 

 

2.10  The Use of Manipulatives.  

 As far as subordinate skills are concerned, another of the conceptual models utilised in this 

particular experiment is an appreciation of the working of a balance. A balance analogy was used by 
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the pupils in this particular algebra course.  In this system, which will be explained greater depth 

later, manipulatives take the pupil from their knowledge of a balance to a method of solving linear 

equations.  Since manipulatives were used in the teaching of the pupils in this study, some analysis of 

their use may be warranted.  One main reason for adopting manipulatives here is suggested by 

Davis:  

 
An example may make the point more clearly.  Some teachers want a student to 
begin solving the equation 2x + 3 = x + 8 by thinking, "I'll move the 3 across the 
equals sign and change its sign."  These teachers hope the student will then write 2x 
= x + 8 -3 but this approach is surely a case of regarding mathematics as a 
collection of small, meaningless rituals.  Why "move the 3 across the equals sign?" 
And why on earth should such an act "change (the) sign of the 3?  Certainly, if we 
want the student to think of mathematics as consisting of reasonable responses to 
reasonable challenges, it will be far better if we encourage the student to think, "I can 
subtract 3 from each side of that equation, without changing its truth set."  If the 
student has seen pictures of balance scales or has worked with actual balances, 
there can by very straightforward imagery underlying the idea of subtracting the 
same thing from each side of an equation (1989, quoted in Wagner and Kieran, 
page 270).  
  

 However, a lack of confidence in transferring from manipulatives, metaphors and imagery to 

the abstraction of Algebra may lead to the production of errors, maybe of the Switching Addends 

type, as pupils attempt to bring a "structural" approach to the solution of equations. 

Using manipulatives or mental imagery specifically in linear equations is discussed by several 

researchers: "According to Piaget's theory of intellectual development, two different forms of 

reversibility-negations (inversions) and reciprocities (compensations) - are applicable on the level of 

concrete operations" (Inhelder & Piaget, quoted in Adi, 1978, page 204).  As Adi explains, 

"negation, or inversion, means reversing an action by undoing it, and reciprocity, or compensation, 

means reversing an action by cancelling for its effects.  For example, given a balance at equilibrium 

when an object is placed on one of its sides disequilibrium occurs.  Equilibrium is restored by either 

removing the object (inverting the action ) or by compensating for its effect by placing an equivalent 

weight on the other side of the balance" (1978, page 204).  This may help explain a possible 

mechanism for the previously mentioned redistribution error, in which a certain quantity is added to 

one side of the equation and subtracted from the other side, showing confusion between inversion 

and compensation.  Again, this study is not designed to discern the probable causes of errors. 
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2.11  Mal-rules. 

 Mal-rules are rules, perhaps invented by the pupil, which appear to work but in fact work 

only under certain conditions.  Several pieces of literature inform us that just because correct 

answers are given, it cannot be assumed that it is based on the desired understanding.  An example 

is that of Erlwanger's (1973) study, in which a pupil successfully completed a self-paced course by 

applying many mal-rules which happened to lead to a preponderance of correct final answers.  In 

both the pilot study and the large-scale study reported here, many of the papers had no working 

shown so there may have been some undetected mal-rule errors.   As Steinberg et al. observed in 

their study (1990, page 120) "many students who are able to solve equations and perform other 

algebraic tasks correctly may have misconceptions or lack good understanding of algebra concepts". 

Thus care must be taken when ascribing good algebra methods to a pupil who solves an equation 

correctly but leaves out steps of reasoning.   

 

2.12  The Use of Algorithms. 

 There remains one important error category: one in which the questions are not attempted.  

There can be many conjectures as to why a pupil writes nothing, but it may be worth noting one 

factor in particular.    

 
Matz (1979) has suggested that two  kinds of processes are involved in solving first-
degree equations with one unknown: "deduction" and "reduction".  The deduction 
process involves performing the same operation on both sides; the reduction process 
involves replacing one expression by another equivalent expression.  The following 
example demonstrates both processes: 
 
     3x + 7  =  2x 
 
           3x + 7 - 2x  =  2x - 2x  (deduction) 
 
        x + 7   =  0       (reduction) 

 

(quoted in Kieran, 1989, page 48).  By adding likely working, a two-step algorithm takes shape: 

                       x + 7 – 7   =   0 - 7       (deduction) 

                            x   =   -7           (reduction) 
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This deduction-reduction algorithm can be confusing to a beginning algebra student.  

Weaker pupils may get mixed up, perhaps not knowing which step they are working on, nor about 

what to do next.  Indeed, they may not even have appreciated that this algorithm consists of two 

steps.  One reason that pupils omit entire questions on equations could be that the pupil finds 

algorithmic work so daunting.  Explicit intervention by the teacher about this algorithm may be all that 

is required to raise many pupils' appreciation of the structure of the equation-solving process.  

However, as “Hart (1981) stated: We appear to teach algorithms too soon…..and assume once 

taught, they are remembered.  We have ample proof that they are not remembered or (are) 

sometimes remembered in a form that was never taught.” (Orton, 1992, page 31).   

 

2.13  The Innate High Cognitive Demand of the Subject, Algebra. 

 The literature points to many complex psychological processes involved in gaining an 

understanding (and avoiding a misunderstanding) of the rules of algebra, and being able to operate 

correctly in accordance with them.   

For example, "Kuchemann found that only a very small percentage of 13- to 15- year old 

pupils were able to consider the letter as a generalised number" and "the majority of the students he 

tested (73% of 13-year-olds, 59% of 14-year-olds, 53% of 15-year-olds) either treated letters as 

concrete objects or ignored them." (Kieran, 1992, page 396).    

Also, Kieran points out that "the overall conclusion that emerges from an examination of the 

findings of algebra learning research is that the majority of students do not acquire any real sense of 

the structural aspects of algebra." (quoted in Grouws, 1992, page 412).  Kieran's statement suggests 

that many individuals must try to understand a set of ideas and master a procedure for which there 

may be a poor prognosis of success.  The negative ramifications in the affective domain of both 

teacher and pupil could further mitigate against success.  Thus it may be difficult to follow the advice 

of Daniels and Anghileri who suggest that "classroom approaches must seek to reward effort with 

success by providing tasks that have the appropriate balance of challenge and support for all the 

individuals who will be involved."(1995, page 99). This high cognitive demand has been explained 

by Piaget as being part of a more advanced level of cognitive processing.  It is therefore not 
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surprising that some of these errors, like the Deletion error, have been found to persist into college, 

as indicated by Carry, Lewis and Bernard (1980).  

  

2.14  Confusion Between Expressions and Equations. 

Pupils frequently attempt to “solve” expressions, i.e. according to Wagner, Rachlin, and 

Jensen (1984), “many algebra students tried to add  “ = 0 ” to expressions they were asked to 

simplify” (Kieran, 1992, page 397).  One explanation may lie in the willingness of pupils to accept 

‘lack of closure’ as suggested by Hoyles and Sutherland: 

 
Previous studies have found that many pupils  cannot  accept 
that an unclosed algebraic expression is an   algebraic object.  
So, for example, pupils are unable to accept that an expression 
of the form x + 3  could possibly be the solution of a problem. 
(1992, page 216) 
     

e.g.            2a + a + 3 

        =  3a + 3  =  0 

        =   3a  =  -3 

        =   a  =  -1 

 

and             x2  +  5x  +  6  

          = (x + 3)(x + 2) = 0 

                   x = -3  or  -2 

 

This kind of error indicates an absence of knowledge of the difference in meaning of an 

expression and an equation.   Further confusion may result from the fact that the processes of 

simplifying expressions and solving equations are taught at roughly the same time.  This has an 

important implication for the solution of linear equations.   

In an equation of the form  ax + b = cx + d,  it is possible to view this as one expression, ax +  

b,  being equal to another, cx +  d.        Those pupils who first isolate ax + b  and then have 

difficulty assigning meaning  to  ax + b  (as was found to be the case by Kieran (1983) noted in 
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Kieran, 1992, page 397) will find difficulty understanding the task of solving the equation from the 

very beginning.  While the reasoning for this might appear tortuous, consideration of  two different 

routes of solving an equation involving fractions may serve to illustrate such expression/equation 

confusion: 
 
Method A    x + 4   =  7                    Method B         x  + 4  =  7 
                    5                         5 

 
       =>     x + 20  =  7                           =>        x    =  7 - 4 

          5                              5 
 

       =>     x + 20  =  35               =>         x    =   3 
                                           5 
 
         =>              x  =  15               =>         x    =   15 
 
In method A, the left side of the equation has been dealt with as an expression in its own right, 

and initially simplified as such without reference to the right side of the equation.  In other words, a 

pupil using method A has dealt with an expression within an equation, giving further scope for 

confusion between expressions and equations.  A direct result of this confusion can be seen in more 

complicated equations     

 
             e.g.    x  +  5x    =   7 

2 3 
 
in which it is possible to perform the addition first to give    
 
     13x   =   7 
       6 
 
in which  6  is the lowest common denominator, or to begin solving the original equation by 

multiplying throughout by this lowest common denominator of  6  thus:   

 
       6 ( x  +  5x )     =  7  X  6 
            2       3 
 
 
Various mixtures of methods A and B, leading to incorrect results, have been seen often by the 

researcher.  While such an equation is slightly more complex than those in this study, such an 
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example serves to demonstrate Kieran’s (1992, page 401) finding that “students have generally been 

found to lack the ability to generate and maintain a global overview of the features of an equation 

that should be attended to in deciding upon the next algebraic transformation to be carried out”.      
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   Chapter 3 - The Pilot Study 

3.1   Rationale. 

 A pilot study was undertaken before the main study reported here. The plan at the pilot 

study stage was to have written evidence of linear equation errors made by first year secondary 

school pupils.   

After having read the literature, and before the pilot study was carried out, it was difficult to 

predict three things: how confidently documented errors could be identified and categorized from 

written evidence, whether the list of errors in the literature was exhaustive, and what the frequency 

and extent of error-making among an entire year group would be. 

