
A Synthetic Indifferentiability Analysis of Some

Block-Cipher-Based Hash Functions∗

Zheng Gong, Xuejia Lai and Kefei Chen
Department of Computer Science and Engineering

Shanghai Jiaotong University, China
neoyan@sjtu.edu.cn,{lai-xj,chen-kf}@cs.sjtu.edu.cn

Abstract

At ASIACRYPT’06, Chang et al. analyzed the indifferentiability
of some popular hash functions based on block ciphers, namely, the
twenty collision resistant PGV, the MDC2 and the PBGV hash func-
tions, etc. In particular, two indifferentiable attacks were presented
on the four of the twenty collision resistant PGV and the PBGV hash
functions with the prefix-free padding. In this article, a synthetic in-
differentiability analysis of some block-cipher-based hash functions is
considered. First, a more precise definition is proposed on the indiffer-
entiability adversary in block-cipher-based hash functions. Next, the
advantage of indifferentiability is extended by considering whether the
hash function is keyed or not. Finally, a limitation is observed in Chang
et al.’s indifferentiable attacks on the four PGV and the PBGV hash
functions. The formal proofs show the fact that those hash functions
are indifferentiable from a random oracle in the ideal cipher model with
the prefix-free padding, the NMAC/HMAC and the chop construction.

1 Introduction

Block-Cipher-Based Hash Function. A cryptographic hash function
H : K × M → Y maps an infinite set of inputs M to a finite set of n-
bit outputs Y. It is one of the most important primitives in cryptography

∗This paper is supported by NSFC under the grants 60573032, 90604036 and National
863 Projects 2006AA01Z422

1

to provide a unique “fingerprint” on a certain information. The design of
today’s cryptographic hash functions still follows the Merkle-Damgard(MD)
structure[18, 9], by iterating a round function on the input message. The
hash function will be collision resistant if the round function is.

In practice, there are two main approaches for designing the round func-
tion in the MD structure. First, the most in-use hash functions, e.g., MD5
and SHA-1 were constructed by iterating a dedicated compression function.
There also exists a second setting for hash function design and analysis, in
which one makes the round function out of a block cipher. A well-known
advantage of the block-cipher-based approach is to minimize the efforts in
the design of a secure compression function. In the past decades, many
hash functions were designed from block ciphers, e.g., the PGV [22], the
PBGV[21] and the MDC2[4] hash functions. A negative side of the block-
cipher-based hash function is a decrease in speed. Still, the efficiency of
AES and the recent advances in collision finding[25, 26] motivate renewed
interest in finding good ways to turn a block cipher into a cryptographic
hash function. Instructive examples can be found in [16, 13].

Random Oracle Model. Random oracle model has been first introduced
by Bellare and Rogaway as a “paradigm for design efficient protocols” [1].
It assumes that all parties, including the adversary, have access to a public,
truly random oracle. This model becomes extremely useful since the schemes
designed under such a model would be simpler and more practical compared
to the standard model. In most of applications, random oracle is an oracle
that anybody can query but no one has control over it. This is according
to a completely valid application of the random oracle (as explained in [1]).
Then in some proofs, random oracle is considered to be under control of a
simulator. The simulator can listen to any query made to the oracle, so he
knows what queries were asked. Yet he has no control over the output, so
the oracle still remains a real random oracle[11]. Finally in some proofs,
random oracle is considered to be under complete control of a simulator.
The simulator can actually manipulate the answers of the oracle gives, as
long as each answer is computationally indistinguishable from a real random
oracle[3].

Since random oracle performs quite like cryptographic hash function,
people suggested to replace the random oracle in the scheme with a “secure”
dedicated hash function (e.g., SHA-1, SHA-256, etc) to preserve the security
in the standard model. One has to be careful with the selection of the
hash function, some specific vulnerabilities will be found when instantiates

2

a random oracle with a “bad” hash function[5, 20]. Research on how to
instantiate a random oracle with a certain hash function has been red hot
in recent years. Many valuable references on this problem could not be
indicated at a specific location: [6, 10, 12, 19]. All these researches take
the underlying hash function in the scheme as a black-box, which means the
internal structure of the hash function is ignored. Since one can prove such
a scheme is secure in the random oracle model, solving those problems back
to the efforts that design a cryptographic hash function to instantiate such
a random oracle.

Indifferentiability Methodology. In [17], Maurer et al. first introduced
a term “indifferentiability” and a formal model to “distinguish” whether a
given construction has any difference from a heuristic random oracle. The
indifferentiability has been focused on the question: what conditions should
be imposed on the round function F to make sure that the hash function
CF satisfies the certain conditions of the random oracle. This approach is
based on the fact that one of the problems in assessing the security of a hash
function is caused by arbitrary length of inputs. It is clear that the weakness
of F will generally result in the weakness of CF , but the converse does not
hold in general. The main problem is to derive such sufficient conditions.
The indifferentiability between a hash function and a random oracle is a more
rigorous white-box analysis which needs to expose the internal structure of
the hash function, while the indistinguishability just requires a black-box
analysis.

