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Abstract

A local hidden-variable model for two spin-1/2 particles is shown to reproduce the quantum-

mechanical outcomes and expectation values, and hence to violate Bell’s inequality. Contrarily to

the usual preset hidden-variable (HV) distributions that have been generally considered, we relax

the constraint requiring that a given HV distribution should account for the simultaneous reality

of quantum-mechanical counterfactual events. We assume instead that a disturbance induced by

a measurement on an eigenstate – which according to Einstein, Podolsky and Rosen hinders the

existence of an element of physical reality – results in a change of the corresponding hidden-variable

distribution. We first investigate the one-particle HV-distribution and then tackle in the same way

the two-particle problem in the singlet state. The averages of spin measurements along different

axes are obtained from the HV distributions without appealing to nonlocal effects.
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In their celebrated paper [1], Einstein, Podolsky and Rosen (EPR) argued that quantum

mechanics was incomplete on the ground that the wavefunction of a 2-particle entangled state

allows to predict with certainty the measurement outcomes of noncommuting observables

that, according to the formalism, cannot have simultaneous reality. The alternative to

incompleteness was to uphold that the measurement carried out on one particle determined

which obervable was real for the second particle, despite the fact that the second particle

could be arbitrarily separated from the first. EPR concluded: ”no reasonable definition

of reality could permit this” nonlocal action at-a-distance. Bell, who took seriously the

possibility of supplementing quantum mechanics with additional hidden-variables [2], showed

in a seminal work [3] that (i) any model based on a distribution of hidden variables (HV)

preset at the source so that the quantum results are (a) reproduced in a local fashion

and (b) completed in the EPR sense alluded to above must satisfy an inequality involving

averages taken over the hidden variable distributions; and (ii) in certain circumstances the

average value of 2-particle quantum observables violates the inequality, so no local HV model

will do. Experimental setups aimed at measuring observables violating the inequality have

confirmed with increasing precision the quantum mechanical predictions [4]. The current

received view is that Bell-type inequalities ’prove’ that local realism is incompatible with

quantum mechanics [5], though there is some disagreement [6] as to whether this also means

that quantum mechanics itself is non-local. However recent works have been questioning

the relevance of ’nonlocality proofs’ to hidden-variable theories, based on data ordering

dependencies [7] or on logical grounds [8].

In this work, we go further by putting forward an explicit local hidden variable model for

the prototypical spin-1/2 problem that is compatible with quantum mechanical predictions

(and hence violates Bell’s inequalities). The basis of the argument consists in returning to the

EPR criterion of physical reality, that depends on the prediction with certainty of a physical

quantity ”without in any way disturbing a system” [1]. We shall follow EPR in assuming a

perturbation of the system whenever the state of the system is not in an eigenstate of the

measured observable. If we introduce HV distributions supposed to underlie the quantum

mechanical eigenstates, by fulfilling the EPR criterion we are led to envisage a model in

which the HV distribution is dynamically and locally affected by the measurement. Bell’s

inequalities can then be violated, because the main assumption employed to derive them

– postulating a counterfactual term accounting for the existence of quantum-mechanically
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incompatible events that are nevertheless taken to be meaningful from the hidden-variables

point of view – does not hold.

In his original derivation of the inequalities, Bell [3] investigated the fragmentation of two

spin-1/2 particles formed in the singlet state. Before getting to the 2 particle problem proper,

we will first consider the hidden variable distribution for a single spin-1/2 particle. The

measurement of the spin projection along an axis u making an angle θu with an arbitrarily

chosen z axis is represented by the operator (we put ~ = 1)

Su(θ) =
1

2
(ρ+(θu) − ρ−(θu)) (1)

where ρ±(θu) = |±(θu)〉 〈±(θu)| are the density matrices corresponding to the eigenstates

with eigenvalues ±1/2 that represent the possible outcomes of a spin measurement along

the axis. We assume an HV distribution such that (i) the eigenvalues depend on the hidden

variables. (ii) An eigenstate is characterized by an HV distribution that is invariant relative

to the transformations generated by the quantity that is being measured [9]. (iii) When a

measurement disturbs (in the EPR sense) the quantum system by modifying the eigenstate,

we assume that the HV distribution is modified, the post-measurement distribution obeying

the invariance condition in the final eigenstate. (iv) Individual outcomes depend on the

initial HV value and on the perturbation but average values over the initial HV distribution

are not modified by the perturbation (this condition is necessary both for consistency of

the measurement process – assumed to depend on the HV distribution – and to ensure that

conservation laws are obeyed on average).