 

 

3.2  Methodology. 

  It appeared that the first two issues could be dealt with in several ways.  Interviews could 

be held with pupils individually, in small groups, or in a class setting, or pupils' work done in a lesson 

could be analysed.  However, it was felt that in these settings there might have been much 

duplication of work already researched, especially by Kieran (1992), the process would have been 

more demanding in terms of the researcher’s time, and also there may have been little new 

information gathered about the extent of error-making and the relative frequency of these errors, 

although interviews might have pointed more clearly to possible causes of errors. 

 The pilot study was designed with these issues in mind, and, as will be discussed later, the 

scientific research paradigm was found to be the most appropriate.  An examination of the three 

main research paradigms (the scientific, interpretative, and critical theoretic) discussed in Ernest 

(1994) suggests two reasons why most features of the scientific paradigm might be best suited for 

this experiment.   

 First, if one of the main goals of this research is to be fulfilled, it should seek general patterns: 

the relative frequency of each identified error should hopefully serve as a guide to other teachers so 
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that they may see where some of the difficulties might lie even before starting to teach the topic.  The 

scientific research paradigm, as defined by Ernest (1994, page 22), 'is concerned with objectivity, 

prediction, replicability, and the discovery of scientific generalisations or laws describing the 

phenomena in question....What is central to the scientific research paradigm is the search for general 

laws predicting future educational outcomes". 

Second, in order to achieve this, there must be data collected from many individuals, and not 

one or a small number, as within an 'interpretative' paradigm using interview methods, given the 

resources available to the researcher.  However, it must be noted that by choosing to work within 

the scientific paradigm, perfectly sound elements of the other paradigms are not being criticised or 

dismissed.  For example, researchers will always be interested in how individuals construct 

knowledge.  But in the context of studying the relative frequency of errors made by a large sample of 

pupils, such impressions of how the knowledge is being constructed by each individual student, 

based solely on his or her written answers, are probably beyond the scope of the investigation.  

Even if a study is undertaken within the scientific paradigm, it can make recommendations consistent 

with a constructivist view of learning, i.e. those normally associated with the interpretative paradigm. 

 

3.3   Experimental Design. 

 The pilot study was designed to be carried out without the pupils' knowledge that a research 

project was being undertaken in order to minimize the effect of the affective domain.  This was done 

by making the linear equation question compulsory at the beginning of the end-of-year examination 

which was written simultaneously by all  87  First Year pupils.   By placing the test item at the 

beginning, it was hoped that every pupil would at least attempt it.  There were about five steps 

needed to solve the item, and the errors produced could be expected to be manageable in number, 

facilitating a focused analysis.   

A non-integer solution was chosen to try to avoid a situation in which the pupil might get the 

right answer by trial and improvement.    Such guessing could have led to working being omitted and 

unsystematic skipping of procedures, making error analysis more difficult.  It should be noted that 

trial and improvement is not being treated as an inferior method.  Indeed, as will be discussed later, 
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use of this method demonstrates an appreciation of the meaning of the problem and, moreover, an 

understanding of the significance of the solution. 

Contained within the solution methods of linear equations are many concepts and 

procedures, some of which have been mentioned already: the meaning and gathering of ‘like’ terms 

(see the deletion error in Carry et.al. (1980));  viewing the equal sign in perhaps a new way (Matz 

(1981), page 140);  and applying, one or more times, a simple algorithmic structure, described by 

Matz (1979) as "deductions and reductions" (Kieran, 1989, page 48).  As there is already much 

research on this topic, a major aim of the study was to compare the findings with other experiments 

from the literature.  Also, on the basis of looking at pupils' work in great detail, perhaps it might be 

possible to specify teaching objectives within the topic more accurately  i.e. plan diagnostic teaching 

to accommodate and rectify the errors and misconceptions. 

 Twenty-five of the eighty-seven papers met the criteria of both having an incorrect answer to 

the linear equation question, and showing some working, i.e. there were twenty five identifiable 

errors, several of which corresponded with known errors from the literature.  Of the other 62 

papers, 15 wrote no working at all, (writing only the wrong answer or leaving the question blank), 

and 47 obtained the correct answer. 

 The equation to be solved was    5x + x + 2  =  3x + 12.    In this equation there is more 

than one line of working.  This leads immediately to a difficulty in error classification: how do we 

classify as an error something which has been done correctly at the beginning of the problem and 

incorrectly at the end?  Do we view this as inconsistency, the product of distraction, or do we simply 

accept that if a pupil commits an error once, that does not mean that he or she will always commit it.  

It should be noted that this is a different kind of error from all the others mentioned here because of 

this committal/non-committal aspect within the same problem.   

 

3.4  The Exhaustion Error (New). 

 A working definition of the exhaustion error is any error which is made towards the end of a 

particular problem despite the fact that this same error was not made at the beginning of the 

problem, even though the opportunity existed. It was felt by the researcher that this error might 
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occur frequently enough  to deserve to be an error category in its own right.  An example may serve 

to clarify this error type: 

 
  x + 3  +  x + 4   =   (x + 3)(x + 1)  +  (x + 4)(x + 2) 
  x + 2      x + 1        (x + 2)(x + 1)      (x + 2)(x + 1) 
 
 =        x2  + 4x + 3 + x2+ 6x + 8    =   2x2 + 10x + 11 
        (x + 2)(x + 1)                     x2 + 3x + 2 
 
 =        10 + 11       (errors)        =    7 

    3     

 Here the error was probably made by "cancelling" the x2’s, the x’s, and the 2’s.  It is 

important to note that the error was not made at the beginning of the problem, where an opportunity 

for its commission existed.  At a certain point the pupil makes the error for what may be one or 

more of the following reasons.  From her experience she knows that the problem cannot be solved 

in one or two steps (pupils have often given me this "reasoning" verbally) or she has remembered the 

correct first step because she has often seen that that particular process is always used in this type of 

example.  When the pupil gets to the middle of the problem she often simply uses her own 

construction (simple cancelling, as with a single value in both the numerator and denominator, and 

not cancelling of complete factors within a completely factorized expression) to "end" the question.  

This misapplication may be a good example of  the individuality of construction of knowledge: at this 

point in the middle of the problem there are few alternatives for the pupil, misapply previous 

knowledge or find a correct method.  This particular misapplication of the cancelling rule is tempting, 

especially in light of the fact that they have been told to simplify, that not only (in my experience) do 

about half of some entire classes do it, but that having done it, they appear to see absolutely nothing 

wrong with this reasoning.  These pupils are applying algebraic rules in an inconsistent fashion.  Of 

course, this is the algebra teacher's main problem: to have the pupils understand that the entire 

subject hangs together as a cohesive whole.  For too many pupils it remains a phenomenological 

construct devoid of meaning, in which rules are applied at random in an attempt to please the 

teacher.  This error, of carrying out a process correctly then later incorrectly, will be called the 

Exhaustion error in this paper and will join the other errors: Deletion, Switching Addends, 
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Redistribution, and Transposing as suggested in studies by Carry, Lewis & Bernard (1980) and 

Kieran (1982, 1984) as mentioned in Grouws (1992, pages 398, 400, and 402).   

 

3.5  The Lack of Transposing Errors (Lit). 

 It is interesting to note that there were no Transposing errors in the pilot study.  This may be 

because of the emphasis placed during teaching on the structural approach and the need for 

symmetry at each step.  Another possible explanation could be that the pupils have not been dealing 

with the topic for long enough to start constructing their own (erroneous) transposing approach as is 

commonly seen among older pupils.  However, the most likely explanations of the absence of 

transposing errors are that the format of the question does not lend itself to this kind of error because 

it has no denominator, and that the pilot study has a small sample size. 

 

3.6  Categorising the Errors. 

 The papers were sorted according to the three error types already mentioned in the 

literature: Deletion, Redistribution, and Switching Addends, plus the newly defined Exhaustion error. 

There were also a number of papers left over which did not fall into any of these four categories.  

These papers were examined to see if they had any errors in common.  This then led the researcher 

to identify five new types of error: Omissions (i.e. where one term in a long string has been dropped 

for no apparent reason), Misuse of Additives Inverse, Inability to Isolate Variable, Division Error, 

and Absence of Structure.  In this way every paper was accounted for, except one which defied 

analysis.  (For completeness, it is important to note that 15 questions were left blank and so there 

was no way of knowing if any errors would have been made).  These types of error are exemplified 

in Table I. 
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       Table I   

   

          Error Types in the Pilot Study 

 

 

   Sample Question:    5x + x + 2 = 3x + 12 

 

 
 Deletion        Redistribution                     Switching Addends  

error (Lit)            error (Lit)            error (Lit) 

    3x - 3 + 2 = 12 - 3             5x + 2 - 2x = 2x + 12 - 2x            6x + 2 = 3x +12 

           x + 2 = 9             3x + 2 + 2 = 12 -2              9x = 14 

 

 
         Exhaustion    Omissions                Misuse of Additive 
        Error (New)             error (New)     Inverse error (New) 

 5x + x + 2 = 3x +12              5x + x + 2 = 3x + 12             5x + x + 2 = 3x + 12 

  6x + 2 - 2 = 3x + 12 - 2          6x + 2 - 2 = 3x + 12              6x + 2 + 2 = 3x + 12 + 2 

             6x = 3x + 10   

      6x + 3x = 10 

 

 
   Inability to Isolate           Division           Absence of Structure 
 Variable error (New)          error (New)         error (New) 

         3x = 10                                  3x  = 10               5x + x + 2 = 3x + 12 

 blank              x  = 3.1                      3 + 2 = 3x - 8 

 

Note that (Lit) indicates an error found in the literature specified above. 
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       Table II 

 

                Frequency of Errors in the Pilot Study 

        

Deletion (Lit)    3 

Redistribution (Lit)     1 

Switching Addends (Lit)   2 

Exhaustion        3 

Omissions         3 

Misuse of Additive Inverse      2 

Inability to Isolate Variable     3 

Division Error    5 

Absence of Structure   3 

 

 As can be seen from the Table II, the first three types of error as described in the literature 

occurred a total of six times. 

