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Introduction 
The purpose of this research is to try to determine, through individual interview sessions, 
the reasoning behind the adoption of certain strategies by several pupils as they are 
engaged in simplifying a complex algebraic term.   

The simplification of expressions was chosen as an area of study for two reasons. First, 
this researcher has witnessed many instances of errors in the cancelling of terms.  Second, 
he has found much less literature on the simplification of complex algebraic terms than 
on the solution of equations.   

Mathematically, complex algebraic terms differ from equations in many ways.  But they 
also differ in several psychological ways as well; perhaps even at the metacognitive level 
of thought associated with choosing a strategy.  For instance, equations have a solution as 
a goal. When the line beginning  "variable =" is reached even the beginning algebra pupil 
will know that this signifies the end of the problem.  In other words, there is a definite 
indication that the end is reached, albeit produced by the pupil himself.   On the other 
hand, expressions may have no such a trigger to signal an ending.  Indeed, depending on 
the particular expression, there may be several mathematically satisfactory places to stop 
the simplifying process e.g. is it more useful to leave a term in factorised or unfactorised 
form.  As will be seen from the interview transcripts in this investigation, there is 
significant thought by several pupils on devising a plan and evaluating the answer, albeit 
with mal-rules of algebra.  Hence pupils' metacognition may come into play while 
determining the number of steps in the problem (i.e. planning and deciding when to stop) 
when following the instruction “simplify”.  

One of the main aims of this investigation will be to show that some pupils overshoot an 
acceptable correct answer (and get the final answer wrong) in an attempt to simplify.  A 
psychological effect, namely fear of lack of closure, may be experienced by pupils as 
they attempt to simplify expressions: pupils may be unwilling to stop before reaching an 
answer with which they are comfortable  e.g. a numerical answer.  In other words, if  
there are few clues as to when an acceptable answer is reached, the pupil may continue 
simplifying until she arrives at one acceptable to her.  At the point of oversimplification, 
certain errors may be identified which might have remained undetected had the pupil 
simply stopped earlier.  Such errors will be analysed with reference to the cognitive and 
metacognitive domains. 

Research into pupils’ thoughts while simplifying expressions gains in significance when 
it is appreciated that algebraic simplification can be viewed in several ways: as being a 
skill in its own right and as a skill useful in the solution of equations.    
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Further, pupils’ thoughts on the subject can provide a window into other areas such as 
how variables are perceived and the level of meaning algebraic expressions may have for 
pupils.  Indeed, according to recent research by Tirosh et. al. (1998), there has been 
evidence of success in making teachers knowledgeable about research findings  regarding 
specific student conceptions and developing new ways to teach that take such knowledge 
into account. 

Review of Literature 
Hiebert & Carpenter (1992) have pointed out that error analysis in algebra is of great 
value in influencing instruction in a positive way.  However, it may be worth noting that 
researchers such as Bell-Gredler (1986), Kieran (1989), and Ernest & Bayliss (1995) are 
well aware of the possibility that too much can sometimes be inferred by the teacher from 
an analysis of errors.  Thus, one of the main objectives of this author’s research design 
was to try to minimise such inference by asking the pupil to explain each step of her 
reasoning in an interview.  

The mathematical topic “simplifying an algebraic fraction” was used to probe pupils’ 
thinking.  In this topic, the process of cancelling may be done in the same way as it is in 
arithmetic. However, confusion in going from arithmetic to algebra may arise at these 
stages.  Demby (1997) reports that the traditional emphasis in the curriculum on ‘finding 
the answer’ allows learners to get by with informal and intuitive procedures in arithmetic, 
but that in algebra they are required to recognize the structure that they have been able to 
avoid in arithmetic.   Matz (1982) argues that, for instance, as  3¾  is to be interpreted as  
3 + 3/4  it is not unreasonable that the student should interpret the algebraic expression, 
3x  as  3 + x.   Thus there may be room for confusion and misinterpretation in the initial 
stages of simplifying an expression.   