Here we shall take as the hidden variable a unit vector λ pointing along the direction of

the angular momentum. The distribution of λ when the system is in the state described by

ρ±(θu) is set to be

R±u(λ) =
λ

2π
δ(λ · û ∓

1

2
), (2)

which is normalized on the unit-sphere (û is a unit-vector). The rationale for this choice

is that any vector λ ∈ R±(λ) has the same projection λu on the u axis, whose value is

precisely the outcome of the measurement (see Fig. 1(a)). If the system is in the state

ρ±(θu), measuring Su does not perturb the system, nor the distribution R±u. Then the

measured value M is directly given in terms of the hidden variable:

Mu(λ) = λ · û = ±
1

2
, (3)
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and the mean value of λu is obviously

〈λu〉R±u
= ±

1

2
. (4)

Suppose now that the system is initially in the state ρ+(0) (spin pointing in the positive z

direction), characterized by the HV distribution R+z(λ). Measuring Su perturbs the system,

which ends up in either of the states ρ±(θu) with probabilities obtained from elementary

quantum mechanics as

P+z→+u = Tr (ρ+(0)ρ+(θu)) = cos2 θu

2
(5)

P+z→−u = Tr (ρ+(0)ρ−(θu)) = sin2 θu

2
. (6)

Following (iii), we postulate that the perturbation induced by the measurement leads the HV

distribution to change from the premeasurement R+z(λ) to R±u(λ) with the probabilities

(5)-(6). Because of the perturbation, the measured value Mu will not be given by Eq. (3)

in terms of the premeasurement distribution; indeed, for λ ∈ R+z the projection λu depends

on φλ, i.e. on the specific position of λ on the sphere (see Fig. 1). The unknown function

Mu(λ) = ±1/2 can be introduced to specify how the perturbation turns a given λ into one

of the measured outcomes. In term of this function, the average value

〈Mu〉R+z
=

∫
Mu(λ)R+z(λ) sin θλdθλdφλ (7)

is equal to the average over the measurements, known to be given by the quantum-mechanical

expectation value 〈Su〉ρ+(0) = Tr (ρ+(0)Su) = cos θu/2. The probabilities P+z→±u can thus

be interpreted as the fraction of the original HV distribution that undergoes a transition

towards the post-measurement distributions R±u:

〈Mu〉R+z
=

1/2∑
ku=−1/2

ku

∫
R̃+z→ku

(λ) sin θλdθλdφλ =

1/2∑
ku=−1/2

kuP+z→ku
, (8)

where the tilde signifies that R̃ is not itself a distribution but the result of cutting a given

distribution R into different pieces given the function Mu(λ). According to (iv), the expec-

tation 〈Mu〉 should be given by the mean value of λ · û previous to the perturbation. 〈λu〉

can be directly computed, yielding the result

〈λu〉R+z
=

∫
λ · ûR+z(λ)dΩλ =

1

2
cos θu, (9)
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FIG. 1: (a) A vector λ on the unit sphere belonging to the distribution R+z corresponding to

the quantum eigenstate ρ+(0). (b) Pictorial representation of the measurement of Su in the state

ρ+(0): the initial HV distribution R+z around the z axis (in red) changes as a function of the

disturbance and of the HV position to one of the distributions around the u axis. (c) Same as (b)

for the initial HV distribution Σ+z, uniform in the upper hemisphere (see text).

which is seen to be equal to the expectation value 〈Su〉ρ+(0). These results are valid for a

measurement of the spin projection along any axis b given an initial state ρ+(θa) along any

axis a, and we rewrite Eqs. (7)-(9) as

〈λb〉R+a
= 〈Mb〉R+a

=

1/2∑
kb=−1/2

kbP+a→kb
=

1

2
cos(θb − θa). (10)

We thus see the main consequence of postulating a correspondence between an eigenstate

and an HV distribution: when the system is in an eigenstate of the measured observable,

the hidden-variables have all the same value of the property being measured, that is directly

determined by the HV value. When the measurement induces a perturbation (in the EPR

sense), the HV distribution changes: the measured outcome depends both on the initial

HV distribution and on the perturbation, although the average over the measurements only

depends on the mean value of the hidden variables over the initial distribution.