 

3.7  The Misuse of Additive Inverse Error.  

 The Misuse of Additive Inverse error, as illustrated below, is very common when the pupils 

are first introduced to the topic, but has persisted here only twice through to the final examination. 

 

               x + 6  =  9 

             x + 6 + 6  =  9 + 6 

           x  =  15 

 

This error may show some understanding of the balance analogy, in that the pupil has done the same 

to both sides.  However, it is evident that the pupil has not grasped the real structural aspect of the 

problem - she may see the problem as one in which terms are 'eliminated' from one side and 'turn up' 
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on the other.  It could be argued that the error may persist as it may not be producing the discomfort 

associated with the exposure to new material which conflicts with existing 'knowledge' - a condition 

deemed necessary for learning to occur according Piagetian theory.  In order for this pupil to 

recognize that there is a conflict, she must see that her methods are not producing solutions which 

will satisfy the original equation.  In other words, she must improve her structural understanding of 

linear equations before she can see her errors on her own.  

On examination of the Misuse of Additive Inverse error itself, it was found to be almost 

synonymous with the Switching Addends error since the outcome is the same.  The only slight 

difference is that in the Misuse of Additive Inverse error it is shown explicitly that the pupil may think 

that the 'opposite' of  +6  is  +6  (referring to the example above). In the Switching Addends error 

any reasoning is hidden.  This similarity between the two errors led to their amalgamation in the 

large-scale study. 

 

3.8  The Division Error. 

 The Division error may seem a relatively unimportant one in the context of solving linear 

equations.  However, until such division is mastered, pupils without calculators may often be unable 

to find non-integer solutions to linear equations. 

 

3.9  The Inability to Isolate the Variable Error. 

  The Inability to Isolate the Variable error appeared at the same point in all three cases.  The 

pupils correctly reached the  3x  =  10  step but stopped there.  This error may arise because the 

pupil does not realise what must be done i.e. even towards the end of the question, we must do the 

same to both sides.  Perhaps this is an indication that the concrete analogy with the balance has not 

persisted to the end of the question and the case could be made to put this error in the same 

category as Exhaustion, or that the pupil does not see that not only may one add and subtract on 

both sides but that one may also divide.  A second explanation could be that the pupil does not 

appreciate that 3x means '3 times x'.  This inability to even identify the operation of multiplication 

could explain why the pupil cannot do the opposite operation (division) to both sides.  A third 

explanation is that the pupil does know that  3x  means  ‘3 times x’, but does not realise that it may 
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be appropriate to divide both sides by  3  at this point. A fourth explanation could be that the pupil 

fears making a Division error, thus leaving the question unfinished.  A fifth explanation is that the 

pupil expects an integral solution from previous experience and hence is confused.  In view of these 

diverse explanations, the Inability to Isolate the Variable error and the Division error are 

amalgamated in the large-scale study. 

 

3.10  The Absence of Structure Error. 

 The cases of Absence of Structure error were those in which the pupil demonstrated a lack 

of understanding of 'doing the same to both sides'. 
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       Chapter 4 -  The Large-Scale Study Methodology 

 

4.1  Experimental Design. 

 In order to test more fully the hypotheses that (a) errors can be grouped into this set of types 

and (b) these error types can be put in order of relative frequency, the sample size was greatly 

expanded for the main study.  Eighty-seven pupils who formed one year group each answered one 

question in the pilot study.  However, the whole school, with the exception of the fifth years (who 

write external exams instead of school exams at the end of the school year), participated in the large-

scale study.  The pilot study design and rationale were evaluated after analysis of the data and 

several improvements were suggested  e.g. some error types were amalgamated to facilitate analysis.  

 The subjects of the large-scale study were a group of 246 pupils.  They comprised the entire 

school from first to fourth year, with approximately equal numbers in each of the four year groups.  

Therefore there was no selective sampling, in that no one in the school who was taking exams was 

omitted.  This was felt to be an important feature of the study because of the limitations of selective 

sampling, given the relatively small school size.  Since the pupils all took the examination at the end 

of the school year, they had been solving such equations for between one and four school years.  

The  subjects' ages ranged from twelve to sixteen years old and they attend a selective, academic, 

co-educational secondary school in Bermuda.  The school's population is comprised of 

approximately the 'top' 40% of the general population of Bermuda as identified by two hours of 

Maths and English examinations given at age eleven to approximately 80% of the population (the 

other 20% of the school population being in private schools).  This method of selection combines the 

Maths and English scores and so allows for a wide range of abilities in Maths (and English) i.e. a 

pupil my be accepted to the school with an outstanding English score and a Mathematics score 

which places her in the third quartile of those who sat the exam for eleven year olds.  The children 

are from all socio-economic backgrounds and nearly all have lived in Bermuda since birth.  

Nevertheless the sample is skewed upwards in its representation of the range of mathematics 

achievement levels. 
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 The process of collecting data was not complicated: it was to be pure survey research, 

based on pupils' answers in an examination, with no special teaching input or emphasis.  The 

possible influences of the affective domain were thus intentionally minimized.  Clearly there may have 

been some element of stress, especially when one considers that the final exams, counting as they do 

for 60% of the year mark in each subject, are taken seriously in the school by both teachers and 

students. 

 

4.2  The Questions and their Design. 

 The pilot study question   5x + x + 2 = 3x + 12   was improved upon, because 5x + x  

should be collected at some point.  This collection adds, for the pupil, a small amount of work which 

is irrelevant to this particular study. The questions in the expanded study are: 

 

   Question 1               7x  =  28    First year pupils only 

 

    Question 2.                 x - 1  =  -3       First year pupils only 

 
    Question 3               10   =  5  First year pupils only 
           x 

    Question 4.               5x - 1   =  38    All pupils 

 

    Question 5.               4x - 2   =  x - 1 All pupils 

 
    Question 6               5 + x   =  2  All pupils 
             2 

 

 It was felt appropriate that the first year pupils have more questions on this topic in the final 

exam for two reasons.  The topic is introduced and given a large block of time in first year, and the 

first year pupils are given some less intimidating questions, allowing them more opportunity to get 

some credit for their understanding of equations. 

 

Question 1. 7x = 28 
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 This is a lead-in question designed to make pupils feel comfortable and confident.  The only 

obvious anticipated errors are Division errors (not being able to apply division correctly) and the 

Other Inverse error  i.e.  x  =  28 – 7. 

 

 Question 2. x - 1  =  -3 

 This is designed to see how many pupils can make a single application of the ‘deduction - 

reduction’ algorithm.  Note that guessing the correct solution is difficult here because of the location 

of the solution in the negative segment of the number line.  As will be seen, it may be possible to 

attribute specific errors in the case of the incorrect solution x  =  -4 with the help of other answers on 

the exam, but it must be noted that this is an ambiguous situation in which the commission of an error 

could be viewed as stemming from one of several mechanisms. 

 
 Question 3. 10   =   5 
    x 

 This is a multistep question if solved using the ‘deduction – reduction’ algorithm.  Trial and 

improvement using substitution of values for ‘x’ probably takes less time, especially in view of the 

fact that the solution is a positive integer. 

   

Questions 1 to 3 were not originally designed to be part of an error study - they are solely 

test items of moderate difficulty for first years to ascertain their achievement in solving a range of 

simple linear equations. 

 

Question 4.    5x - 1  =  38   (the first item for years 2 to 4) 

 This is an example of an ‘arithmetical’ equation mentioned by several authors, including 

Filloy and Rojano cited in Kieran (1992, page 402).  The ‘deduction – reduction’ algorithm may be 

used twice or this question may be solved with difficulty (because of the non-integer correct solution) 

by trial and improvement using substitution of values for ‘x’ from the beginning.  It is therefore 

designed to steer the pupil into taking a structural direction (e.g. using the algorithm), with a lot of 

working being shown, hence making it possible to identify the type of any error.  However, on the 

right hand side there is a number, which is often viewed as an answer while numbers are successively 
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substituted in place of x on the left hand side.  As will be seen in the analysis, Question 4 did indeed 

provide its share of errors. 

 

 Question 5.  4x - 2  =  x - 1 

 This is an example of an ‘algebraic’ equation (see Filloy and Rojano in Kieran, 1992, page 

402).  Guessing would be tedious in the extreme.  Many scripts showed little working and much 

confusion.  This is probably due in part to the fact that, whereas in Question 4 the number 38 can be 

used in every attempt to solve it by trial and improvement, in this "algebraic" type of equation, the 

right hand side changes with each new numerical instantiation.  The analysis of errors and 

performance in this question confirms how difficult pupils may find "algebraic" equations. 

 
 Question 6. 5  +  x  =  2 
                      2 
 

 Since the Transposing error was not seen in the pilot study, despite its being mentioned in 

the literature by Kieran (1992, page 400), this test item was designed, in part, to elicit the error from 

pupils who were unsure of a correct method.  Deliberate adjacent positioning of the 2's here on the 

part of the researcher may have served to prompt the "change side - change sign" rule 

oversimplification more than if the problem had read  

    
      x + 5 = 2 
      2   
 

leading to (perhaps)          x + 10 = 2 

which may be more readily felt by the pupil to be an obvious error, leading to a re-examination of 

the question.  

In summary, these six questions were designed both to test pupils in an examination setting 

and to make possible an identification and analysis of errors. 