Bloom’s (1956) taxonomy of the cognitive domain identified different levels of 
intellectual functioning.  If one of the goals of mathematics education is to foster higher 
intellectual functioning, it may be interesting to note here that none of the pupils 
interviewed suggested a method for checking the algebraic simplification i.e. performing 
at the highest cognitive level of evaluation, as identified by Bloom (1956).  This may be 
in alignment with findings from Poland on transforming algebraic expressions which is, 
according to Demby (1997, p46), concerned with ‘degenerate formalism’ characterised 
by thoughtless, ‘slapdash’ manipulation of symbols.  It may be more difficult for pupils 
to operate at the higher levels of Bloom’s hierarchy within the context of simplification 
of an algebraic express ion than, say, solving a linear equation.  One reason for such 
difficulty may be explained by Tirosh et. al. (1998), who describe the dual nature of 
mathematical notations: process and object  e.g. 5x + 8 can be viewed as the process ‘add 
five times x and eight’ or as an object in its own right.  In other words, we may be 
expecting pupils to finish simplifying (i.e. end a question) at a stage where there may 
exist this process/object dichotomy.  Obviously, it will be difficult to demonstrate this by 
relying on pupils’ articulation of their difficulties at this stage near the end of the 
problem.  However, the researcher will attempt to encourage further reflection on the 
thought process used by pupils, in an effort to examine this possibility.  

Fernandez et. al. (1993) characterise metacognition as the use of a set of managerial 
processes during problem solving.  In the interviews, several pupils expressed 
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dissatisfaction with certain answers.  Given that they were not blindly accepting the 
logical conclusions of their work, it could be argued that they are operating at a 
metacognitive level.  As will be shown, the precise motives for their thoughts at the 
metacognitive level stem largely from algebraic misconceptions and mal-rules.   

One of the most important precursors to this study is that of Erlwanger (1973), in which a 
pupil successfully completed a self-paced course by applying ‘mal-rules’ which happened 
to lead to a preponderance of correct final answers.  Mal-rules are rules, perhaps invented 
by the pupil, which appear effective but in fact work only under certain conditions.  
Several pieces of literature inform us that just because a correct answer is given, it cannot 
be assumed that it is based on the desired understanding.  As Steinberg et al. (1990) 
observed in their study, many students who are able to solve equations and perform other 
algebraic tasks correctly may have misconceptions or lack good understanding of algebra 
concepts.   

The literature points to many complex psychological processes involved in gaining an 
understanding (and avoiding a misunderstanding) of the rules of algebra, and being able 
to operate correctly in accordance with them.  For example, Kieran (1992) reports that 
only a very small percentage of 13- to 15- year old pupils is able to consider the letter as 
a generalised number. Also, Küchemann (1978, 1981) identified six levels of 
interpretation of letters: 

a) Letter evaluated: The letter is assigned a numerical value from the outset; 

b)  Letter not considered: The letter is ignored or its existence is acknowledged without 
giving it a meaning; 

c)  Letter considered as a concrete object: the letter is regarded as a shorthand for a 
concrete object or as a concrete object in its own right; 

d)  Letter considered as a specific unknown: The letter is regarded as a specific but 
unknown number; 

e)  Letter considered as a generalized number: The letter is seen as representing, or at 
least as being able to take on, several values rather than just one; 

f) Letter considered as a variable: The letter is seen as representing a range of unspecified 
values and a systematic relationship is seen to exist between two such sets of values. 

This understanding is important in the process of the simplification of algebraic fractions, 
in that both the question and the answer can involve variables.  Further, it will be seen 
that this understanding of a letter as a generalised number has implications in the 
checking of work, especially as relatively few 13-15 year olds in the study appeared to 
reach (e) above.  Also, a big difference exists between checking (i.e. performing at the 
highest level of Bloom’s taxonomy) the end result of an equation and an expression.  This 
arises out of the fact that, if the solution of an equation is   x = 6,  then 6 is to be 
substituted for x in the original.  Following Kieran’s (1992) and Küchemann’s (1978, 
1981) view that many pupils have difficulty viewing a letter as a generalised number, 
does it follow that most pupils will not realise that they may check their answer to a 
simplification by substituting almost any number?  Checking a single specified number 
(as in an equation) could be viewed as easier than checking any/every number (as in an 
expression).   
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That this link (of non-checking because of non-specificity of the ‘answer’ to a 
simplification) is not made in the literature (as far as this researcher can determine) may 
be to do with the fact that it may be difficult to prove, or simply that the task of inserting 
a suitable number for checking purposes is itself a difficult one  e.g.  whereas most 
numbers, when substituted, will suffice to show any simplification of   

