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Abstract. Password-authenticated key exchange (PAKE) protocols are
designed to be secure even when the secret key used for authentication
is a human-memorable password. In this paper, we consider PAKE pro-
tocols in the group scenario, in which a group of clients, each of them
shares a password with an “honest but curious” server, intend to estab-
lish a common secret key (i.e., a group key) with the help of the server. In
this setting, the key established is known to the clients only and no one
else, including the server. Each client needs to remember passwords only
while the server keeps passwords in addition to private keys related to his
identity. Towards our goal, we present the first compiler that transforms
any group key exchange (KE) protocol secure against a passive eaves-
dropping to a group PAKE which is secure against an active adversary
who controls all communication in the network. This compiler is built
on any group KE protocol (e.g., the Burmester-Desmedt protocol), any
identity-based encryption (IBE) scheme (e.g., Gentry’s scheme), and any
identity-based signature (IBS) scheme (e.g., Paterson-Schuldt scheme).
It adds only two rounds and O(1) communication (per client) to the
original group KE protocol. As long as a group PAKE protocol is con-
structed by our compiler with a group KE protocol, an IBE scheme and
an IBS scheme which have provably security without random oracles, it
can be proven to be secure without random oracles.

1 Introduction

Popularity of group-oriented applications and protocols is currently on the in-
crease and, as a result, group communication is taking place in many different
settings, from network layer multicasting to application layer tele- and video-
conferencing. Securing group communication makes demands of protocols for
group authenticated key exchange (AKE), which allows a group of users com-
municating over an insecure public network to establish a common secret key



(i.e., a group key) and furthermore to be guaranteed that they are indeed sharing
this key with each other.

Protocols for 2-party AKE has been extensively investigated in [33, 14, 34,
12, 10, 30–32]. A number of works have considered extending the 2-party Diffie-
Hellman protocol [33] to the multi-party setting [39, 51, 28, 52, 9, 46, 47]. Among
them, the works of Ingemarsson et al. [39], Burmester and Desmedt [28], and
Steiner et al. [52] may be the most well-known. They are merely key exchange
(KE) protocols, intended to be secure against a passive adversary only. However,
AKE protocols aim to be secure against more powerful adversaries, who - in
addition to eavesdropping - control all communication in the network. A number
of initial protocols for group AKE were suggested in [40, 18, 7, 8, 53]. But none
of these works have rigorous security proofs in a well-defined model.

Bresson et al. [21–23] were the first to define a formal model of security for
group AKE and give the first provably secure protocols for this setting. Their
model was built on the earlier work of Bellare and Rogaway in the two-party
setting [11, 12, 10] and their protocols were based on the work of Steiner et al.
[52], which requires O(n) rounds to establish a key among n users, and therefore
not scalable. A constant-round group AKE with a security proof in the random
oracle model was given in [19]. Katz and Yung [44] were the first to give scalable
protocol for group AKE along with a rigorous proof of security in the standard
model. They also presented the first efficient compiler that transforms any group
KE protocols secure against a passive eavesdropping to authenticated protocols
by signing message flows. Their compiler adds only one round to the original
protocol. However, this compiler requires each user to have a pair of public and
private keys for digital signature. The (high-entropy) private key is not human-
memorable and needs additional cryptographic devices to store it.

Bellovin and Merritt [13] were the first to consider AKE based on (low-
entropy) password only and introduced a series of so-called “encrypted key
exchange” (EKE) protocols for two-party AKE. A password-based AKE (i.e.,
PAKE) has to be immune to the dictionary attack, in which an adversary ex-
haustively tries all possible passwords from a dictionary in order to determine
the correct one. Even though these attacks are not very effective in the case of
high-entropy keys, they can be very damaging when the secret key is a password
since the attacker has a non-negligible chance of winning. Dictionary attacks
are usually divided into two categories: offline and online dictionary attacks.
Formal models of security for two-party PAKE were firstly given independently
by Bellare, Pointcheval and Rogaway [10], and Boyko, MacKenzie, Patel and
Swaminathan [20] in 2000. Since then, protocols for two-party PAKE have been
continuously proposed and proven to be secure in either the random oracle model
(e.g.,[25, 26, 3–5]) or the standard model (e.g., [37, 42, 41]).

Bresson et al. [24, 27] were the first to adapt a group KE protocol to the
password-based scenario. As the original protocol, the first group PAKE protocol
was not scalable and practical for large groups. In addition, their security proof
required ideal models. Recently, a number of constant-round group PAKE have
been proposed in the literature by Abdalla et al. [2, 6], by Bohli et al. [15], and



by Kim, Lee and Lee [45]. All of these constructions are built on the Burmester-
Desmedt protocol [28, 29] and are rather efficient. Among them, the works of
Abdalla et al. [6] and Bohli et al. [15] enjoy security proofs in the standard
model.

Most of existing group PAKE protocols assume that users of a group share
the same password, e.g., [24, 27, 2, 6]. In the scenarios where a user wants to
participate in many groups, the number of passwords that he would need to
remember would be linear in the number of possible groups. In order to limit
the number of passwords that each user has to remember, a couple of group
PAKE protocols assume that each user shares a password only with a server,
which helps users of a group with establishment of a common secret key (i.e.,
a group key), e.g., [3, 4, 48]. The server is assumed to behave in an “honest but
curious” manner. By the knowledge of passwords, the server may attempt to
learn the group key. The setting with different passwords seems to be more
practical in the real world than the setting with the same password.

More recently, Abdalla et al. [1] presented a protocol compiler that transforms
any two-party AKE into a group AKE with two more rounds of communication.
Their idea is inspired by the construction of Burmester and Desmedt [28], where
the trick of constructing a group key from pairwise agreed keys among users of a
group was firstly introduced. In particular, applying this compiler to a two-party
PAKE protocol yields a group PAKE protocol. The primary motivation of this
compiler was the two-party setting. As implied in [44], a compiler tailored from
the group setting scales better than the compiler from two-party setting. This
leads a question, is there any protocol compiler that transforms any group KE
protocol directly to a group PAKE protocol?

Contribution. To the best of our knowledge, there has not yet been any protocol
compiler that can transform any group KE protocol directly into a group PAKE
protocol at present. In this paper, we present such a compiler on the basis of
the “state-of-the-art” identity-based cryptosystem, a public-key cryptosystem in
which an arbitrary string (e.g., user identity) can be used as the public key.

Our compiler employs any group KE protocol secure against passive eaves-
dropping, any IBE with chosen-ciphertext security and any IBS with existential
unforgeability. We assume that clients of a group, each of them shares a pass-
word with an “honest but curious” server, intend to establish a common secret
key (i.e., a group key) with the help of the server, where the key established is
known to the clients only and no one else, including the server.

The basic idea of our compiler is that users of a group firstly run the group
KE protocol to establish a group key without any help of the server, and then
the server helps users of the group with mutual authentication by the shared
password (protected with the IBE scheme), and finally each user authenticates
the server, along with partnered users and messages received during the group
KE, by the IBS scheme. Since the group key has been established before real
participance of the server, it is unknown to the server.