 

4.3  The Determination of Error Types in the Large-scale Study. 
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 Both the literature and the analysis of exam scripts during the gathering of data in the pilot 

study were used to define the error categories in the large-scale study in the following ways. The 

Deletion, Redistribution, Switching Addends and Transposing error types were all retained because 

of their presence in the literature.  The Exhaustion Error did not survive as an error type because 

there were only two of them found in the large-scale study.   In both cases the error made was 

judged to be of the Switching Addends error type.  The Omissions error type was retained because 

of its occurrence in the pilot study.  As has already been mentioned, was a condensing of four error 

types in the pilot study into two pairs: Switching Addends (including Misuse of Additive Inverse), 

and Division (including Inability to Isolate Variable).  The Absence of Structure error could not be 

amalgamated with any other type, and it was felt to be important as it might be possible to link it with 

some form of structural confusion, either from the uses of the equals sign or the application of the 

algorithm.  This leaves the Other Inverse and Number Line errors to complete the list of nine 

identifiable error types, as seen in Table III. 
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  Table III 

   Error Types in the Large-Scale Study 

 

 

 
        Deletion                      Redistribution                                Switching Addends  
       error (Lit)                         error (Lit)                          error (Lit) 

3x - 3 + 2 = 12 - 3                 5x + 2 - 2x  =  2x + 12 - 2x                       6x + 2 = 3x +12 

       x + 2  =  9             3x + 2 + 2  =  12 -2                         9x  =  14 

 

 

 
      Transposing     Omissions                     Other Inverse 
       error (Lit)                         error (New)           error (New) 
  
        5 + x = 2                           5x + x + 2 = 3x + 12            4x  = 1 
              2                                 
        5 + x  = 4                           6x + 2 - 2 = 3x + 12                                   x  =  1 – 4 
 
 
 

       Number Line               Division                    Absence of Structure 
        Error (New)              error (New)        error (New) 

       -3 + 1  =  - 4                                3x  = 10             5x + x + 2 = 3x + 12 

                    x  =  3.1                    3 + 2 = 3x - 8 

 

 

 

 Note that (Lit) indicates an error found in the literature specified above. 
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        Chapter 5 – Results 

 

       Table IV 

    Frequency table of errors in the large-scale study of errors made in linear equations. 

 
  First Year     Second Year    Third Year    Fourth year      Totals for       Totals for 
   66 pupils        53 pupils       68 pupils       59 pupils       each error      each error 
Error type  Q1 to Q6        Q4 to Q6         Q4 to Q6       Q4 to Q6       Q4 to Q6        Q1 to Q6 
 
 
Deletion (Lit)     --------            1(Q4 )        1( Q6)  1(Q5)              5         5 
                2(Q5) 
 
Redistribution     5(Q2)             1(Q4)        ---------  --------    1         6 
(Lit) 
 
Switching     5(Q2)             3(Q4)             2(Q4)  10(Q5)              35        40 
Addends     7(Q5)             3(Q5)        4(Q5)    3(Q6)   
(Lit)      1(Q6)             1(Q6)             1(Q6) 
 
Transposing     9(Q6)             9(Q6)        7(Q6)   15(Q6)             40        40 
(Lit) 
 
Omissions     2(Q4)             1(Q5)        1(Q5)    1(Q4)   8          8           
(New)                         3(Q6) 
 
 
Other       1(Q4)             3(Q4)        1(Q6)    1(Q5)   8          8 
Inverse                   1(Q5)             1(Q6) 
(New) 
 
Number      7(Q2)              1(Q5)        1(Q5)    4(Q5)               11         18  
Line (New)     3(Q5)              1(Q6)        1(Q6) 
 
 
Division     15(Q4)             5(Q4)        4(Q4)    3(Q4)               34         34 
(New)       2(Q5)             3(Q5)        1(Q5)    1(Q5) 
 
 
Absence of               3(Q4)             -------       --------    3(Q5)    7           7 
Structure (New)      1(Q5) 
  
 
Identified errors 
in Q4 to Q6 by year     45    35             27                  42              149        166 
{Q1 to Q3 in 1st yr}   {17}  
 
Mean number of 
correct responses*      0.83  1.41            2.06       1.85 
 
* Questions 4, 5 and 6 were each allotted one mark for the purposes of analysis in this study, then these scores 
were totaled. 
 
Note that   2(Q5)  means that the particular error occurred twice in Question  5. 

5.1  Notes on the Data. 
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 The results of the pilot and large-scale studies are tabulated in the Table II in Chapter 3 and 

in Table IV  above.    

Two important points must be stressed about the data in Table IV.  First, these are the 

errors as classified by the researcher according to the planned scheme developed and adopted by 

the researcher.  Second, whenever errors appear in a pupil's working, they are put into one of the 

nine error categories.  

To give an example, the first year pupils achieved a mean of  0.83 correct responses out of a 

maximum of three (there being a score of one given for each correct answer to each of the questions 

numbered 4, 5 and 6 on the examination).  However, the first year pupils made 45 identifiable 

errors, compared with 42 errors made by the fourth year pupils, whose mean number of correct 

responses was more than double at 1.85.  Since the year group sizes are similar at 66 pupils and 59 

pupils, this discrepancy is accounted for by the fact that many more first than fourth year pupils 

wrote nothing in response, as can be seen in Table VI in Chapter 6.17. 

 

5.2  The Errors Made, in Decreasing Order of Frequency, in Questions  4 to 6. 

 The Transposing error was made 40 times, out of a total of 149 errors, and was the most 

frequently detected.  Although it occurred only 7 times in the first year, this may have been because 

it occurred in what was too daunting a question.  In support of this, 27 of the 66 first year pupils 

either gave an incorrect answer without any working or left it blank.  The Transposing error 

occurred 15 times in the fourth year  i.e. approximately twice as often as in each other year group, a 

finding which will be examined in the next chapter.  

The Switching Addends error was the second most frequent with 35 occurrences, again with 

the fourth year group accounting for more than any of the other years. 

 The Division error occurred 34 times, despite the fact that this error could not easily be 

made in Question 6 because of the unitary coefficient of x.   The first years accounted for half of all 

the Division errors made. 

 Again, it is stressed that these are frequencies of errors actually made and observed, with no 

inferences being drawn from blank responses. 
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 The above three were the most frequently made errors, accounting for 73% of all observed 

errors. 

 The other errors were, in decreasing order, Number Line, Omissions, Other Inverse, 

Absence of Structure, Deletion, and Redistribution errors.  

 

5.3  Statistics Related to the Frequency Table. 

 The identified errors made in Questions 4 to 6 on the exam were totaled according to year 

group.  The first years made the most with 45 errors, closely followed by the fourth years who made 

42.  Again it must be stressed that errors must be made before they can be identified e.g. many first 

years omitted working altogether, but this fact does not show up in Table IV.    In an attempt to get 

a clearer picture of how these errors relate to overall performance the “mean number of correct 

responses” statistic was included.  The fourth years scored more than twice as highly as the first 

years on average (1.85 versus 0.83), with the highest average (2.06) being achieved by the third 

years.  
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          Chapter 6 - Discussion of Results 

 

6.1  The Applicability of the Results to Other Populations.   

 Throughout this discussion it must be remembered that this sample of pupils is not 

representative of the general population, but, as has been mentioned, is a certain subset of the top 

three quarters of the full mathematical achievement range, as represented by the population of one 

school. The same applies to references to the literature: a particular study will almost invariably have 

been done with students of different abilities from those in this study. Thus, in general, it would be 

impossible to translate these results when trying to predict the totals of each type of error about to 

be made by another group of pupils.  Rather, in searching for a crude frequency distribution in Table 

IV, it is hoped that there would be benefits for the classroom teacher in studying these results.  

Obviously, teaching styles vary, and this may also account for variations in results.  For example, at 

the school in which this study was done, great use is made of manipulatives by all mathematics 

teachers.  Using white dice to represent the constants 1 to 6, black dice to represent the constants  –

1 to –6,  red plastic pawns to represent each  variable ‘x’, and blue plastic pawns to represent each 

variable ‘y’, the mathematics teachers showed, for instance,  2x – 5  as 2 red discs and a ‘5’ on a 

black die.  This was done in an attempt to show that constants and variables are ‘unlike’ terms and 

therefore cannot be added or subtracted.  This may help to account for the scarcity of errors of the 

Deletion type  e.g.   2x – 2  =  x, made by this particular population.   Given that the deletion error is 

prevalent in the literature, this might have suggested that the error would appear more often than it 

did in this large-scale study.  Confusing 2x with 2 does not appear to be a problem for this particular 

sample of pupils.  A joint effect may be at work.  Higher-achieving pupils who are given access to 

manipulatives might be likely to see, and remember, the difference between 2x and 2 because 2x has 

been represented by two pawns, and 2 by the number 2 on a die.   However, as has been noted by 

Daniels & Anghileri (1995, page 42) when referring to manipulatives, at the other end of the ability 

scale the pupils "found the blocks.....as abstract, as disconnected from reality, mysterious, arbitrary, 

and capricious as the numbers these blocks were supposed to bring to life", which might account for 

the 12 blank responses by first years in Question 5.  
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6.2  The Transposing Error (Lit) Frequency. 

This was the most frequent error observed, this despite the fact that, because of its structure, 

this error could be made in only one of the questions.   It has been observed over many years by the 

researcher that the change side - change sign 'rule' has an immediate and powerful appeal to less 

successful algebra students because of its simplicity. 

One explanation for why pupils find it easier to Transpose than ‘do the same to both sides’ 

may be that pupils do not have to find a multiplicative inverse then remember to do the same to both 

sides of the equation, as they would have to do in the more formal method.  With Transposing, they 

are simply moving existing numbers (or letters). 

However, it is interesting to note that Transposing is often used by pupils who have only had 

this researcher as a mathematics teacher at this school and who have never, at least in my classes, 

been taught this method.  This makes it either a good example of Hiebert & Carpenter's "invented 

strategy" (1992, page 74), or quite possibly, a strategy taught by their parents or by peers from 

another teacher’s class.  Indeed, seeing a process in which the denominator on one side of the 

equals sign simply appears to join the numerator on the other side e.g.  

 
          Density  =  Mass                     and      Speed   =   Distance      

                    Vol.                      Time 
 
=>   Density  X  Vol  =  Mass                    =>    Speed  X  Time  =  Distance    

may lead many pupils to think that such Transposing is always mathematically correct, irrespective of 

the shape of the equation.  Remedying the transposing error is difficult because simple transposing, 

as outlined in the two examples above, often works.   