x2  - 9        

   x2  

to be impossible, the numbers  3, -3 and 0  will present problems to the pupil if used in 
such a check.  However, there appears to be no mention in the literature of a conjecture to 
this effect: namely that one factor contributing to why simplifying expressions may be 
found by pupils to be more difficult than solving equations may be that checking a 
generalised number is more difficult than checking a specified number, and is therefore 
done less frequently and/or with less success.  This conjecture springs from two 
seemingly disparate strands of literature: namely Bloom (1956) and Kieran (1992) / 
Küchemann (1978, 1981), and is supported, albe it in a small way in this experiment, by 
the fact that none of the pupils interviewed mentioned checking the finished 
simplification, or even alluded to the fact that the checking of a simplification is possible.   

Pupils frequently attempt to “solve” expressions, i.e. according to Wagner et. al. (1984), 
many algebra students tried to add  “ = 0 ” to expressions they were asked to simplify”.  
Again, one explanation may lie in the unwillingness of pupils to accept ‘lack of closure’ 
as suggested by Hoyles and Sutherland (1992): 

 

Previous studies have found that many pupils cannot  
accept that an unclosed algebraic expression is an 
algebraic object.  So, for example, pupils are unable to 
accept that an expression of the form  x + 3  could 
possibly be the solution of a problem.  

     

e.g.              2a + a + 3 

        =  3a + 3  =  0 

        =   3a  =  -3 

        =   a  =  -1 

 

and             x2  +  5x  +  6  

          =  (x + 3)(x + 2)  =  0 

                   x = -3  or  -2 

 

This kind of error may indicate an absence of knowledge of the difference in meaning of 
an expression and an equation.  Such a “lack of closure” experienced by pupils may be 
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found to be a contributing factor to the production of errors, or at least a 
misunderstanding of the very objective of trying to simplify an expression.  As Tirosh et. 
al. (1998) point out, students frequently face cognitive difficulty in accepting lack of 
closure: they conceive open expressions as incomplete and tend to ‘finish’ them, 
mimicking the final number answer found in arithmetic.  

Methodology and Results 
The main focus of the investigation was to try to determine, by individual interviews, 
why certain errors are made during the simplification of a complex algebraic fraction. 

The particular problem:     Simplify      x2  + 3x - 10  

                                                      x2  + 2x – 8 

 

was given to all 180 secondary pupils from Years 9, 10 and 11 in a selective Bermuda 
school.  No instruction, other than ‘simplify’, was given.  Ten minutes was taken out of a 
normal mathematics lesson for the pupils to work individually on the problem.  

This particular problem was chosen because the researcher had, over the course of twenty 
five years, noticed that pupils’ approaches to cancelling was often, to quote Demby 
(1997, p46), “thoughtless and slapdash”.  Further, it was thought to be a suitable problem 
to expose weaknesses in cancelling because of the many points during the problem where 
“slapdash” or mal-rule cancelling might be possible.   A certain proportion of the pupils 
cancelled (incorrectly) on the first line, but, although interesting, this was not the focus of 
the experiment.  The pupils who were selected for the follow-up interview were those 
who did not cancel incorrectly throughout the problem, arr ived at the correctly simplified 
expression 

 

             x  + 5 

              x  + 4 

then proceeded to cancel (incorrectly) the x’s. 

To reiterate, it is beyond the scope of this report to identify and categorise all the specific 
errors made, but out of the 180 pupils’ work: 

70 accomplished few correct steps, 

44 simply cancelled the original numerator and denominator x2, and stopped.  