To analyze the security of our compiler, we put forth the first formal model
of security for ID-based PAKE in the group setting, by embedding Boneh et



al.’s ID-based model [16][17] into the group PAKE model given by Bresson et
al. in [24, 27] and improved by Abdalla et al. [1]. We then provide a rigorous
proof of security for our compiler. Our compiler does not rely on the random
oracle model as long as the underlying primitives themselves do not rely on it.
By using Burmester-Desmedt group KE protocol [28], Gentry IBE scheme [36],
Paterson-Schuldt IBS scheme [49], our compiler can construct a group PAKE
with provably security in the standard model.

The protocol compiler for group PAKE given by Abdalla et al. [1] has to
assume that each user is honest. Otherwise, it is vulnerable to a collusion attack,
where two dishonest users conspire to include a few impersonators between them.
Other honest users are unaware of this attack. Although a dishonest user can
always disclose the group key to others, this collusion attack is meaningful in the
case where users of a group are holding a tele-conference for voting. Our compiler
assumes that there exists an “honest but curious” server for authentication only.
This assumption is weaker (in both a theoretical and practical sense) than the
compiler in [1].

Organization. In Section 2, we introduce the new model for ID-based group
PAKE. Next, in Section 3, we describe the underlying cryptographic primitives
to build our group PAKE. Then, in Section 4, we present the new ID-based
group PAKE compiler. After that, in Section 5, the detail security proof for our
protocol is given. We conclude this paper in Section 6.

2 Definitions

A formal model of security for group PAKE was firstly given by Bresson et al.
in [24, 25] (based on Bellare et al.’s formal model for 2-party PAKE [11]), and
improved by Abdalla et al. in [1]. Boneh and Franklin were the first to define
chosen ciphertext security for IBE under chosen identity attack [16, 17]. In this
section, we put forward the first model of security for ID-based group PAKE, on
the basis of definitions given by Bresson et al., Abdalla et al. and Boneh et al.

Participants, Initialization and Passwords. An ID-based group PAKE pro-
tocol involves three kinds of participants: (1) A set of clients (denoted as Client);
(2) A set of servers (denoted as Server), who behave in an honest but curious man-
ner; (3) A trusted third party (called the Private Key Generator (PKG)), which
generates public parameters and corresponding private keys for servers. We as-
sume that ClientServerPair is the set of pairs of the client and the server, who
share a password. In addition, User = Client

⋃
Server and Client

⋂
Server = ∅.

Prior to any execution of the protocol, we assume that an initialization phase
occurs. During initialization, PKG generates public parameters for the protocol,
which are available to all participants, and private keys for each server. For any
pair (A,S) ∈ ClientServerPair, the client A and the server S are assumed to share
the same password pwS

A. We assume that the client A chooses pwS
A independently

and uniformly at random from a “dictionary” D = {pw1, pw2, · · · , pwN} of size
N , where N is a fixed constant which is independent of the security parameter.
The password pwS

A is then stored at the server S for authentication.



Execution of the Protocol. In the real world, a protocol determines how users
behave in response to input from their environments. In the formal model, these
inputs are provided by the adversary. Each user is assumed to be able to execute
the protocol multiple times (possibly concurrently) with different partners. This
is modeled by allowing each user to have unlimited number of instances with
which to execute the protocol. We denote instance i of user U as U i. A given
instance may be used only once. The adversary is given oracle access to these
different instances. Furthermore, each instance maintains (local) state which is
updated during the course of the experiment. In particular, each instance U i

has associated with it the following variables, initialized as NULL or FALSE (as
appropriate) during the initialization phase.

– sidi
U and pidi

U are variables (initialized as NULL) containing the session iden-
tity and partner identity for an instance, respectively. The session identity
sidi

U is simply a way to keep track of the different executions of a particu-
lar user U . Without loss of generality, we simply let this be the (ordered)
concatenation of all messages sent and received by instance U i. The partner
identity pidi

U is the set of users with whom U i believes it is interacting to
establish a session key (including U itself).

– acci
U and termi

U are boolean variables (initialized as FLASE) denoting whether
a given instance has been accepted or terminated, respectively. Termination
means that the given instance has done receiving and sending messages,
acceptance indicates successful termination. In our case, acceptance means
that the instance is sure that a group key has been established, thus, when
an instance U i accepts, sidi

U and pidi
U are no longer NULL.

– usedi
U is a boolean variable (initialized as FLASE) denoting whether an in-

stance has begun executing the protocol. This is a formalism which will
ensure each instance is used only once.

– statei
U (initialized as NULL) records any state necessary for execution of the

protocol by a user instance U i.
– ski

A is a variable (initialized as NULL) containing the session key for a client
instance Ai. Computation of the session key is, of course, the ultimate goal of
the protocol. When Ai accepts (i.e., acci

A = TRUE), ski
A is no longer NULL.

The adversaryA is assumed to have complete control over all communications
in the network and the adversary’s interaction with the users (more specifically,
with various instances) or PKG is modeled via access to oracles which we describe
now. The state of an instance may be updated during an oracle call, and the
oracle’s output may depend upon the relevant instance. The oracle types are as
follows:

– Execute(Ai1
1 , Ai2

2 , · · · , Ain
n , Sj) – If Ai`

` and Sj have not yet been used (where
A` ∈ Client, S ∈ Server, (A`, S) ∈ ClientServerPair, ` = 1, 2, · · · , n). This
oracle executes the protocol among these instances and outputs the tran-
script of this execution. This oracle call represents passive eavesdropping of
a protocol execution. In addition to the transcript, the adversary receives



the values of sid, pid, acc, and term for all instances, at each step of protocol
execution.

– Send(U i,M) – This sends message M to instance U i. Assuming termi
U =

FALSE, this instance runs according to the protocol specification, updating
state as appropriate. The output of U i (i.e., the message sent by the instance)
is given to the adversary, who receives the updated values of sidi

U , pidi
U , acci

U ,
and termi

U . This oracle call models the active attack to a protocol.
– KeyGen(PKG, S) – This sends the identity of the server S to PKG, which

generates private keys dS corresponding to S and forwards it to the adversary.
This oracle models possible compromising of a server due to, for example,
hacking into the server. This implies that all passwords stored in the server
are disclosed.

– Corrupt(A) – This query allows the adversary to learn the passwords of the
client A, which models the possibility of subverting a client by, for example,
witnessing a user type in his password, or installing a “Trojan horse” on his
machine. This implies that all passwords held by A are disclosed.

– Reveal(Ai) – This outputs the current value of session key ski
A for a client

instance if acci
A = TRUE. This oracle call models possible leakage of ses-

sion keys due to, for example, improper erasure of session keys after use, or
cryptanalysis.

– Test(Ai) – This oracle does not model any real-world capability of the ad-
versary, but is instead used to define security of the session key of client
instance Ai. If acci

A = TRUE, a random bit b is generated. If b = 0, the
adversary is given ski

A, and if b = 1 the adversary is given a random session
key. The adversary is allowed only a single Test query, at any time during
its execution.

A passive adversary is given access to the Execute, KeyGen, Reveal, Corrupt,
and Test oracles, while an active adversary is additionally given access to the
Send oracles. In the definition of Execute and Send oracle, we reasonably require
that A1, A2, · · · , An share different passwords with the same server S.