 

6.3  The Transposing Error (Lit) and the Fourth Years. 

 By designing  Q6  so that simple 'transposing' does not yield the correct answer, 

Transposing errors were revealed, especially in the papers of the fourth year pupils: 
 

5 +  x  =  2                          
                                                                 2                                 
 
                                              =>        5 + x  =  4                           
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It is interesting to note here that, even though this is an "arithmetical"  equation (to use Filloy 

& Rojano's terminology in Kieran (1992)) with an integer solution, pupils appear to have been 

frequently preferred to try a structural approach using their transposing mal-rule.  This may 

demonstrate that using an over-simplified rule is preferred over trial and improvement, especially in 

this question as it is "arithmetical" in nature.  In this case using the over-simplified rule certainly is less 

work, but this is hardly surprising since mal-rules may be invented by pupils, at least partly, to save 

time and energy.  In other words, this situation in which some fourth year pupils are inventing a 

convenient mal-rule may appear to demonstrate some pupils' self-constructed approach.  This may 

spring directly from many of the equations from Physics as noted above  e.g. Resistance = Voltage / 

Current.   Also, the fact that this is taking place more in fourth year lends weight to the idea that it 

takes time for a pupil to construct his own knowledge or methods.  However, there are several, less 

complicated, alternatives to this constructivist interpretation.  

First, that the fourth year group may, as a whole, be weaker at solving linear equations (or 

maybe weaker at mathematics) than the other year groups.  The four year groups are distinct and 

comparable only to the extent that they attend the same school and have the same teachers.   

Second, that the fourth year may not have received as much linear equation instruction (and 

certainly no manipulative work with the balance) during the past year as the other classes may have.  

This is certainly the case when comparing the first and fourth years.   

Further, large numbers of the fourth year did not try to check the answer by substituting into 

the question and realize that something had gone wrong.  This may confirm the findings of Greeno 

(1982) summarized in Kieran (1992, page 403), that it does not always occur to pupils that the 

correct solution to a simple linear equation must be able to be substituted into the original equation 

so that the left side equals the right side.   There is, however, the possibility that many of the fourth 

years did know their answer to Question 6 was wrong, but could not fix it or felt they had little time 

to fix it.  The examination setting for the experiment may have contributed to this, with pupils feeling 

under pressure to complete an exam in a limited amount of time.  

 

6.4  The Division Error. 



 42

 This was seen 17, 8, 5, and 4 times respectively in the first to fourth year groups.  It should 

be reiterated that this error type was an amalgamation of the division error e.g.  5x  =  39      =>      

x  =  7.4,  and the inability to isolate variable error, characterised by nothing being written after   5x  

=  39.   Twenty six of the thirty four errors were division errors (according to the original, restricted 

definition).  The other eight were of the inability to isolate variable error, which, as has already been 

noted, may have at least four different possible explanations for its commission.  Whatever the 

reason, the fact remains that  the equation     5x  =  39    could not be solved by one quarter of the 

pupils in first year.  Arithmetically, this should be within the capability of this particular sample of 

pupils.  This demonstrates that, in terms of percentage of correct answers, a low percentage may not 

be indicative of poor algebraic skills alone.  Rather, it may be indicative of poor subordinate skills  

e.g. the ability to divide integers to give non-integer answers. 

 

6.5  Subordinate Arithmetic Skills.  

 It may be tempting for a teacher to conclude that a pupil's score on a linear equations test is 

indicative of the pupil's understanding of linear equations.  However, close analysis of pupils' work 

can sometimes reveal weak subordinate skills.  There are many subordinate skills used in the solution 

of linear equations, and the application of these skills may have as much influence on the final success 

rate as does any understanding of linear equations or their structure.   

This was observed in the large-scale study among the first year pupils, with division identified 

as one of these weak subordinate skills.  Many of the first year pupils have, in going through a 

particular question, performed the algebraic manipulation successfully, only to commit an error, in 

this case division, in an operation with which they had several years’ experience.   Further, given the 

ability of this particular sample of pupils, the operation should have been mastered prior to the 

introduction of linear equations.  On the subject of subordinate skills, the case may be made that the 

only errors which should be analysed in regard to linear equation questions are those made in 

algebraic manipulation as it relates to the structural aspects of the solution of such equations.  

However, the fact remains that poor subordinate skills in one area can be a contributory factor in a 

pupil's lack of success in another area, and so a stronger case may be made for the inclusion of all 

types of errors, especially those made while using subordinate skills.  
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As far as solving linear equations is concerned, not only should the four basic operations 

have been mastered, but they should have been mastered with directed numbers, otherwise the pupil 

has a poor prognosis for success.  For example, if an ‘algebraic’ equation of the form  ax + b = cx 

+ d  is to be solved, then at some point the additive inverse of either  ax  or  cx  must be found, in 

order to collect ‘like’ terms and therefore isolate the variable.  Without mastery of directed numbers, 

luck may be playing the largest part in finding  -ax  or  -cx.   Such mastery takes time to achieve in 

any large class.    

 

6.6  The Switching Addends Error (Lit). 

 As has already been mentioned, when this error is observed it may show a lack of 

understanding of the structure of a linear equation (or perhaps simple carelessness). A typical 

example of the Switching Addends error from pupils’ work is  

4x  - 2   =   x – 1 

=>    4x + x  =  - 1 – 2 

This error was found to be persistent in the large-scale study, occurring 7, 7, 7, and 12 times in first 

to fourth year respectively.  Indeed, the Switching Addends error frequency pattern is not unlike that 

of another error associated with a lack of understanding of structure  i.e. the Transposing error.   

Whereas the Transposing error may spring from a pupil constructing a method in accordance with 

what appears to work often, there is a possibility that there may be different mechanisms at work 

during the production of the Switching Addends error.     

 In committing the Switching Addends error, the pupil may be attempting to give structure to 

the solution of a linear equation question in an examination (even, in an extreme case, if only in the 

sense that it contributes more working in accordance with the exam instruction that marks may not 

be gained unless full working is shown).  If it is indeed, for whatever reason, an attempt to provide 

structure, then perhaps this reasoning        

x + 3 = 5        

      =>       x = 5 + 3     
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could, because of its attempt at being more structural, be regarded as a mental step in the right 

direction.  Thus the Switch Addends error might be perceived in a positive light, as one being made 

by a pupil approaching understanding of linear equations.   

 Alternatively, it could also be argued that by writing  

 

        x + 3 = 5    

                                                    =>        x = 5 + 3  

the pupil may be simply trying to follow the teacher's advice (in trying to prevent the pupil from 

making a Transposing error) of  "Don't just change side-change sign", but is confused about how to 

do this, and in an honest attempt to follow a piece of negative advice, the pupil changes side but not 

sign.  Such tortuous reasoning may seem improbable, but mathematics teachers are used to a wide 

variety of mal-rules being given back to them as their own  e.g. two minuses make a plus.  This 

should be viewed in a positive way   i.e. as part of a pupil's genuine attempt to construct knowledge. 

 It is interesting to observe, from Table IV, that the Switching Addends error, was found 24 

times in Question 5 (the ‘algebraic’ equation) as, typically,  

      4x - 2  =  x – 1    

                                        =>    4x + x  =  -1 – 2.     

This may demonstrate that a pupil is reluctant to employ the rule of ‘doing the same to both sides’ by 

taking  ‘x’ from both sides, perhaps for the following reason: if the value of ‘x’ is unknown, how can 

it be taken from both sides?   From the results of this study, there is little doubt that the fourth year 

pupils found the ‘algebraic’ equation type more difficult than the ‘arithmetical’ type.   This may be 

shown by the important fact that not a single Switching Addends error was made by fourth years in 

Question 4, an ‘arithmetical’ equation,  compared with 10  Switching Addends errors made by the 

same 59 pupils in Question 5, the ‘algebraic’ equation.   In committing the Switching Addends error 

there seemed to be a genuine attempt by many pupils to solve by structural rather than procedural 

means.  However, the ‘algebraic’ nature of the equation in Question 5 proved too difficult for the 

fourth years, one third of whom made errors in this question.   

These findings,  when coupled with the frequency of  Transposing errors from Table IV, 

mean that there were 28 Switching Addends or Transposing errors made in 118 questions answered 



 45

by the fourth years (118 being the 2 questions, numbers 5 and 6, multiplied by 59 pupils in fourth 

year).  From this, it would appear that many of the fourth years are having difficulties stemming from 

the structural aspects of linear equations.   However, reliable inference of the mechanisms behind 

such difficulties is not possible from the study or its data, and many of the ideas above are merely 

suggestions based on anecdotal evidence collected by the researcher in the classroom.   

  

6.7  The Switching Addends Error in ‘Algebraic’ versus ‘Arithmetical’ Equations. 

It is significant to note that, overall, the Switching Addends error occurred 5 times in the 

‘arithmetical’ equation    5x - 1  =  38,  compared with 24 times in the ‘algebraic’ equation    4x - 2 

= x – 1.   Such a difference in occurrence was not unexpected in the light of the literature on the 

subject.   For instance, Filloy and Rojano tried to “uncover some of the obstacles experienced by 

students during the period of transition from arithmetical to algebraic equations” (Kieran, 1992, page 

402).    

One such obstacle which may contribute to a lack of success in ‘algebraic’ equation solving 

has been noticed by the researcher over the years  i.e. the ability to gather ‘like’ terms. The transition 

from ‘arithmetical’ to ‘algebraic’ equations may be analogous to the transition from arithmetic to 

algebra.  One of the features of arithmetic is that, except where different units of measurement are 

concerned, all the terms are numbers and therefore ‘like’ each other, although this point may not be 

made explicitly to pupils.  These numbers may be confidently added, subtracted, divided, and 

multiplied.  Not only that, but pupils have become used to doing this.  At around the time pupils 

reach secondary school, algebra is introduced, usually in the form of expressions first.   In algebra, 

terms may not be automatically added or divided etc..  The pupil must make a judgement about 

which terms are ‘like’ which other terms, with a view to ‘collecting the like terms’. This process has 

no equivalent in arithmetic, except when different units are concerned (which, incidentally, might help 

explain why pupils have difficulties with units in primary school because they may not classify terms 

as ‘like’ or ‘unlike’ until secondary school).  Thus it may be misleading when “school algebra is 

sometimes referred to as generalized arithmetic” (Booth, 1984, quoted in Kieran, 1992, page 395), 

when one considers that some often-used processes which are necessary in algebra occur to a more 

limited extent in arithmetic. 
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Younger pupils can find the process of collecting ‘like’ terms so difficult that they cannot 

confidently simplify an expression such as  3x + 2x.   Difficulties are not restricted to younger pupils.  