41 found (and stopped at) the correct, i.e. simplified, answer of     x + 5  ,     

                                                                 x + 4  

20 factorised correctly, but left the final answer as    (x + 5) (x - 2)  ,   but 

                                        (x + 4) (x - 2) 

5 pupils overshot the correct answer and then cancelled the x’s at the end, having 
successfully not cancelled at the beginning.  It is these 5 pupils who were interviewed as 
the main focus of the experiment.  
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In the 5 individual interviews the next day, the researcher presented the pupils with their 
answer sheets, lead the pupils through the ir simplification of the original expression, and 
gradually elicited from them any thought processes occurring at each step.  This was 
done by using a series of standard questions (listed later). The main thrust of these 
interviews was to determine why the  pupils had resisted the temptation to cancel near the 
beginning of the problem, yet yielded to it later.  This begs two important questions.  
First, is there a trigger for the use of the cancelling mal-rule and, second, if there is no 
trigger (i.e. the mal-rule is being applied at random), why does the pupil feel that rules of 
algebra may be applied at random?  

For the answers to these questions, as given by the pupils in this experiment, it is 
necessary to look at excerpts of the interview transcripts. 

Each of the five interviewees wrote 

    x2  + 3x - 10  

   x2  + 2x - 8 

 

        =   (x + 5) (x - 2)   

             (x + 4) (x - 2) 

 

        =    x + 5     

              x + 4 

 

        =    5 

              4 
 

Each of the five interviewees was asked the same sequence of questions while looking at 
their own work from the previous day.   

1) Why did you factorise initially? 

2) Why did you cancel the (x-2)’s ? 

3) Why did you cancel the x’s ? 

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning? 

5) Do you  now  want to cancel the x2 at the beginning? 

6) Free discussion based on responses. 

 

The interviewer then gave a short individualised lesson on cancelling to each pupil to try 
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to clear up any misunderstandings surrounding cancelling which may have been 
generated by the interview. 

For purposes of clarity and anonymity, I shall call the five interviewees Allan, Bert, 
Cecil, Daphne, and Erica.   The interviewer’s part of the dialogue is verbatim.  The 
interviewees’ responses and comments will be in their own words as far as possible, but 
edited when verbatim transcription would have lacked clarity.  

 

Allan’s interview  

          x2  + 3x - 10    =   (x + 5) (x - 2)    =    x + 5    =   5 

                      x2  + 2x – 8           (x + 4) (x - 2)          x + 4         4 

 

1) Why did you factorise initially?  I factorise when I see x-squareds. 

2) Why did you cancel the (x -2)’s ?  When two things are the same, you cancel. 

3)  Why did you cancel the x’s ?   Because they are two the same. 

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning?  I 
was taught to factorise each equation, then cancel.  

5) Do you  now  want to cancel the x2 at the beginning?   Yes, it’s a good idea. Yes. 

6)  Interviewer – If  you are allowed to cancel the x’s in    x + 5   then why did you    
                x + 4 

                  

not cancel the x-squareds at the beginning? 

Allan – Because I wouldn’t know what to do at the next step.   I would be left with 

3x-10 etc.   It’s just easier to factorise and cancel twice then I know what 5 over 4 means.  

Interviewer -  So you are saying you know what to do with 5 over 4 at the end, and that is 
why you cancelled to get 5 over 4.  Are you still sure you are allowed to cancel the x’s at 
the end?   

Allan – Yes. 

Interviewer – Did we do that kind of cancelling anywhere else in the question? 

Allan – No. 

Interviewer – Are you allowed to cancel the x’s? 

Allan – No, because it is only part of the bracket (x + 5). 

The interviewer then explains to Allan about when cancelling is appropriate, and this 
concludes the interview. 

Several observations can be made about Allan’s approach to this simplification question.  
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His reply to Q1 shows that x-squared acts as a mechanical trigger for factorising.  There 
appears to be little thought about the merits or rewards of factorising, but factorising is 
done merely because it can be done.  There may be some value in this approach, in that it 
gets the pupil to the next line.  However, Allan’s lack of forward thinking and 
understanding is evident from this response. 

His reply to Q2 shows an oversimplification of the cancelling process. 

His reply to Q3 is a restatement of his oversimplified rule. 

Q4 echoes Q1. 

Now sure that his oversimplified rule appears to work, Allan changes his mind in 
accordance with his rule, and decides he may cancel the original x-squareds.   