Partnering. The definition of partnering uses the notion of session identity sid,
which is the partial transcript of the conversation among the clients and the
server. We say that client instances Ai and Bj are partnered if there exists a
server instance Sk such that (1) (A,S), (B,S) ∈ ClientServerPair; (2) sidi

A =
sidj

B = sidk
S 6= NULL, and (2) pidi

A = pidj
B = pidk

S 6= ∅. The notion of partnering
will be fundamental in defining both correctness and security.

Correctness. To be viable, a key exchange protocol must satisfy the following
notion of correctness: if Ai and Bj are partnered and acci

A = accj
B = TRUE, then

it must be the case that ski
A = skj

B (i.e., they conclude with the same session
key).

Freshness. Informally, the adversary succeeds if it can guess the bit b used
by the Test oracle. Before formally defining the adversary’s success, we must
first define a notion of freshness. A client instance Ai is fresh unless one of the
following is true at the conclusion of the experiment, namely, at some point,



– The adversary queried Reveal(U j) where U ∈ Client
⋂

pidi
A. Note that j = i

when U = A.
– The adversary queried KeyGen(PKG, S) where S ∈ Server

⋂
pidi

A, before a
query of the form Send(U j ,M), where U ∈ pidi

A, has taken place, for some
message M (or identities).

– The adversary queried Corrupt(B), where B ∈ Client
⋂

pidi
A, before a query

of the form Send(U j ,M), where U ∈ pidi
A, has taken place, for some message

M (or identities).

The adversary is thought to succeed only if its Test query is made to a fresh
instance. Note that this is necessary for any reasonable definition of security,
otherwise, the adversary could always succeed, e.g., submitting a Test query for
an instance for which it had already submitted a Reveal query.

Advantage of the Adversary. We say an adversary A succeeds if it makes
a single query Test(Ai) to a fresh client instance Ai, with acci

A = TRUE at the
time of this query, and outputs a single bit b′ with b′ = b (recall that b is the
bit chosen by the Test oracle). We denote this event by Succ. The advantage of
adversary A in attacking protocol P is a function in the security parameter k,
defined as

AdvP
A(k) = 2 · PrPA[Succ]− 1

where the probability is taken over the random coins used by the adversary
and the random coins used during the course of the experiment (including the
initialization phase). It remains to define what we mean by a secure protocol.
Note that a probabilistic polynomial-time (PPT) adversary can always succeed
by trying all passwords one-by-one in an online impersonation attack. This is
possible since the size of the password dictionary is constant. Informally, a pro-
tocol is secure if this is the best an adversary can do. Formally, an instance U i

represents an online attack if both the following are true at the time of the Test
query: (1) at some point, the adversary queried Send(U i, ∗), and (2) at some
point, the adversary queried Reveal(Aj) or Test(Aj), where A ∈ Client

⋂
pidi

U .
In particular, instances with which the adversary interacts via Execute, KeyGen,
Reveal and Corrupt queries are not counted as online attacks. The number of
online attacks represents a bound on the number of passwords the adversary
could have tested in an online fashion.

Definition 1. Protocol P is a secure protocol for password-authenticated key
exchange if, for all dictionary size N and for all PPT adversaries A making at
most Q(k) online attacks, there exists a negligible function ε(·) such that

AdvP
A(k) ≤ Q(k)/N + ε(k)

The above definition ensures that the adversary can (essentially) do no better
than guess a single password during each online attack. Calls to the Execute,
KeyGen, Reveal and Corrupt oracles, which are not included in Q(k), are of no
help to the adversary in breaking the security of the protocol. This means the
passive attacks and offline dictionary attacks are of no use.



Forward Secrecy. We follow the definition of forward secrecy from [43, 1] and
consider the weak corrupt model of [11], in which corrupting a client means
retrieving his passwords, while asking KeyGen query on a server means retrieving
its private keys and all passwords stored in it. Forward secrecy is then achieved
if such queries do not give the adversary any information about previous agreed
session keys. In addition, we follow the definition of freshness from [1]. The
adversary is allowed to ask the Test query on a client instance, where he has
known (1) the passwords of the client or any of his partners by Corrupt query; or
(2) the private key of the server and all password stored in it by KeyGen query,
however, he has not asked any Send query to the instance of the client or any
of his partners. In this sense, the above definition of security implies forward
secrecy.

3 Cryptographic Building Blocks

3.1 Group Key Exchange

A group key exchange (KE) protocols allow users of a group communicating over
an insecure public network to establish a common secret key (i.e., a group key).
They are intended to be secure against the passive adversary only. A passive
adversary is given access to the Execute (excluding the participance of the server
S), Reveal, and Test oracles as defined in Section 2.

We say a passive adversary A succeeds if it makes a single query Test(Ai)
to a fresh instance Ai (i.e., no Reveal oracle is queried to Ai and his partnered
instances), and outputs a single bit b′ with b′ = b (recall that b is the bit chosen
by the Test oracle). We denote this event by Succ. The advantage of a passive
adversary A in attacking a group KE protocol P is a function in the security
parameter k, defined as AdvP

A(k) = 2 · PrPA[Succ]− 1.
A group KE protocol P is secure against passive eavesdropping if no poly-

nomial bounded adversary A has a non-negligible advantage in attacking it.
The group KE protocols proposed by Ingemarsson et al. [39], Burmester

and Desmedt [28], and Steiner et al. [52] may be the most well-known. Among
them, Burmester-Desmedt protocol has been shown to be secure against passive
eavesdropping in the standard model by Katz and Yung [44].

3.2 Identity-Based Encryption

An identity-based encryption (IBE) scheme is specified by four randomized al-
gorithms: Setup,Extract,Encrypt,Decrypt as follows.

– Setup: On input a security parameter k, it returns params (public system
parameters) and master-key (known only to the “Private Key Generator”).

– Extract: On inputs params,master-key and a public identity ID ∈ {0, 1}∗, it
returns a private key d.

– Encrypt: On inputs params, ID, and a message M ∈M (the plaintext space),
it returns a ciphertext C ∈ C (the ciphertext space).



– Decryption: On inputs params, C ∈ C, and a private key d, it returns M ∈M.

Chosen ciphertext security is the standard acceptable notion of security for
a public key encryption scheme. An IBE scheme is semantically secure against
the adaptive chosen ciphertext attack with “multi-challenge” if no polynomial
bounded adversary A has a non-negligible advantage against the challenger in
the following game:

– Initialize: The challenger runs the Setup algorithm, gives params to the
adversary, but keeps the master-key to itself.

– Phase 1: The adversary adaptively asks a number of different queries q1, q2,
· · · , qm, where qi is either Extract(IDi) or Decrypt(IDi, Ci).

– Challenge: Once the adversary decides that Phase 1 is over, it outputs a
sequence of equal length plaintext pairs (M (0)

` ,M
(1)
` )`=1,2,···,λ ∈M2 and an

identity ID on which it wishes to be challenged, where ID must not appear
in Phase 1. The challenger picks a random bit b ∈ {0, 1} and sends C` =
Encrypt(ID,M

(b)
` ) (` = 1, 2, · · · , λ) as the challenge to the adversary.