Older pupils can be so confused by second and third year algebra that, by fourth year, they find it 

difficult to explain why 3x can be multiplied by 2y, but cannot be added to 2y.   Indeed, “Wenger 

(1987) has described some of the poor strategic decisions made by students with extensive algebra 

experience – decisions that result in their ‘going round in circles’ while carrying out simplification 

transformations” (Kieran, 1992, page 397).   Also, some pupils have difficulty collecting the ‘like’ 

terms separated by an ‘unlike’ term within an expression, such as in 

3x + 2y + 4x.    

It is therefore likely that such pupils who experience any of these difficulties with ‘like’ terms 

within an expression, when faced with an ‘algebraic’ equation in which the ‘like’ terms are now 

separated by an equals sign, will have even more difficulty in successfully arriving at the correct 

strategy of, in this case in Question 5, subtracting ‘x’ from both sides to arrive at a point where it will 

be possible to collect ‘like’ terms.  Further, there may even be some reluctance to do this since they 

do not want to put themselves in the position of having to perform a process in which they lack 

confidence.   

As has been discussed in Chapter 2.14, there is room for confusion between expressions 

and equations.   Confusion may be further compounded because ‘like’ terms can lie adjacent within 

an expression, separated by an ‘unlike’ term within an expression, separated by an equals sign within 

an ‘arithmetical’ equation, or separated by an equals sign within an ‘algebraic’ equation.             

 

6.8  The Number Line Error.    

 This is characterised by such mistakes as   - 3  + 1  =  - 4.   There may be many 

explanations for this error.  The pupil may be confusing  - 3 + 1  with  - (3 + 1),  or she might be 

misapplying the rules for the order of operations (BODMAS, to name one acronym for this order) 

by thinking that the addition of  3 + 1  must be done first in  - 3 + 1  and then the negative sign is 

dealt with by simply placing it in front of the  4 obtained.  Indeed, it is the researcher's experience 

that pupils find many different ways of attempting to perform  - 3 + 1, especially if this is embedded 

within an equation.   One reason for this may be that the manipulation of negative numbers, a 
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subordinate skill necessary in the solution of equations, is a source of difficulty and is taught only a 

short time before the topic of linear equations is introduced to the pupils in this study.  Practice is 

needed in using such devices as a number line to simplify expressions such as - 3 + 1.    However, 

too much reliance on such devices as the number line may not be advisable in that its usefulness may 

break down in the face of fractional integers and, as the literature suggests, “such devices……had to 

be rejected when it came to multiplication and division” (Orton, 1992, page 69).  

However, without mastery of directed number manipulations, occurring, as they tend to, in 

the 'reduction' step of the deduction-reduction algorithm, the prognosis of success in solving linear 

equations may be poor.  Confirmation of this assertion may be found in the large-scale study by the 

fact that the number line error was made 10 times by first year pupils.         

 

6.9  The Omissions Error.  

    e.g.        5x + x + 2 = 3x + 12  

       =>    6x + 2 - 2 = 3x + 12 

 Since this usually occurs in the middle of the solution of the problem, and occurs while a 

pupil is using a structural method, the error itself should not give too much cause for concern.  The 

complexity of the problem and the pressure of the exam setting may both cause the pupil to omit 

letters or numbers.   

  

6.10  The Other Inverse Error. 

 As has already been stated, this error,  where 

4x = 1    

    =>      x = 1 - 4  

does not appear to be present in the literature, and yet occurs 8 times in the large-scale study.   This 

may be a more serious error than the previous one for several reasons.   

 First, it may demonstrate a lack of understanding of the meaning of the statement     4x  =  1.  

  Second, it may point to a confusion of the additive and multiplicative inverses.  The pupil 

may be familiar with the concept of inverses, but not sure when each is appropriate. 
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 Third, it may confirm Greeno's (1982) assertion that a certain number of pupils cannot, or 

do not know that it is possible to, check the truth of the solution either in the original equation or in 

any one of the equalities in the chain of equations  i.e. the solution of   x = 1 - 4   will not satisfy the 

original equation. 

 Fourth, it may be another example of  4x  being misinterpreted: 3¾ means 3 + ¾ so why 

does 4x not mean 4 + x ? (Matz in Sleeman, 1982, page 392)   This leads directly to the use of the 

additive rather than the multiplicative inverse.  This confusion, of  ‘4 added to x’  with  ‘4 multiplied 

by x’ when pupils are faced with finding a meaning for  4x, has implications beyond simple linear 

equations.        

  

6.11  The Absence of Structure Error (New). 

 As can be seen from the example in Table 1, this response typically defies analysis.   

Constants and variables are confused more than they are in the Deletion error.  Change side-change 

sign manipulation may be attempted, but the Transposing error is impossible to detect with certainty, 

as is the Switching Addends error.  A pupil operating at this level is probably aware of his 

difficulties, but because of their number and/or complexity, may not be able to articulate them to the 

teacher.   

 Even among the fourth years, who have had several years of exposure to simple linear 

equations per se as well as equations at the end of other algebra and geometry problems, there were 

Absence of Structure errors made by 3 of the 59 pupils. 

 It should be noted that the Absence of Structure error is not an identifiable single error, but a 

category into which many uncategoriseable errors are placed. 

6.12  An Analysis of an Answer Showing  "Absence of Structure".  

 In solving the equation    4x - 2  =  x - 1      

 one of these three fourth year pupils wrote 

   line 2      2x - 4  =  -1 

   line 3          -12x - 4  =  -1 - 1 

   line 4                   x   =  2x - 3 
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 Much more could be learned by investigating this pupil's thought processes in an interview 

situation.  However, following the design of this study, inferences may be drawn from the written 

work.   Line 2 could be some attempt at transposing internally in which  2x - 4  is deemed to be 

equivalent to  4x - 2.   Line 3 shows the pupil might be ‘adding’ -1  to both sides to arrive at  -12x   

i.e. concatenating   -1 and 2x  to make        -12x.  

 Line 4 defies analysis.  It is noteworthy that every line does contain an equals sign, so 

perhaps the term 'Absence' in this error type may be too strong to accurately describe this particular 

pupil's error. 

 

6.13  The Deletion Error (Lit) Revisited. 

 The Deletion error, in which  3x - 3   is incorrectly simplified to  x, has not been found 

frequently in this study.  However, it is treated as an important algebraic error by Carry  et.al. 

(1980) and Matz (1979), and, as has already been noted, this may be partly because of its 

persistence through to college.  There may be several explanations of the apparent difference in 

importance attached to the Deletion error by this study and by the literature. 

 In the study by Carry et. al. (1980), there were 60 Deletion errors observed out of a total of 

227 general algebraic errors  i.e. errors made both while solving equations and simplifying 

expressions.   In this study there were 5 Deletion errors observed out of a total of 149 errors made 

while solving equations.    

However, it must be reiterated that the sample of pupils in this study is not representative of 

the general population, by virtue of the selective nature of the school.  Also, the questions in the large 

scale study may not have given much opportunity for the commission of  Deletion errors.  

 In discussing the results of this large-scale study, there has been some divergence noted from 

studies from the literature, especially with regard to the Deletion error.  This is only to be expected 

since parameters vary from one experiment to another.  Also, question types and formats may affect 

the frequencies of different error types.  However, the small number of Deletion errors in the large-

scale study compared with that of  Carry et. al. (1980)  may beg questions concerning both the type 

of analysis done and the element of bias in the large-scale study. 
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6.14  The Exhaustion Error. 

 This error occurred less frequently in the large-scale study than in the pilot study, despite a 

greatly increased sample size.  It would therefore appear to be an error of little importance in the 

context of simple linear equations.  However, the error does correspond closely with an observation 

of Greeno (1982) who found that “beginning algebra students are consistent neither in their approach 

to the testing of conditions before performing some operation nor in the process of performing the 

operations” (Kieran, 1992, page 397).    In other words, the commission of the Exhaustion error is 

in agreement with Greeno’s (1982) finding that a pupil can be inconsistent within the solution of a 

particular problem.  Despite this, it was removed from the list of error types because of its low 

frequency in this study.    

 

6.15  The Redistribution Error (Lit).  

 In the literature this error is observed by Kieran (1984) and further noted by Grouws 

(1992).   

 Judging from its very low observed frequency of commission in both the pilot and large-scale 

studies, this error would appear to be either undetected (but as it was an error reported by other 

researchers (Grouws, 1992) it was looked for) or unimportant.  This highlights one of the features of 

the quantification of error-making: it does facilitate the ranking of errors for the purpose of 

determining their relative importance, which in turn may help the teacher.    

Contrast the study by Erlwanger (1973) observing "Benny", in which the errors derived their 

importance from the interesting way in which the mal-rules have been invented, rather than from their 

frequency.  There is little doubt that there is much to be learned from Erlwanger's (1973) landmark 

study.  His exploration of an individual's thought processes and coping strategies offer valuable 

insight to every teacher of an analytical subject. 

Therefore, analyzing errors by frequency alone, as has been done in this large-scale study, is 

just one way of systematically classifying and organising errors.  Thus, just because an error, in this 

case the Redistribution Error, seldom appears does not automatically mean that error is unimportant.
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6.16  Subordinate Skill Errors in Different Education Systems. 