In view of this change of heart, the interviewer decides to find out why Allan did not 
cancel the original x-squareds.  It is at this point that it becomes clear that Allan did 
indeed contemplate cancelling the x-squareds, but did not do so because he would be left 
with 3x – 10 over 2x – 8, which he admits he did not know how to simplify.  Part of the 
reason for this may be due to the dual nature of expressions such as 3x – 10, as described 
by Tirosh et. al. (1998).  Allan elects to factorise and cancel correctly, but continues to 
cancel because the result is 5 over 4, with which he is comfortable i.e. he now has the 
closure suggested by Hoyles and Sutherland (1992) and Tirosh et. al. (1998). 

Bert’s interview   

           x2  + 3x - 10    =   (x + 5) (x - 2)    =    x + 5    =   5 

                       x2  + 2x – 8           (x + 4) (x - 2)          x + 4         4 

 

1) Why did you factorise initially?  It’s a quadratic equation, so you need to get it into 
brackets. The x-squared tells me to do this. 

2) Why did you cancel the (x -2)’s ?  Because they are the same. 

3) Why did you cancel the x’s ?   Just trying to simplify, but I now think this is wrong 
because it is too simple – and my teacher has a poster on the wall which says 
simplify, but don’t make it too simple. 

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning?   I 
could get rid of more stuff by factorising than by cancelling. 

5) Do you  now  want to cancel the x2 at the beginning?   You could cancel the x-
squareds at the beginning, but it would be harder to simplify. 

Interviewer – So you now say you may cancel the x-squareds at the beginning. 

Bert –Yes. 

6)  Interviewer – Do you think cancelling the x’s at the end  is different from cancelling   
the x-squareds at the beginning? 

Bert - Yes 
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Interviewer – Why? 

Bert – Because if you cancel the x’s at the end you won’t have enough x’s to make 
the equation. 

 

Several points are worth noting in this interview.  First, Bert receives the same cue as 
Allan from the x-squared on the first line, and hence factorises, and continues with a 
similar type of reasoning as Allan.   

Second, there is evidence in Bert’s response to Q6 of the equation / expression confusion 
as documented by Wagner et. al. (1984): his use of the word “equation” is wrong.  Bert’s 
response to Q5 shows him changing his mind about when it is possible to cancel, and in 
doing so, giving an example to his assertion in Q4.  Bert final statement (that if you 
cancel, you won’t have enough x’s for the equation) goes against what he wrote initially.  
This change of mind is similar to Allan’s in Q5, and may be indicative of Demby’s 
(1997) ‘degenerate formalism’.  Bert displays good forward thinking in Q4, and he has 
chosen the correct route.  

 

Cecil’s interview  

          x2  + 3x - 10    =   (x + 5) (x - 2)    =    x + 5    =   5 

                      x2  + 2x – 8           (x + 4) (x - 2)          x + 4         4 

 

1) Why did you factorise initially?  Because it’s so long – if you factorise it gets shorter 
in the long run.  

2) Why did you cancel the (x -2)’s ?   It’s killing two birds with one stone by doing the 
same to the top and bottom. 

3) Why did you cancel the x’s ?   For the same reason. 

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning?   If 
you cancel the x-squareds at the beginning you don’t get to factorise. 

5) Do you  now  want to cancel the x2 at the beginning?   Yes, if it came out the same. 

6) Interviewer – Do you now want to change anything? 

Cecil - Yes, I don’t want to cancel the x’s at the end. 

Interviewer – Why not? 

Cecil – Because x is the number you put in later on to find the value. 

Interviewer – Are you saying that because we start with x’s, we should finish with 
x’s? 

Cecil – Yes.  

Interviewer – Now you say you may not cancel the x’s.  So why did you cancel the 
x’s when you did this on paper? 
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Cecil – I had already done some cancelling and I guess I got into a routine, especially 
when the problem said “simplify”. 

 

It is clear that Cecil has the variable confusion encountered before.  This is evident when 
he states he is unwilling to lose the last two x’s by cancelling because he will have 
nowhere to substitute the number.   Also, since Cecil has said that he sees x as 
representing a particular number, he may be part of Kieran’s (1992) large group who has 
difficulty viewing x as a generalised number.  Cecil admits getting into a cancelling 
routine, and from his comment that the problem said to simplify, it would appear that the 
problem is not closed for him on the second last line.  Such indiscriminate cancelling may 
be evidence that either he has no understanding of its meaning (he seems unaware of the 
difference between the operations of addition and multiplication as they relate to 
cancelling) or that he is caught up in the procedural aspect of the problem, not paying 
attention to the meaning of the expression. 