– Phase 2: The adversary issues more queries qm+1, qm+2, · · · , qn adaptively
as in Phase 1, except that the adversary may not request a private key for
ID or the decryption of (ID, C`).

– Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins the game
if b′ = b.

We define the adversary A’s advantage in attacking the IBE scheme as a
function of the security parameter k, AdvE

A(k) = |PrEA[b′ = b] − 1/2|, where the
probability is over the random bits used by the challenger and the adversary. The
most efficient identity-based encryption schemes are currently based on bilinear
pairings on elliptic curves, such as the Weil or Tate pairings. Boneh and Franklin
[16, 17] were the first to give an IBE scheme from Weil pairing and prove it
to be adaptive chosen-ciphertext security (with single challenge) in the random
oracle model. More recently, several new IBE schemes from pairing (e.g., [54][36])
were proposed and proven to be adaptive chosen-ciphertext security (with single
challenge) in the standard model. Following their proofs of security, one can
prove their schemes actually to be secure against the adaptive chosen-ciphertext
attack with multi-challenge.

3.3 Identity-Based Signature

An identity-based signature (IBS) scheme can be described by four algorithms
Setup,Extract,Sign,Verify as follows.

– Setup: On input a security parameter k, it returns params (public system
parameters) and master-key (known only to the “Private Key Generator”).

– Extract: Given params,master-key and a public identity ID ∈ {0, 1}∗, it re-
turns a private key dID.

– Sign: Given a message M , params, ID and a private key dID, it generates a
signature σ of the user (with identity ID) on M .



– Verify: Given a signature σ, a message M , and params, ID, it outputs accept
if σ is a valid signature of the user (with identity ID) on M , and outputs
reject otherwise.

An IBS scheme is existential unforgeability under the chosen message at-
tack [38] if no polynomial bounded adversary A has a non-negligible advantage
against the challenger in the following game:

– Initialize: The challenger runs the Setup algorithm, gives params to the
adversary, but keeps the master-key to itself.

– Queries: The adversary adaptively asks a number of different queries q1, q2,
· · · , qm, where qi is either Extract(IDi) or Sign(IDi,M).

– Forgery: Once the adversary decides that queries are over, it outputs a
message M ′, an identity ID′ and a string σ′. The adversary succeeds (denoted
as Succ) if Verify(ID′,M ′, σ′) = 1, where ID′ cannot appear in Extract queries
and (ID′,M ′) cannot appear in Sign queries.

We define the adversary A’s advantage in attacking the IBS scheme as a
function of the security parameter k, AdvS

A(k) = PrSA[Succ], where the probability
is over the random bits used by the challenger and the adversary.

A generic approach to construct IBS schemes is to use an ordinary (i.e.,
non-identity-based) signature scheme and simply attach a certificate containing
the public key of the signer to the signature [35]. An IBS scheme with provable
security in the standard model was given by Paterson and Schuldt in [49].

4 An Efficient Compiler for Group PAKE

4.1 Description of the Compiler

In this section, we present an efficient compiler transforming any group KE
protocol P to a group PAKE protocol P ′. Following the communication model
given in [43], we assume that every message is sent - via point-to-point links -
to every user of the group taking part in the execution of the protocol, in other
word, U i sends each message to all users in pidi

U . For simplicity, we refer to
this as “broadcasting message”, but stress that we do not assume a broadcast
channel and, in particular, an active adversary can deliver different messages to
different users of the group or refuse to deliver a message to some of participants.

Given a group KE protocol P , our compiler constructs a group PAKE pro-
tocol P ′ as shown in Fig. 1, in which n clients A1, A2, · · · , An (in lexicographic
order) wish to establish a common secret key (i.e., a group key) with the help of
a server S. A completely formal specification of the group PAKE protocol will
appear in Section 5, where we give a proof of security for the protocol in the
security model described in Section 2.



Round 0 (Group Key Exchange (P ))

Clients A`, ` = 1, 2, · · · , n
ExecuteP (A1, A2, · · · , An)

pidP
A`
← pidS ← (A1, A2, · · · , An, S), {S} ← sidP

S

Round 1 (Client Authentication)

Client A`, ` = 1, 2, · · · , n
Auth` ← EIDS [H(sidP

A`
|pwS

A`
)]

{S} ← msgA`
= A`|Auth`

Server S

If ∃` such that DdS [Auth`] 6= H(sidP
S |pwS

A`
), then return ⊥

Round 2 (Server Authentication)

Server S

AuthS = Sd′
S
[sidP

S |pidS ]

{A1, A2, · · · , An} ← msgS = S|AuthS

Client A`, ` = 1, 2, · · · , n
If VIDS [sid

P
A`
|pidP

A`
, AuthS ] 6= 1, then return ⊥

Else accept← TRUE, skA` ← skP
A`

Fig. 1. ID-based group PAKE protocol P ′

We present the protocol by describing initialization and execution. The cryp-
tographic building blocks of our protocol include a group KE protocol, an IBE
scheme and an IBS scheme. We let k be the security parameter given to the
setup algorithm.

Initialization. Given a security parameter k ∈ Z∗, the initialization includes:

Parameter Generation: On input k, (1) PKG runs SetupP of the group KE proto-
col P to generate system parameters, denoted as paramsP ; (2) PKG runs SetupE

of the IBE scheme to generate public system parameters for the IBE scheme,
denoted as paramsE , and the secret master-keyE for itself; (3) PKG runs SetupS

of the IBS scheme to generate public system parameters for the IBS scheme,
denoted as paramsS , and the secret master-keyS for itself; In addition, PKG
chooses a hash function, H : {0, 1}∗ → M (the plaintext space of IBE), from
a collision-resistant family. The public system parameters for the protocol P ′

is params = {H}
⋃

paramsP
⋃

paramsE
⋃

paramsS and the secret (master-keyE ,
master-keyS) is known only to PKG.

Key Generation: On input the identity IDS of a server S ∈ Server, params, and
(master-keyE , master-keyS), PKE runs ExtractE of the IBE scheme and sets the
decryption key of S to be dS, and runs ExtractS of the IBS scheme and sets the
signing key of S to be d′S.



Password Generation: On input (A,S) ∈ ClientServerPair, a string pwS
A, the

password, is uniformly drawn by the client A from the dictionary Password =
{pw1, pw2, · · · , pwN}, and then store it in the server S.

Protocol Execution. For a group of clients A1, A2, · · · , An (in lexicographic
order), where there exists a server S such that (A`, S) ∈ ClientServerPair, when
A` (having password pwS

A`
) (` = 1, 2, · · · , n) agree to establish a common secret

key (i.e., a group key) via S, they firstly run the group KE protocol P to establish
a session key. Note that, during the execution of P , the server S is provided the
(ordered) concatenation of all “broadcast” messages, denoted as sidP

S .
Next, each client A` computes an IBE encryption of H(sidP

A`
|pwS

A`
) based on

the identity IDS of the server, denoted as Auth` = EIDS
[H(sidP

A`
|pwS

A`
)], where

sidP
A`

stands for the (ordered) concatenation of all “broadcast” messages that A`

has viewed during the execution of P . Then msgA`
= A`|Auth` is provided to

the server S.
Upon receiving the messages msgA`

(` = 1, 2, · · · , n), the server S decrypts
the ciphertexts with its decryption key dS, and verifies whether

DdS
[Auth`] = H(sidP

S |pwS
A`

) (1)

where sidP
S stands for the (ordered) concatenation of all “broadcast” messages

that the server S has viewed during the execution of P .
If equation (1) holds for ` = 1, 2, · · · , n, the server S uses its signing key d′S

to generate a signature AuthS = Sd′S
[sidP

S |pidS ], and then broadcasts msgS =
S|AuthS .