 In Bermuda pupils are promoted from year to year based on their performance on a wide 

range of subjects.  In the United States the courses Middle School Math (often called pre-Algebra), 

Algebra 1, Geometry, and Algebra 2 must be passed, and in that order, to qualify the student for 

graduation from high school.   In the U.S. system it is common, for instance, to have 'advanced' 14 

year olds and repeating 17 year olds  in the same Geometry classroom.  This focus on mastering (or 

at least being minimally successful on tests on) material before promotion to the next Mathematics 

course has many merits, among them being that there should be less opportunity for subordinate skill 

errors to be made: there being a greater likelihood that previous material should, overall, have been 

mastered.  In the Bermuda system, all pupils gain social promotion from one year level to the next. 

Therefore there can be no such assumption of even partial mastery of previously-learned material 

can be made, particularly in the lower achieving streams. This difference in the two systems has 

implications for error analysis, the main one being that there may be a greater scope for the 

commission of subordinate skill errors in the Bermuda system.  However, while teaching in the U.S. 

system, this researcher noted that memory came into play, especially in the year between Algebras I 

and II, when the pupils were studying Geometry.  Skills mastered in Algebra I were often forgotten 

by the time the pupils reached Algebra II.    

 

6.18  A Comparison of Total Errors Made in Questions 4,5 and 6. 

 

       Table V 

    Errors Made by Question. 

 
     First   Second  Third  Fourth    
     year        year    year     year             Total 
     n = 66    n = 53   n = 68   n = 59   

-------------------------------------------------------------------------------------------------- 

Question 4           21     13         6       4      44 

Question 5     14     10              7     20           51 

Question 6     10     12     14     18      54 
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-------------------------------------------------------------------------------------------------- 

        Total     45     35   27     42     149 

 

 From Table V, compiled from the data in Table IV, it is possible to find several patterns of 

error-making.  Before analysing the results it must be restated that these are frequencies of observed 

errors, and do not include non-attempts to answer a particular question. 

 Fewer errors are made in Question 4  ( 5x - 1  =  38 )  as pupils get older.  Given the 

procedural nature of the question with its constant right hand side, it is possible to both trial-and-

improve quickly and even check the solution in the original question.  It is therefore not unexpected 

that some improvement in success rates has occurred with practice and increased maturity. 

In  Question 5   ( 4x - 2  =  x – 1 )  the fourth years made more errors than the third years, 

which may be consistent with the perceived complexity of the questions by Filloy and Rojano (in 

Kieran, 1992, page 402), as outlined previously in the discussion of “arithmetical” and “algebraic” 

equations  i.e less direct instruction on how to solve an “algebraic” equation, or simply forgetting that 

variables may be added to or subtracted from both sides, may have contributed to the fourth years’ 

reversal of the downward trend in error rates for this question as pupils get older.  A longitudinal 

study could help determine whether memory is a factor in the fourth years’ ability to solve 

“algebraic” equations, or whether this particular fourth year finds “algebraic” equations more difficult 

than does this particular third year.  Perhaps a case could be made for making the point explicitly in 

textbooks that there does exist a difference in difficulty between "arithmetical" and "algebraic" 

equations, perhaps to the extent that they be introduced in different chapters.   

In Question 6  ( 5 + x   =  2 )  the fourth years are committing a larger number  
                2 

of errors than those in other years.  One possible interpretation of this fact is that the fourth years are 

trying harder than those in lower years to arrive at the correct solution.  If this is the case, then this 

may be a positive sign  i.e. perhaps the fourth years are not daunted by the task and are willing to 

take risks.  In order to test this conjecture it is necessary to tabulate the blank responses. 

 

       Table VI 
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             Blank Responses by Question. 

 
     First   Second  Third  Fourth   
     year       year    year     year    Total 

   n = 66    n = 53  n = 68   n = 59 

----------------------------------------------------------------------------------------------- 

Question 4            7         1      5      3      16 

Question 5     12         2            3      3           20 

Question 6     15         3      1      8      27 

----------------------------------------------------------------------------------------------- 

        Total     34         6      9     14      63 

From this table it appears that the fourth years are indeed having difficulty with Question 6  

as  8 fourth year pupils did not write anything in response to this question, as opposed to one third 

year pupil.   

Perhaps this confirms the assertion that this may result from confusion with simpler equations 

such as Speed = Distance/Time from Arithmetic, and D = M/V from Physics.   Transposing errors 

may be masked while solving these simpler equations – equations which  are seen more frequently, 

and in more guises ( e.g. R = V/I ), as pupils progress through the school - until they are revealed in 

more complicated equations such as Question 6.  Such masking may be an important feature of the 

Transposing error.         

The first year pupils are making the most omissions.  This appears to reinforce Kieran's 

(1989, page 52) warning that "an often documented finding concerns the inability of beginning 

algebra students to 'see' the surface structure of algebraic expressions containing various 

combinations of operations and literal terms". 

The topic of linear equations is introduced in first year, strongly reinforced in second year, 

and taught very little in its own right in third or fourth year, but reinforced in such topics as quadratic 

equations, changing the subject of the formula, and general problem-solving.  It would appear from 

the data in this study that many of these particular fourth years would benefit from a review of the 

solution of linear equations.  However, the nature of this study does not permit an extrapolation to 

fourth years in general.   



 54

 

   



 55

 

    Chapter 7 – Conclusion and Evaluation 

 

7.1  The Transposing Error. 

  “Formal methods of equation solving include transposing and performing the same operation 

on both sides of an equation” according to Kieran (1992, page 400).   The researcher’s own 

opinion, before the study was done, was that it may be inappropriate to label transposing, certainly 

as done by many of his own pupils over twenty years, as a ‘formal’ method, because it often leads 

pupils towards making errors.  Indeed, over the years the researcher has increasingly dissuaded 

pupils from using a transposing method for two reasons.   

First, there seemed to be little understanding on the part of the transposers of the structure 

or meaning of equations.  Second, this lack of understanding, coupled with many pupils’ natural 

desire to make things simpler whenever possible, very often led to an over-simplification of the 

‘change side – change sign’ rule.  (Incidentally, analogous over-simplification has often been seen by 

the researcher elsewhere  e.g. in the pupil-generated “two minuses make a plus” mal-rule). 

To remove any doubts that the researcher may have had about the dangers of transposing, 

despite the literature’s implication that it is a ‘formal’ method, the decision was taken analyse 

Transposing errors within the framework of a strictly controlled study.  Doubts also sprang from the 

fact that colleagues did not appear to attach much importance to the exact way in which a pupil 

solved an equation. The researcher’s overriding concern has always been that not only should pupils 

be successful in solving equations, but that the process should be meaningful to as many pupils as 

possible.  If transposers were using a device or trick to obtain the solution to an equation, then they 

may not have fully appreciated exactly what they had accomplished in solving that equation.  It was 

felt by the researcher that without such an appreciation, the whole process of teaching and learning 

how to solve linear equations becomes merely mechanical.    

Fortunately for the Mathematics Education researcher looking at equations work done by a 

pupil, it is often possible to find out if that pupil has indeed fully appreciated the meaning of what he 

has written in response to a simple linear equation question i.e. the correct solution must be able to 

be inserted into the original equation to yield a true statement.   Evidence of this can often be seen.  
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Just as importantly the teacher can tell if it has not been done, either verbally or on a paper, if there 

appears to be no attempt to rectify what is obviously an incorrect solution.  This process (of trying to 

determine if a pupil appreciates the significance of what he has been engaged in; in this case solving 

an equation) cannot be done as easily in some other types of question  e.g. in simplifying an 

expression a pupil cannot tell if the simplified answer is correct without performing the same 

operations all over again. 
 

As has been noted, the test question         5 +  x  =  2 
                                            2 

was designed to elicit the Transposing error by those pupils who may be prone to using an over-

simplified transposing method.  The large-scale study showed that this error did appear, especially 

among the fourth year pupils (a quarter of whom made this error).  This finding may confirm that the 

fourth year pupils have over-simplified transposing to the point that if a number appears on the 

denominator on one side of the equals sign, then on the next line it can always be written on the 

numerator of the other side of the equals sign.  Indeed, the fourth year pupils who have committed 

this error may have invented a device or trick to solve all linear equations in which the variable to be 

found is divided by a number, based on the fact that this is sometimes seen to work   e.g. while 

solving for  ‘D’   in   S = D/T  when  ‘S’  and  ‘T’  are known constants.   Further, those fourth 

years who committed the Transposing error and found that   x = -1  either did not test this answer in 

the question, or if they did, were unable to change their thinking in view of the fact that if   x = -1, the 

left side of the question does not equal the right side.  Either way, this does demonstrate a lack of 

understanding of the structural aspects of equation solving.  

Thus the findings of this study have both removed some doubts about the dangers of using 

transposing and served to reinforce the researcher’s view that transposing can lead to many errors.    

Kieran (1992, page 400)  appears to have labelled the transposing method as ‘formal’ 

because of its widespread use by algebra teachers.  However, the word ‘formal’ does imply a 

certain validation of the method and maybe, for instance, even a recommendation of it to the novice 

teacher.  This study would appear to refute such a validation, by virtue of the fact that transposing 

can lead to the taking of short-cuts and the commission of errors.  Therefore it is the opinion of this 

researcher, based on the findings of this study, that transposing would be better described as a 



 57

‘widely-used’ method of solving simple linear equations, with the warning that the ‘change side – 

change sign’ method is open to over-simplification and abuse. 

 

7.2  Subordinate Arithmetic and Algebraic Skill Errors. 

Another finding in this study is that there is a greater variety of errors made in simple linear 

equations than may have been envisaged by mathematics teachers or than might have been gleaned 

by referring to the current literature.  In addition to the previously documented, and therefore 

expected, types of errors, this particular experiment yielded five new identifiable errors in the context 

of simple linear equations, two of which, the Number Line error and the Division error, involve 

subordinate arithmetic skills. 

The Division error, typically found in some younger pupils’ inability to proceed beyond   5x 

= 39, appears worthy of further investigation.  In an improved study, it would appear to be desirable 

for two reasons to somehow ensure that as many pupils as possible attempt to solve every equation.  