 

Daphne’s interview   

          x2  + 3x - 10    =   (x + 5) (x - 2)    =    x + 5    =   5 

                      x2  + 2x – 8           (x + 4) (x - 2)          x + 4         4 

 

1) Why did you factorise initially?  I tried to cancel the x-squareds, but it didn’t seem to 
work, because I couldn’t get the right answer. 

2) Why did you cancel the (x -2)’s ?  and 3) Why did you cancel the x’s ?     I didn’t.  I 
cancelled the x’s then the –2’s then the x’s.  This was because the same things were 
on the top and bottom.  

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning? 
You can cancel the x’s and the –2’s and then the x’s because they are the same, but 
you can’t cancel the x-squareds because they might be different.  You don’t know 
how any times the x’s are squared.  Also, you don’t want to cancel the x-squareds 
because then you can’t factorise then cancel.   

5) Do you  now  want to cancel the x2 at the beginning?   No, because I came out with 
two different answers, and I know that five over four is the correct answer. 

6) Interviewer – What if I tell you that five over four is the wrong answer? 

Daphne - I would go back to the beginning and find out what x is, and build it up 
from there.   

Interviewer – But you still would not cancel the x-squareds at the beginning? 

Daphne – Well, I tried that but when I did all my cancelling on the first line I got a 
negative answer.  I don’t like negative answers, so I preferred my method which got a 
positive answer. 
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The first point is that Daphne did something different from the other four pupils in that 
she cancelled parts of a bracket in (x – 2).  This is interesting because evidence of this 
mal-rule shows up in the interview, but not in the written work: though time-consuming, 
an interview may lead to the pinpointing an error undetected by analysis of an answer 
paper.  Daphne also appears confused when she says she does not know how ma ny times 
the x is squared, and because of this ‘fact’, says the x-squareds might be different and 
therefore cannot be cancelled. 

Daphne, like Cecil, probably believes x to be a particular number when she says “find out 
what x is”.  This means she does not understand that x is a variable, probably identifying 
her (and perhaps Cecil) as operating at level (d) in Küchemann’s classification.  

Also interesting is the fact that Daphne is certain that five over four is the correct answer, 
and cites this as her reason for not cancelling the original x-squareds – because it yields a 
different answer.  However, careful probing leads to the real reasoning: when she 
cancelled the original x-squareds and x’s on the first line, she was left with –7 over –6.  
Her self-confessed aversion to negative numbers (and, by extension, a negative quantity 
divided by a negative quantity) made her retry the problem.  Either she may have been 
operating at a metacognitive level in evaluating her answer in terms of her own sense of  
reasonableness, or it might appear that, again, there is a lack of closure, but this time with 
an answer of –7 over –6.  

Erica’s interview.   

          x2  + 3x - 10    =   (x + 5) (x - 2)    =    x + 5    =   5 

                      x2  + 2x – 8           (x + 4) (x - 2)          x + 4         4 

 

1) Why did you factorise initially?  I remembered that factorising leads to cancelling. 

2) Why did you cancel the (x -2)’s ?  The (x – 2)’s are the same, and this would leave the 
positive numbers. 

3) Why did you cancel the x’s ?   Again, the x’s are the same, so they cancel. 

4) If you felt it was sensible to cancel the x’s, why not cancel the x2 at the beginning?   It 
would have been right to cancel the x-squareds, but I couldn’t have gone any further 
in the problem.  

5) Do you  now  want to cancel the x2 at the beginning?   No.  I still can’t go any 
further.  If I cancel the x-squareds, I can’t do any more, and I know the problem is 
longer from other problems I have done. 

6) Free discussion - none. 