Upon receiving msgS, each client A` checks if

VIDS
[sidP

A`
|pidP

A`
,AuthS ] = 1 (2)

If equation (2) holds, A` accepts the session key skP
A`

established during the
execution of P as the authenticated group key skA`

.

4.2 Correctness, Explicit Authentication and Efficiency

Correctness. In an honest execution of the protocol, clients A1, A2, · · · , An

compute the identical group key because P itself is a group KE protocol.

Explicit Authentication. By verifying (1) involving the password pwS
A`

, the
server S can make sure that each client A` is authenticated and the messages
sent and received by A` are authenticated. By verifying (2) involving the signa-
ture of the server, each client A` is convinced of the authenticity of the server
S and the received messages. Note that the server can always determine the
password of each client (by offline dictionary attack) because the server has the
decryption key dS. Therefore, it is not necessary for each client to verify whether
the server knows his password or not. If both (1) and (2) hold, all clients are
authenticated and all messages exchanged during the execution of P are au-
thenticated. Thereby, the session key derived from the authenticated messages



is authenticated as well. This shows that the group PAKE protocol P ′ achieves
explicit authentication, that is, a party knows that its intended partners have
successfully computed a matching session key (i.e, a group key).

Efficiency Consideration. The efficiency of the group PAKE protocol depends
on performance of the underlying group KE protocol, IBE and IBS schemes. Only
two rounds are added to the original group KE protocol P . In these two rounds,
each client sends out one message and receives one message only. In fact, each
client A` can actually sends the message msgA`

to the server S in the unicast
manner instead of “broadcast”. This compiler adds only O(1) communication
(per client) to the original group KE protocol. In terms of the number of com-
munication rounds, our compiler is better than Abdalla et al.’s compiler [1] if
the underlying group KE protocol of our compiler is also Burmester-Desmedt
protocol. Note that current 2-party PAKE protocols require at least three rounds
to achieve explicit authentication. In this case, the group PAKE protocol con-
structed by Abdalla et al.’s compiler has at least 5 rounds, while our group
PAKE protocol has 4 rounds only.

Our compiler can be made more efficient if each client A` includes msgA`
=

A`|Auth` in his last “broadcast” message of the group KE protocol. In this case,
our compiler adds only one more round to the original group KE protocol.

5 Proof of Security

We follow the methods of the security proofs given by Katz et al. in [44, 42] to
prove the security of our compiler without random oracles.

First of all, we provide a formal specification of the group PAKE protocol
by specifying the initialization phase and the oracles to which the adversary has
access, as shown in Fig. 2−4.

During the initialization phase for security parameter k, algorithm Initialize
generates params = {H}

⋃
paramsP

⋃
paramsE

⋃
paramsS and the secret (master

-keyE ,master-keyS) at first. Furthermore, the sets Client, Server, ClientServerPair
are determined. Passwords for clients are chosen at random, and then stored at
corresponding servers.

Initialize(1k)

(paramsP,E,S , master-keyE,S)
R← SetupP,E,S(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k), H

R← CRHF(1k)

For each i ∈ {1, 2, · · ·} and each U ∈ User

acci
U ← termi

U ← usedi
U ← FALSE, sidi

U ← pidi
U ← ski

U ← NULL

For each S ∈ Server, dS, d
′
S ← ExtractE,S(IDS , paramsE,S , master-keyE,S)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN} ⊂ Zq

Return Client, Server, ClientServerPair, H, paramsP,E,S

Fig. 2. Specification of the initialize



Execute(Ai1
1 , · · · , Ain

n , Sj), where A` ∈ Client, S ∈ Server

If (∃` such that (A`, S) 6∈ ClientServerPair ∨ usedi`
A`

) ∨ usedj
S , return ⊥

usedi`
A`
← usedj

S ← TRUE, pidi`
A`
← pidj

S ← {A1, · · · , An, S}, ` = 1, 2, · · · , n

ExecuteP (Ai1
1 , Ai2

2 , · · · , Ain
n )

Auth` ← EIDS [H(sidP,i`
A`
|pwS

A`
)], msgA`

← A`|Auth`, ` = 1, 2, · · · , n
AuthS ← Sd′

S
[sidP,j

S |pidj
S ], msgS ← S|AuthS

sidi`
A`
← sidP,i`

A`
|msgA`

|msgS , sidj
S ← sidP,j

S |msgA1
|msgA2

| · · · |msgAn
|msgS

acci`
A`
← termi`

A`
← accj

S ← termj
S ← TRUE, ski`

A`
← skP,i`

A`
, ` = 1, 2, · · · , n

Return statusi1
A1

, · · · , statusin
An

, statusj
S

KeyGen(PKG, S)

Return dS, d
′
S and pwS

A for any A

Corrupt(A)

Return pwS
A for any S

Reveal(Ai)

Return ski
A

Test(Ai)

b
R← {0, 1}, sk′ R← Z∗

q . If b = 1 return sk′ else return ski
A

Fig. 3. Specification of the Execute, KeyGen, Corrupt, Reveal, Test oracles

Send0(A
i`
` , (Ai1

1 , · · · , Ain
n , Sj))

If (A`, S) 6∈ ClientServerPair ∨ usedi`
A`

, return ⊥
usedi`

A`
← TRUE, pidi`

A`
← {A1, · · · , An, S}

· · · · · · · · ·
Send′

0(A
i`
` , Sj)

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

Auth` ← EIDS [H(sidP,i`
A`
|pwS

A`
)]

MsgOut← A`|Auth`, state
i
A`
← (sidP,i`

A`
, skP,i`

A`
, MsgOut)

Return statusi`
A`

Send′
1(S

j , (A`|Auth`)`=1,2,···,n)

If (∃` such that (A`, S) 6∈ ClientServerPair) ∨ usedj
S , return ⊥

usedj
S ← TRUE, pidj

S ← {A1, A2, · · · , An, S}
If ∃` such that DdS(Auth`) 6= H(sidP,j

S |pw
S
A`

), return statusj
S

AuthS ← Sd′
S
[sidP,j

S |pidj
S ], accj

S ← termj
S ← TRUE

MsgOut← S|AuthS , sidj
S ← sidP,j

S |MsgIn|MsgOut

Return statusj
S

Send′
2(A

i`
` , S|AuthS)

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

statei`
A`
← (sidP,i`

A`
, skP,i`

A`
, FirstMsgOut)

If VIDS [sid
P,i`
A`
|pidi`

A`
, AuthS ] 6= 1, return statusi`

A`

sidi`
A`
← sidP,i`

A`
|FirstMsgOut|MsgIn, acci`

A`
← termi`

A`
← TRUE, ski`

A`
← skP,i`

A`

Return statusi`
A`

Fig. 4. Specification of the Send oracles

The description of the Execute oracle matches the high-level protocol de-
scribed in Fig. 1, but additional details (for example, the updating of state infor-



mation) are included. We let statusi
U denote the vector of values (sidi

U , pidi
U , acci

U ,
termi

U ) associated with instance U i.
Given an adversary A, we imagine a simulator that runs the protocol for A.