An important consequence of our choice (2) concerning the correspondence between the

eigenstates and the hidden variables is that different HV distributions can yield the same

quantum results. In particular, to anticipate on the 2-particle problem, if the hidden variables

are uniformly distributed on the positive surface of the hemisphere Σ+a centered on the a

axis, we have

〈λb〉Σ+a
=

∫
λ · b̂RΣ+a

(λ) sin θλdθλdφλ =
1

2
cos(θb − θa), (11)

where RΣ+a
(λ) = 1/2π. Hence 〈λb〉Σ+a

= 〈λb〉R+a
. In the case θb = θa, Eq. (11) gives (the

positive version of) Eq. (4): if Sa is measured, one will find the result +1/2 with probability
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one irrespective of whether the initial HV distribution was Σ+a or R+a. Indeed, both Σ+a

and R+a are invariant around the a axis and by modifying accordingly Eqs. (2) and (3),

we could have chosen to let Σ+a correspond to an eigenstate rather than R+a. Consequently

there is no effective disturbance (in the EPR sense) in the passage Σ+a → R+a
1.

We proceed to the 2 particle case. Suppose that the spin of each particle is determined

by a hidden variable attached to the particle. To be specific, let us postulate the existence

of two hidden variables λ1 and λ2 on the unit-sphere pointing in the direction of the spin

angular momentum of each of the particles. Following Bell [3] we assume the particles were

originally formed in the singlet state and are spatially separated so that individual spin

measurements along arbitrary axes can be made. The singlet state, whose density matrix is

given by

ρ =
∑

k,k′=±1

(−1)
k−k

′

2

2
|k(θu)〉 |−k(θu)〉 〈k

′(θu)| 〈−k′(θu)| (12)

is rotationally invariant (and does not depend on the choice of θu). The total spin and its

projection along any quantization axis vanish: this imposes a correlation between λ1 and

λ2 that for a given ρ is fixed once and for all. Given the HV model developed above for the

spin measurements of a single particle, the correlation takes the form

λ1 + λ2 = 0, (13)

that can be seen as a consequence of the conservation of the angular momentum on the hid-

den variables. Eq. (13) means that in the singlet state, the hidden variables are uniformly

distributed on the sphere Σ, but point in opposite directions. This is exactly what one would

expect for the angular momenta of two classical particles with a uniform statistical distri-

bution and zero total angular momentum [10]. The condition (13) imposes a distribution

RΣ(λ1, λ2) proportional to the delta function δ(λ1 + λ2). This delta function encapsulates

the premeasurement correlation between λ1 and λ2: given the disturbance Eq. (13) is not

expected to hold after the measurements, but as we now show, this initial correlation suffices

in accounting for the quantum expectation values in terms of the conditional expectation of

the HV positions.

1 The fact that Σ+a and R+a have different topologies is particular to the spin-1/2 case. For the general

spin-S case, the choice would be between a delta function of the type (2) and a spherical zone of width

1/(2S + 1) around the axis, where S + 1/2 is the radius of the sphere. The extension of the present study

to an arbitary angular momentum is straightforward and will be given elsewhere.

6



Consider a measurement on particle 1 of the spin projection S1a along an axis a. We

know from Eq. (11) that if λ1 is distributed on the positive half-sphere Σ+a, we will obtain

the result +1/2 with certainty (and −1/2 if λ1 belongs to the negative half-sphere Σ−a).

Therefore given the uniform distribution of λ1 on the sphere, we can obtain S1a = ±1/2

with probability 1/2 which is of course the quantum result in the state (12). Now if, say,

one obtained +1/2, then, from Eq. (13) we infer that λ2 is on the half-sphere Σ−a; hence

the measurement of S2a will yield with certainty S2a = −1/2 (see Fig. 2). If instead the spin

projection on an axis b is measured, the outcomes S2b = ±1/2 are possible with respective

probabilities cos2 θb/2 and sin2 θb/2 [Eqs. (5)-(6)]; the average 〈λ2b〉Σ−a
– the mean projection

of λ2 on the b axis if λ1 belonged to the positive hemisphere – is obtained from Eq. (11).