First, there would be less need to speculate as to why the pupil could not progress beyond a certain 

point.  Second, those pupils not finishing a question or leaving the whole question blank may be the 

same pupils prone to making errors.  In other words, there might be a larger number of errors to 

categorise from a study using a given sample size. 

The Other Inverse error could be classed as a subordinate algebraic skill error.  Although 

this error occurred only eight times in this study, mastery of multiplicative and additive inverses 

remains important in the structural understanding of the solution of linear equations.    Also, it must 

be remembered that it is impossible to ascribe reasons for blank responses, some of which could 

also be due to the fact that some pupils are uncomfortable with inverses. 

   Thus this study points to a lack of sufficient subordinate skills, both arithmetic and 

algebraic, in many of the younger pupils, demonstrating their apparent lack of readiness to be able to 

solve equations of this type.   If, in the words of Gagne (quoted in Orton, 1992,  page 54), 

“developmental readiness for learning any new intellectual skill is conceived as the presence of 

certain relevant subordinate skills”, then perhaps the school in this study should consider introducing 

linear equations only when it is satisfied that a good level of understanding has been reached in such 

subordinate skill topics such as integer division and adding and subtracting integers  i.e. in the second 
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year.  As there are many instances of the use of simple linear equations in first and second year in 

other subjects  e.g. the sciences, other departments would be affected by such a decision to delay 

the teaching of simple linear equations. 

 

7.3  The Switching Addends Error. 

By far the most frequent errors in the study as a whole were the Transposing, Division, and 

Switching Addends errors.  While the Division error is of the subordinate skill type, the Transposing 

and Switching Addends errors may be produced because of a lack of understanding of the structural 

aspects of solving linear equations.    

Whatever the causes of the Switching Addends error are, constructivist theory may help 

suggest, in a positive way, some mechanisms for its commission.  Again, a subordinate algebraic 

skill, the collecting of ‘like’ terms, may be partly responsible for a pupil’s lack of success in equation 

work.  This would appear to strengthen the case for delaying the teaching of simple linear equations 

until pupils have enough confidence with the necessary subordinate skills to make smoother the 

process of understanding the structural aspects of solving equations.   

 

7.4 The Effectiveness of Manipulatives. 

    Some researchers, such as Davis (quoted in Chapter 2.10), have encouraged the use of 

manipulatives while others, such as Daniels & Anghileri (quoted in Chapter 6.1), have urged caution 

in their use.   In addition to seeing ambivalence in the attitudes of researchers to the use of 

manipulatives in general, it may be discouraging for algebra teachers to further learn that Filloy and 

Rojano’s  “interviews revealed that the use of  (balance and area) concrete models did not 

significantly increase most students’ ability to operate at the symbolic level with equations having two 

occurrences of the unknown” (Kieran, 1992, page 402), especially since, at least according to this 

large-scale study, pupils appear to have difficulty solving such ‘algebraic’ equations.  Orton (1992, 

page 92) summarized it well in saying that “certain research has suggested that there are gains (in 

using apparatus), but there has usually been little evidence of long-term benefits.  There does not, 

however, seem to be any evidence that the use of structural apparatus is in any way harmful or 

detrimental to learning.”  
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7.5  Standardisation of Teaching Methods. 

A detailed examination of pupils' work, such as was done in this study, may make effective 

changes in teaching methods possible.  It is possible that a mixture of methods taught or employed 

could be a source of confusion, especially, for instance, if the teacher of second year pupils favours 

transposing and the teacher of third year pupils stresses ‘doing the same to both sides of the 

equation’.  Thus there may be lessons here for heads of Mathematics departments who might 

consider recommending that all teachers within the department use one approach.   

It would make an interesting study to see whether such a standardisation of methods alone, 

irrespective of which method was adopted and especially if done in concert with other departments 

such as Science, would lead to an improvement in overall proficiency in solving linear equations.  

 

7.5  Suggestions for Improvements to the Large-Scale Study. 

This study could have benefited from a larger sample size, given the fact that it was done in 

the scientific research paradigm.  However, there remains a failing of the study which cannot be 

rectified by enlarging the sample size alone:  the test items were placed at the beginning of the 

compulsory section of a school examination in order to maximize the number of  responses, but there 

were 63 blank responses compared with 149 documented errors out of a total of 738 possible 

responses to questions  i.e.  8.5 % of all the questions were left blank compared with  20 % which 

showed errors.  The researcher feels that there may have been too many blank answers, as 

compared with the number of answers with identified errors, for the identified errors alone to paint 

an accurate picture of the difficulties encountered by this set of pupils in these questions.  Therefore, 

in an improved study, it would be desirable to raise the response rate.  This could also be achieved 

by simply increasing the number of diagnostic questions. 

 In this study there was an element of bias, referred to in Chapter 6.13, in the design of  

Questions 4,5, and 6  in order to investigate errors made in ‘arithmetical’ and ‘algebraic’ equations 

as well as to find any Transposing errors, perhaps due to over-simplification of the transposing 

method.  In trying to investigate errors, one of the methods used was to try to minimise guessing by 

procedural means such as ‘trial and improvement’ and therefore maximise the use of more ‘formal’ 
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methods in order that pupils’ working be shown as often as possible.  For this reason, positive non-

integer solutions were chosen for Questions 4 and 5, and a negative integer solution was chosen for 

Question 6  (a non-integer solution for Question 6 was not chosen because of the unnecessary 

degree of difficulty in checking the answer  i.e. the need to divide a fraction by a whole number).   

Thus, this may have led inadvertently to an investigation of the slightly different topic - “An analysis 

of errors made in solving simple linear equations not easily soluble by procedural means.”   Also, 

this approach may appear to downplay the importance of such methods as ‘trial and improvement’, 

which was not the intention of the researcher for two main reasons.  First, the use of some 

procedural methods, such as trial and improvement, can show a solid understanding of the meaning 

of what one is engaged in while solving an equation.  Second, ‘trial and improvement’ becomes a 

formal method, for instance at ‘A’ level in Numerical Analysis, when other methods do not yield 

results.  

 This avoidance of the use of positive integer solutions may appear to have led to a greater 

degree of difficulty in the examination than may have been desirable, and also to a discrimination 

against pupils who prefer procedural methods.  This begs the question “Are formal methods 

superior?”   In her extensive review of the literature on solving linear equations, Kieran (1992, page 

400) lists seven methods, two of which “transposing and performing the same operation on both 

sides…..are often referred to as formal methods”.  The other five methods, use of number facts, use 

of counting techniques, cover-up, undoing (or working backwards), and trial and error substitution, 

are not collectively given a name.  Since the first two methods are referred to as formal, there may 

be an implication that these other five methods are not fully formal in the same way.  When solving 

simple linear equations, the ‘trial and improvement’ method can be efficient for solving equations 

with positive integer solutions, and this method may be important for the two reasons outlined in the 

previous paragraph, but there remain obvious limitations associated with teaching a method which 

works efficiently only on certain occasions.  Perhaps teaching two different methods of solving linear 

equations might be an effective way of promoting both success and understanding.  Such an 

approach would appear to be in agreement with Whitman (1976), whose “findings suggest that the 

students who had been taught to solve equations by the formal methods alone were not conceptually 
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prepared to operate on equations as mathematical objects with formal, structural operations.” 

(Kieran, 1992, page 400)   

As far as the degree of difficulty is concerned, it should be mentioned that in the examination 

papers of all four years there were many other questions containing simple linear equations whose 

solutions were positive single-digit integers  e.g. in a third year set theory question, which reduced to   

4x – 3 = 5   towards the end of the problem, methods such as ‘trial and improvement’ could be 

used efficiently.  It could be argued that the mixture of integer and non-integer answers in an 

examination should be reflective of real life, and in this regard it is the researcher’s opinion that none 

of the four examinations was unfair in this respect.  In an improved study, those questions with 

embedded linear equations could also be analysed in an attempt to find out the relative use of formal 

and informal methods.  Thus with more data from each individual, it might even be possible to 

discover how many pupils use both formal and informal methods, and which kinds of equations or 

solutions trigger the use of each method. 

In an improved study it might be possible to elicit a different error from those described 

above, namely an error of ordering.  This was not attempted in this study because the specific type 

of linear equation, which has been seen by the researcher to elicit this error, may not be universally 

regarded as ‘simple’, especially for first year pupils.  This type of question involves a negative 

coefficient in an ‘arithmetical’ equation, and the observed faulty reasoning is included as follows: 

  Line 1   4 – 3x  =  10 

  Line 2           =>   4 – 3x + 4  =  10 + 4   

    Line 3           =>        3x  =  14 

In Line 1 there is an error of ordering  i.e. the negative sign in  -3x is regarded as ‘belonging’ to the  

4.  The rest follows logically.  To reach Line 2, the additive inverse of the now-negative 4, being 

positive 4, is added to both sides of  Line 1.   Line 3 may be reached in either of two ways: make 

the ordering error again by cancelling  4-  and  +4, or ignore the  3x  and simplify  4-+ 4  to zero.  

All of these pieces of reasoning have been given to the researcher during class, and the appeal of 

these constructs may lie in the fact that, by Line 3, x  no longer has a negative coefficient, eliminating 

the need to divide throughout by a negative number.  It would be interesting to observe the 

frequency of such an ordering error among upper secondary pupils. 
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7.6   Conclusion.  

 Familiarity with these nine errors should enable me, and perhaps other teachers, to be better 

equipped to forestall the most common mistakes.  Indeed, such errors could be discussed at the 

appropriate point, both in lessons and in textbooks.  This may be especially important at the 

introductory level because it prevents the formation of bad habits as well as the development of 

inaccurate constructions on the part of the learner.   

It may also be useful for the teacher, when recognising a specific error, to point it out to the 

pupil for, as Borasi (1994, page 166) observed, "although teachers and researchers have long 

recognised the value of analysing student errors for diagnosis and remediation, students have not 

been encouraged to take advantage of errors as learning opportunities in mathematics instruction."  
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