More preciously, the simulator begins by running algorithm Initialize(1k) (which
includes choosing passwords for clients) and giving the public output of the algo-
rithm to A. When A queries an oracle, the simulator also responds by executing
the appropriate algorithm. The simulator also records all state information de-
fined during the course of the experiment. In particular, when the adversary
queries the Test oracle, the simulator chooses (and records) the random bit b.
When the adversary completes its execution and outputs a bit b′, the simulator
can tell whether the adversary succeeds by checking whether (1) a single Test
query was made, for some client instance U i; (2) acci

U was true at the time of Test
query; (3) instance U i is fresh; and (4) b′ = b. Success of the adversary is denoted
by event Succ. For any experiment P ′ we define AdvP ′

A (k) = 2 · PrP
′

A [Succ]− 1.
Based on the model described in Section 2, we have

Theorem 1. Assume that (1) the group KE protocol is secure against passive
eavesdropping; (2) the IBE scheme is secure against the chosen-ciphertext attack
with multi-challenge; (3) the IBS scheme is existential unforgeability under the
chosen-message attack; (4) CRHF is a collision-resistant hash family; then the
protocol P ′ described in Fig. 1 is a secure group PAKE protocol.

We begin with some terminology that will be used throughout the proof.
A given message is called oracle-generated if it was output by the simulator in
response to some oracle query. The message is said to be adversarially-generated
otherwise. An adversarially-generated message must not be the same as any
oracle-generated message.

We refer to the real execution of the experiment, as described above, as P ′
0.

We will introduce a sequence of transformations to the experiment P ′
0 and bound

the effect of each transformation on the adversary’s advantage. We then bound
the adversary’s advantage in the final experiment. This immediately yields a
bound on the adversary’s advantage in the original experiment.

Experiment P ′
1: In this experiment, the simulator interacts with the adversary

as before except that the adversary does not succeed, and the experiment is
aborted, if any of the following occur:

1. At any point during the experiment, an oracle-generated message (e.g.,
msgA`

or msgS) is repeated.
2. At any point during the experiment, a collision occurs in the hash function

H (regardless of whether this is due to a direct action of the adversary, or
whether this occurs during the course of the simulator’s response to an oracle
query).

It is immediate that events 1 occurs with only negligible probability, event 2
occurs with negligible probability assuming the security of CRHF as a collision-
resistant hash family. Put everything together, we are able to see that

Claim 1. |Adv
P ′

0
A (k)− Adv

P ′
1

A (k)| is negligible.



Experiment P ′
2: In this experiment, we modify the simulator’s responses to

Send′1 and Send′2 queries.

Before describing this change we introduce some terminology. The simula-
tor first runs the protocol initialization as shown in Fig. 2. For a query Send′1(S

j ,
(msgA1

, · · · ,msgAn
)), where (msgA1

, · · · ,msgAn
) is adversarially-generated, if equa-

tion (1) holds for ` = 1, 2, · · · , n, then (msgA1
, · · · ,msgAn

) is said to be valid. Oth-
erwise, (msgA1

, · · · ,msgAn
) is said to be invalid. Similarly, for a query Send′2(A

i`

` ,
msgS) where msgS is adversarially-generated, if equation (2) holds, then msgS is
said to be valid. Otherwise, msgS is said to be invalid. Informally, valid messages
use correct passwords or private keys while invalid messages do not.

Given this terminology, we continue with our description of experiment P ′
2.

When the adversary makes oracle queries Send′1(S
j , (msgA1

, · · · ,msgAn
)), the

simulator examines (msgA1
, · · · ,msgAn

). If it is adversarially-generated and valid,
the query is answered as in experiment P ′

1 except that accj
S is assigned the spe-

cial value ∇. In any other case, (i.e., (msgA1
, · · · ,msgAn

) is oracle-generated, or
adversarially-generated but invalid), the query is answered exactly as in experi-
ment P ′

1. When the adversary makes oracle queries Send′2(A
i`

` ,msgS), the simu-
lator examines msgS . If msgS is adversarially-generated and valid, the query is
answered as in experiment P ′

1 except that acci`

A`
is assigned the special value ∇.

In any other case, (i.e., msgS is oracle-generated, or adversarially-generated but
invalid), the query is answered exactly as in experiment P ′

1.

Finally, the definition of the adversary’s success in P ′
2 is changed. If the

adversary ever queries Send′1 or Send′2 with accj
S = ∇ or acci`

A`
= ∇, the sim-

ulator halts and the adversary succeeds. Otherwise the adversary’s success is
determined as in experiment P ′

1.

The distribution on the adversary’s view in experiments P ′
1 and P ′

2 are iden-
tical up to the point when the adversary queries Send′1 or Send′2 with accj

S = ∇
or acci`

A`
= ∇. If such a query is never made, the distributions on the view are

identical. Therefore, we have

Claim 2. Adv
P ′

1
A (k) ≤ Adv

P ′
2

A (k).

Experiment P ′
3: In this experiment, the simulator interacts with the adversary

A as in experiment P ′
2 except that the adversary’s queries to Execute and Send′0

oracle are handled differently.

For each Execute and each Send′0 query, each value Auth` is computed as
Auth` = EIDS

[H(sidP,i`

A`
|pw′S

A`
)] where pw′S

A`
is randomly chosen from Z∗q−Password

(i.e., it is not a valid password). The following bounds the effect this transfor-
mation can have on the adversary’s advantage.

Claim 3. If the IBE scheme is secure against the chosen-ciphertext attack with
multi-challenge, |Adv

P ′
2

A (k)− Adv
P ′

3
A (k)| is negligible.

Assume that there exist m servers S1, S2, · · · , Sm. The claim is proved by m

sub-experiments P
′(1)
3 , P

′(2)
3 , · · · , P ′(m)

3 = P ′
3. In experiment P

′(t)
3 , only Execute



and Send′0 related to the server St is handled differently. Let P
′(0)
3 = P ′

2, we only

need to prove |Adv
P
′(t−1)
3

A (k)− Adv
P
′(t)
3

A (k)| (where 1 ≤ t ≤ m) to be negligible.
The proof relies on the chosen-ciphertext security with multi-challenge of the

IBE scheme. If |Adv
P
′(t−1)
3

A (k) − Adv
P
′(t)
3

A (k)| is non-negligible, we show that the
simulator can use A as a subroutine to perform the chosen-ciphertext attack to
the IBE as follows.

Let S = St, the simulator is given public parameters paramsE for an instance
of the IBE scheme, and may repeatedly query the encryption oracle EIDS ,b̃[·, ·]
(where b̃ ∈ {0, 1}), which is defined as follows.