The first point here is that the researcher missed a valuable opportunity to find out 
exactly why Erica was unwilling to stop after simply cancelling the x-squareds.  It may 
have been because of what she said  i.e. the context clue that these problems are usually 
longer, or it could have had something to do with the closure issue, in which non-
numerical answers are viewed as incomplete.  However, accepting Erica’s reason at face 
value, it is interesting to observe that convenience, or inconvenience in this case, played a 
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major part in her strategy of simplification of this expression.  Convenience (and context) 
may override purely mathematical considerations.  This is understandable given the weak 
grasp of the mathematical concepts behind cancelling displayed by Erica: maybe 
something must fill the void, and she has chosen the contextual clue of believing this type 
of problem to be of a certain length.   Hence (correctly) she does not cancel at the 
beginning, but for contextual rather than mathematical reasons.  Unfortunately for Erica, 
as she progresses through the simplification, the argument of excessive brevity weakens.  
This leads to almost indiscriminate cancelling.  This might appear to be an example of 
Demby’s (1997) ‘degenerate formalism’, and closer analysis through this interview may 
have unearthed a more subtle process involving a contextual clue.  However, from 
Erica’s verbal responses in the interview, the interviewer surmised that Erica’s mal-rule 
for cancelling would distil to “cancel when the result is simple (or perceived to be easily 
simplified), otherwise find another method, always bearing in mind that the problem not 
be too short”.    

Lack of closure is normally characterised by, and is well-documented in the literature as, 
unwillingness to accept a variable as an answer or in an answer. The five pupils wrote 
that        

x + 5    =    5 

x + 4          4 

 

Allan said he continued to cancel because he knew what 5 over 4 meant, and Erica said 
she had to make the problem longer from experience.  Both pupils’ remarks could be 
interpreted as those of pupils trying to achieve closure. 

Conclusion 
Perhaps the most obvious observation that can be made is that behind the five identical 
pieces of written work lay a variety of different patterns of reasoning.   

The main similarity lay in the fact that the x-squared acted as a factorising cue. 
Unfortunately this was a cue followed with little understanding of the later effects.    

All five recalled that they cancelled the  x – 2’s simply because they were “the same” i.e. 
the same factor.  However, it is not to be expected that they would wish to elucidate on 
this by mentioning the precise rule or thought behind the rule.  In a follow-up study, a 
direct question to the effect  “What is the reasoning behind cancelling the  x – 2’s?” 
should be included  i.e. question 2 is too vague.  Naturally, almost the same answer was 
given by the pupils to question 3, which was again too open-ended to elicit an accurate 
description of their own cancelling rules.   

As has been stressed before, question 4 was anticipated to yield the most revealing 
answers since the investigation was designed to focus on idiosyncratic methods and 
reasoning applied by pupils at this point. The consensus was that one simply did not 
cancel x-squareds at the beginning, albeit for a variety of reasons which had more to do 
with closure and ease of simplifying than with the meaning of the algebraic terms. 

Part of the design of the original expression (in this case, the use of negative signs) was 
borrowed from the design of searching examination questions. This investigation was 
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devised to probe thinking during cancelling.  The use of negative signs may have, as in 
this case, unnecessarily confused the issue by increasing the number of opportunities to 
go wrong, but not in the area under investigation i.e. cancelling.  In a follow-up study it 
would be important to give pupils access to such reasoning in the interview stage, and 
this might be helped by the removal of negative signs. 

Great difficulty was found in classifying some thoughts: were they examples of 
functioning at the higher end of the cognitive domain or in the metacognitive domain?  
And where does the lack of closure, even at the rudimentary level, fit in?  Answers might 
be found in a further study if it included more searching interview questions concerned 
with reasons for ending the simplification process where they did.  It is acknowledged 
that such a study would have a slightly different focus from this present study.        

Allowing again for the self-selection of the interviewees, there was direct corroboration 
of Kieran’s (1992) and Küchemann’s (1978, 1981) assertion that many pupils have 
difficulty in viewing a variable as a generalised number.   This evidence lay in the fact 
that none of the pupils mentioned a means of checking by replacing x by any number in 
both the question and the answer to see if there was agreement.  Although this was not 
the focus of the investigation, an additional question probing this generalised number 
effect might prove worthwhile in a follow-up study.  Also in an expanded study, it would 
be interesting to ask the twenty who ‘stopped’ at the correct point in the problem why 
they did not proceed any further.   

Certainly, the results of this investigation have shown that identical written answers may 
mask an array of disparate ideas.  
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