By repeating this line of reasoning for each possible outcome, we can determine the total

expectation

〈M1aM2b〉RΣ
=

1/2∑
k1a,k2b=−1/2

k1ak2b

∫
R̃Σ→k1a

(λ1)R̃Σσ(k1a)a→k2b
(λ2)dΩλ1dΩλ2 , (14)

where σ gives the sign of its argument. The integrals over R̃(λ1) and R̃(λ2) give the proba-

bilities 1/2 and P±a→k2b
[Eqs. (5)-(6)] respectively, and Eq. (14) can be seen to be equal to

the quantum-mechanical expectation value

〈S1aS2b〉ρ = Tr(S1aS2bρ) = −
1

4
cos(θb − θa). (15)

In terms of the pre-measurement HV distribution, the average is not given by 〈λ1aλ2b〉RΣ

(since Eq. (13) is not preserved by the disturbance due to the measurement). As in the

one-particle case, we require however that conservation laws hold on average2 (see point

(iv)): a given measurement on particle 1 allows to infer the zone occupied by λ2 on the

sphere (which according to Eq. (13) is the opposite of the one occupied by λ1 before the

measurement). This does not allow to predict the outcome of a measurement on particle 2,

but only its average (exactly like in the one particle case), leading to

〈M1aM2b〉RΣ
=

1

2

∑
k=±1

〈λ1a〉Σka
〈λ2b〉Σ−ka

. (16)

2 We see that this property only makes sense for a single particle, since the perturbation induced on the

second hidden variable depends conditionally on the result of the first measurement.
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FIG. 2: Example of correlated HV distributions for two spin-1/2 particles in the singlet state.

(a) Initial distribution: the HV are uniformly distributed on the sphere, correlated through Eq.

(13). (b) The measurement of S1a gives +1/2, meaning that λ1 belonged to the upper hemisphere

before the measurement, and hence that λ2 is to be found in the lower hemisphere. (c) The

measurement of S2b, which can give one of the 2 outcomes as pictured in Fig. 1(c), gives −1/2,

and the corresponding final distribution of λ2 around the b axis is shown.

To compute Eq. (16), we remark that from Eq. (11) we have 〈λ1a〉Σka
= k/2 and

〈λ2b〉Σ−ka
= −〈λ2b〉Σka

= (−1)
k+1
2

cos(θb − θa)

2
, (17)

thereby yielding again the standard quantum result Eq. (15). Note that we can interchange

1 ↔ 2 or a ↔ b, i.e. it does not matter which axis or particle is measured first.

We therefore obtain the quantum expectation value (15), known to violate Bell’s inequal-

ity, by postulating HV distributions perturbed by the measurement process. Nonlocality

does not play any role. The fact that in Eq. (16) 〈λ2b〉 depends on the measurement out-

come of particle 1 is not the result of action at a distance but a conditional statement, the

inference being grounded on the correlation (13). As remarked by Jaynes [11], Bell’s HV

model does not allow to make this type of inference. Indeed, because of the completeness

requirement, the Bell hidden variable distributions are required to account for the quantum-

mechanically incompatible elements of reality. Here instead, the role of the measurement

disturbance is twofold: obtain discrete outcomes for individual events and ensure that the

spin projection of one of the correlated particles along more than one axis cannot be an el-

ement of reality. Ironically, this is the substance of Bohr’s reply [12] to EPR (if one ignores

the positivist and obscure tone of his reply): ”the finite interaction between object and mea-

suring agencies conditioned by the very existence of the quantum of action” implies that

measuring the spin projection along a given axis brings in ”an essentially uncontrollable”
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action that ”cuts ourselves off from any possibility of applying the law of conservation” of

rotation to the system so as to make predictions on the second particle 3.

We have shown that by assuming that hidden variable distributions are disturbed by

measurements – in the same sense that Einstein, Podolsky and Rosen stated that a quantum

state is disturbed when a measurement involves observables that do not commute with the

corresponding density matrix – we are able to recover the quantum expectation values that

violate Bell inequalities. Indeed, Bell-CHSH [14, 15] type inequalities assume preset HV

distributions that would ascribe simultaneous reality to quantum-mechanical counterfactual

events. This condition forces HV models to obey a Bell inequality, but as it has recently been

pointed out [7, 8, 10] this assumption should not be conflated with local realism. In this

respect, the violation of Bell inequalities does not appear to be a valid ground to support

nonlocality, since a measurement perturbed distribution of local hidden variables achieves

the violation that is generally thought to be possible only by considering a preset distribution

of nonlocal hidden variables.
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