EIDS ,b̃[M0,M1] = EIDS
(Mb̃)

where M0,M1 are any two messages with equal length, and b̃ is randomly-chosen
bits (unknown to simulator).

The simulator begins by running a modified initialization protocol as follows.

Initialize′(1k, paramsE)–

(paramsP,S , master-keyS)
R← SetupP,S(1k), H

R← CRHF(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k),

For each S ∈ Server, d′
S ← ExtractS(IDS , paramsS , master-keyS)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN}
Return Client, Server, ClientServerPair, H, paramsP,E,S

The simulator responds to Corrupt, Reveal, Test queries, Send queries in the
protocol P , Send′2 queries as in the experiment P

′(t−1)
3 . It responds to Execute

and Send′0 queries unrelated to the server St as in the experiment P
′(t−1)
3 , too.

However, it responds to KeyGen oracle and the decryption oracle DdS
in the

Send′1 by querying the challenger of the IBE scheme. With DdS
, the simulator is

able to tell if an adversarially-generated message (msgA1
, · · · ,msgAn

) is valid or
not. Furthermore, it is able to generate the signature AuthS since it knows the
signing private key d′S of each server. Thus, the simulator can answer various
Send′1 queries.

The simulator responds to Execute and Send′0 queries related to St as shown
in Fig. 5 and Fig. 6, respectively. Each time the simulator responds to Execute (or
Send′0) query related to St, it constructs the values Auth` using the encryption
oracle EIDS ,b̃[·, ·] of the IBE scheme by querying it with H(sidP,i`

A`
|pwS

A`
) and

H(sidP,i`

A`
|pw′S

A`
) as its two “messages”.

When b̃ = 0, the actions of the Execute and Send′0 oracles are exactly as in
experiment P

′(t−1)
3 , while if b̃ = 1 the actions of the Execute and Send′0 oracles

are exactly as in experiment P
′(t)
3 . In particular, for an Execute (or Send′0) query

related to the server St, when b̃ = 0 then Auth` = H(sidP,i`

A`
|pwS

A`
), while if b̃ = 1

then Auth` = H(sidP,i`

A`
|pw′S

A`
). If the adversary A has queried KeyGen(PKG, St),

the simulator aborts. In a Test query, the simulator lets b̃ = 0 if the adversary
A succeeds (i.e., b′ = b). Otherwise, let b̃ be a random choice of {0, 1}.



Execute(Ai1
1 , · · · , Ain

n , Sj), where S = St

If (∃` such that (A`, S) 6∈ ClientServerPair ∨ usedi`
A`

) ∨ usedk
S , return ⊥

usedi`
A`
← usedj

S ← TRUE, pidi`
A`
← pidk

S ← {A1, · · · , An, S}, ` = 1, 2, · · · , n

ExecuteP (Ai1
1 , Ai2

2 , · · · , Ain
n )

Auth` ← EIDS,b̃[H(sidP,i`
A`
|pwS

A`
), H(sidP,i`

A`
|pw′S

A`
)], msgA`

← A`|Auth` for any `

AuthS ← Sd′
S
[sidP,j

S |pidj
S ], msgS ← S|AuthS

sidi`
A`
← sidP,i`

A`
|msgA`

|msgS , sidj
S ← sidP,j

S |msgA1
|msgA2

| · · · |msgAn
|msgS

acci`
A`
← termi`

A`
← accj

S ← termj
S ← TRUE, ski`

A`
← skP,i`

A`
, ` = 1, 2, · · · , n

Return statusi1
A1

, · · · , statusin
An

, statusj
S

Fig. 5. The modified Execute oracle for proof of Claim 3

Send′
0(A

i`
` , Sj) where S = St

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

Auth` ← EID,b̃[H(sidP,i`
A`
|pwS

A`
), H(sidP,i`

A`
|pw′S

A`
)]

MsgOut← A`|Auth`, state
i
A`
← (sidP,i`

A`
, skP,i`

A`
, MsgOut)

Return statusi`
A`

Send′
1(S

j , (A`|Auth`)`=1,2,···,n) where S = St

If (∃` such that (A`, S) 6∈ ClientServerPair) ∨ usedj
S , return ⊥

usedj
S ← TRUE, pidj

S ← {A1, A2, · · · , An, S}
If MsgIn is adversarially-generated

If DdS(Auth`) = H(sidP,j
S |pw

S
A`

) for ` = 1, 2, · · · , n, then accj
S ← ∇

Else accj
S ← termj

S ← TRUE, AuthS ← Sd′
S
[sidP,j

S |pidj
S)]

MsgOut← S|AuthS , sidj
S ← sidP,j

S |MsgIn|MsgOut

Return statusj
S

Send′
2(A

i`
` , S|AuthS)

If ¬usedi`
A`
∨ termi`

A`
∨ (S 6∈ pidi`

A`
), return ⊥

statei`
A`
← (sidP,i`

A`
, skP,i`

A`
, FirstMsgOut)

If MsgIn is adversarially-generated

If VIDS [sid
P,i`
A`
|pidi`

A`
, AuthS ] = 1, then acci`

A`
← ∇

Else sidi`
A`
← sidP,i`

A`
|FirstMsgOut|MsgIn, acci`

A`
← termi`

A`
← TRUE, ski`

A`
← skP,i`

A`

Return statusi`
A`

Fig. 6. The modified Send oracles for the proof of Claim 3

Assume the probability of the adversary to succeeds in P
′(t−1)
3 and P

′(t)
3 are

p
′(t−1)
3 and p

′(t)
3 , respectively, and the probability of the simulator aborting is pa,



then the advantage of the simulator to succeed in guessing b̃ is

|Pr(b̃ = 0|b′ = b)− 1
2
| · (1− pa)

≥ | p
′(t−1)
3

p
′(t−1)
3 + p

′(t)
3

− 1
2
| · 1

m

≥ |p′(t−1)
3 − p

′(t)
3 |

4m
=
|Adv

P
′(t−1)
3

A (k)− Adv
P
′(t)
3

A (k)|
8m

Note that the adversary A can ask at most m−1 KeyGen queries. Otherwise,
there is no fresh instance for the Test query.

Because m is the number of servers (which is constant), if |Adv
P
′(t−1)
3

A (k) −
Adv

P
′(t)
3

A (k)| is non-negligible, the simulator can use the adversary A to per-
form the chosen-ciphertext attack with multi-challenge to the IBE with a non-
negligible advantage. However, the IBE is assumed to be secure against the

chosen-ciphertext attack with multi-challenge. So |Adv
P
′(t−1)
3

A (k) − Adv
P
′(t)
3

A (k)|
must be negligible and Claim 3 is true.

Next, we consider separately the case when the adversary A asks its Test
query to an instance initialized via an Execute query, and the case when A asks
its Test query to an instance initialized via a Send query. More formally, let Ex
be the event that A makes its query Test(Ai`

` ) to an instance Ai`

` such that A
never made a query of the form Send(U i, ∗) where U ∈ pidi`

A`
(therefore did make

an Execute query involving this instance).
Let Se = Ex, then

Pr
P ′

3
A [Succ] ≤ Pr

P ′
3

A [Succ ∧ Se] + Pr
P ′

3
A [Succ|Ex] · (1−Pr

P ′
3

A [Succ ∧ Se])

To evaluate Pr
P ′

3
A [Succ|Ex] and Pr

P ′
3

A [Succ ∧ Se], we do the following experiment.

Experiment P ′
4. In this experiment, the simulator responds to all oracle queries

as in experiment P ′
3 except that it begins by running the initialization specified

in Fig. 2.
It is obvious that the distribution of the adversary’s view on experiments P ′

3

and P ′
4 are identical.

Claim 4. If the group KE protocol P is secure against the passive eavesdropping
and Pr

P ′
4

A [Ex] > 0, then Pr
P ′

4
A [Succ|Ex] = 1/2 + ε′ where ε′ is negligible.

If ε′ is non-negligible, the simulator can useA to construct a passive adversary
A′ attacking the protocol P as follows.

For any Execute query asked by the adversary A, the simulator has the ad-
versary A′ to query ExecuteP in the protocol P at first and then outputs a
transcript as in experiment P ′

3 except from no session key assigned. In case the
adversary A queries Reveal oracle, the simulator has A′ to query RevealP in the
protocol P and forwards the result to A. Since the master-keyE,S and passwords



are generated by the simulator itself in the initialization, the simulator is able
to answer all other oracle queries, such as Send queries, as in experiment P ′

3.
When the adversary A queries Test(Ai`

` ) oracle, the simulator checks if A has
ever made any query of form Send(U i, ∗) where U ∈ pidi`

A`
(i.e., whether event Se

has occurred). If so, the simulation aborts and outputs a random bit. Otherwise
(namely, if event Ex has occurred), the simulator has A′ to query TestP (Ai`

` ) in
the protocol P , forward the question to A, and output whatever A outputs. The
simulation is perfect for A′ unless the simulator aborts due to the occurrence of
event Se. Therefore,

PrPA′ [Succ] = Pr
P ′

4
A [Succ|Ex] · Pr

P ′
4

A [Ex] +
1
2
· Pr

P ′
4

A [Se]

Because Pr
P ′

4
A [Succ|Ex] = 1/2 + ε′, we have PrPA′ [Succ] − 1/2 = ε′ · Pr

P ′
4

A [Ex].
If ε′ is non-negligible, AdvP

A′(k) = |2 · PrPA′ [Succ] − 1| is non-negligible because
Pr[Ex] is constant. This is in contradiction with the assumption that the group
KE protocol P is secure against the passive eavesdropping. Therefore, ε′ must
be negligible. Claim 4 follows.

In case that the event Se has occurred, the adversary A succeeds if one of
the following occurs:

– The adversary queries Send′1(S
j , (msgA1

, · · · , msgAn
)) for adversarially-generated

and valid (msgA1
, · · · ,msgAn

), that is, accj
S = ∇.

– The adversary queries Send′2(A
i`

` ,msgS) for adversarially-generated and valid
msgS , that is, acci`

A`
= ∇.

Let Succ1, and Succ2 denote the above two events, respectively, then

Pr
P ′

4
A [Succ ∧ Se] ≤ Pr

P ′
4

A [Succ1] + Pr
P ′

4
A [Succ2]

Because Auth` and ski`

A`
for any ` and AuthS for any S are all independent

of passwords chosen by the simulator in this experiment, the adversary’s view is
independent of passwords until Succ1 occurs. The probability that Succ1 occurs
is at most Q(k)/N , where Q(k) is the number of online attacks made by the
adversary A.

To evaluate Pr
P ′

4
A [Succ2], we do the following experiment.

Experiment P ′
5. The simulator responds to all oracle queries as in experiment

P ′
4 except that it begins by running a modified initialization as follows.

Initialize′′(1k, paramsS)–

(paramsP,E , master-keyE)
R← SetupP,E(1k), H

R← CRHF(1k)

(Client, Server, ClientServerPair)
R← UserGen(1k)

For each S ∈ Server, dS ← ExtractE(IDS , paramsE , master-keyE)

For each (A, S) ∈ ClientServerPair, pwS
A

R← {pw1, pw2, · · · , pwN} ⊂ Zq

Return Client, Server, ClientServerPair, H, paramsP,E,S



It is obvious that the distribution of the adversary’s view on experiments P ′
4

and P ′
5 are identical.

Claim 5. If the IBS has existential unforgeability under chosen-message attack,
then ε′′ = Pr

P ′
5

A [Succ2] is negligible.

If ε′′ is non-negligible, the simulator can use the adversary A to construct a
forger A′ attacking the IBS scheme as follows.

For KeyGen queries asked by the adversaryA, the simulator has the adversary
A′ to query the challenger of the IBS scheme. Each time the simulator responds
to Send′1 query asked by A, it checks if the messages are valid or not (note that
it knows the decryption key dS). If so, the simulator has A′ to query the signing
oracle Sd′S

of the IBS scheme on the message H(sidP,j
S |pidj

S) and returns the
signature AuthS to A. In addition, the simulator responds to all other oracles as
in experiment P ′

4.
In case that the adversary A queried Send′2(A

i`

` ,msgS) for adversarially-
generated and valid msgS (that is, acci`

A`
= ∇), the adversary A′ uses it to

forge a signature of the signer S on the message msgS . It is in contradiction with
the assumption that the IBS scheme has existential unforgeability. Therefore,
ε′′ = Pr

P ′
5

A [Succ2] must be negligible and the claim follows.

The preceding discussion implies that

Pr
P ′

5
A [Succ] ≤ Pr

P ′
5

A [Succ ∧ Se] + Pr
P ′

5
A [Succ|Ex] · (1−Pr

P ′
5

A [Succ ∧ Se])

≤ (
Q(k)
N

+ ε′′) + (
1
2

+ ε′)(1− Q(k)
N

− ε′′)

≤ 1
2

+
Q(k)
2N

+
ε′′

2
+ (1− Q(k)

N
− ε′′)ε′

and thus

2 · Pr
P ′

5
A [Succ]− 1 ≤ Q(k)

N
+ ε′′ + 2 · (1− Q(k)

N
− ε′′)ε′

This means that the adversary’s advantage Adv
P ′

5
A (k) in experiment P ′

5 is at
most Q(k)/N plus negligible quantity.

The sequence of claims proved above show that

Adv
P ′

0
A [Succ] ≤ Adv

P ′
5

A (k) + ε′′′ ≤ Q(k)
N

+ ε(k)

for some negligible function ε(·) and therefore the adversary’s advantage in P ′
0

is at most Q(k)/N plus some negligible quantity. This complete the proof of the
theorem.

6 Conclusion

In this paper, we present the first compiler to transform any group KE protocol
to a group PAKE protocol from identity-based cryptosystem. In addition, we



provide a rigorous proof of security for our compiler. As long as our group PAKE
protocol is built on a group KE protocol, and IBE and IBS schemes with provable
security without random oracles, it can be proven to be secure without random
oracles. One could prove that our protocol achieves key privacy with respect to
the server, as in [3].
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