Recently, Coron et al.[8] first implemented the notion of indifferentia-
bility for the analysis of some classical MD variants. They analyzed that
plain MD hash function can be differentiable from a random oracle, then
proved MD structure hash functions will be indifferentiable with the prefix-
free padding, the HMAC/NMAC and the chop construction. In [7], Chang
et al. continued this initial suggestion and analyzed the indifferentiabil-
ity of some popular block-cipher-based hash functions with the prefix-free
padding. In particular, a formal proof of indifferentiability was given on the
twenty collision resistant PGV[2] and the PBGV[21] hash functions. Based
on those indifferentiability results, they claimed that there are sixteen colli-
sion resistant PGV hash functions are indifferentiable from a random oracle
in the ideal cipher model, while the remain four PGV hash functions are
not. They also gave an indifferentiable attack on the PBGV hash function,
and said by using the same idea one can find indifferentiable attacks on
MDC2[4], QG-I, and LOKI-DBH[14], etc.

3

Our Contributions In this paper, a synthetic indifferentiability analysis
of some block-cipher-based hash functions is considered. First, we propose
a more precise definition on the indifferentiability adversary in block-cipher-
based hash functions. Next, we analyze the advantage of indifferentiability
in keyed and unkeyed modes. The authors of [7] only focused on the collision
event, not all of the indifferentiable events in assessing the security of a hash
function, e.g., preimage attack, second preimage attack, etc. Moreover, they
only analyzed the situation in unkeyed mode. Since keyed hash functions
are receiving more and more attention, after the genius attacks were found
in widely-used dedicated-key hash functions, such as MD4, MD5 and SHA-
1[25, 26]. The indifferentiability analysis of keyed hash function will be
necessary in both of theory and practice. Prior to the current work, we
are unaware of any analysis on the advantage of indifferentiability for keyed
hash function based on any block cipher. Finally, we observe a limitation in
Chang et al.’s indifferentiable attacks on the four PGV and the PBGV hash
functions, which implies that their attacks are not possible if one limits the
message space to messages of at least two blocks. In particular, we formally
prove the four PGV and the PBGV hash functions are indifferentiable from
a random oracle with the prefix-free padding, the HMAC/NMAC and the
chop construction.

Organization. The remainder of this paper is organized as follows. In
Section 2, we review the definitions and describe a more precise definition
of the indifferentiability adversary in block-cipher-based hash functions. In
Section 3, first, we analyze the advantage of indifferentiability in keyed and
unkeyed modes. Then, we show a limitation in Chang et al.’s attacks on the
four PGV and the PBGV hash functions. Finally, we give our indifferen-
tiability analysis of the four PGV and the PBGV hash functions. Section 4
gives a conclusion.

2 Preliminaries

Here we review the notation and definitions that will be used throughout the
paper. Let the symbol ⊕ be the bitwise exclusive OR. For binary sequences
a and b, a||b denotes their concatenation. The i-th block of a message M is
mi and so M = m1||m2|| · · · ||m|M |/n, where n is the block length. Let IV
be the initial value. The same terminology and abbreviations in different
definitions are the same meaning, except there are special claims in the
context.

4

2.1 Ideal Cipher Model

Let κ, n, ` be numbers. A block cipher is a keyed function E : {0, 1}κ ×
{0, 1}n → {0, 1}n. For each k ∈ {0, 1}κ, the function Ek(·) = E(k, ·) is a
permutation on {0, 1}n. If E is a block cipher then E−1 denotes its inverse,
where E−1

k (y) = x such that Ek(x) = y. Let Bloc(κ, n) be the family of
all block ciphers E : {0, 1}κ × {0, 1}n → {0, 1}n. A block-cipher-based hash
function is a hash function H : {0, 1}∗ → {0, 1}` and E ∈ Bloc(κ, n) is the
block cipher used in the round function of H. If ` = n, then H is called a
single block length(SBL) hash function, e.g., the PGV hash functions[22].
If ` = 2n, then H is called a double block length(DBL) hash function, e.g.,
MDC2[4], QG-I, and LOKI-DBH[14].

Ideal cipher model is the formal model for the security analysis of block-
cipher-based hash functions, which is dating back to Shannon [24] and widely
used, e.g., in [2, 15, 22]. By choosing a block cipher E ∈ Bloc(κ, n), an
adversary is given access to two oracles E and E−1. Thus, the i-th query-
response ri is a four-tuple that

ri = (σi, ki, xi, yi)

where σi ∈ {1,−1}, ki ∈ {0, 1}κ, and xi, yi ∈ {0, 1}n. If σi = 1 then the ad-
versary queries (ki, xi) and the response is yi = Eki

(xi), otherwise he queries
(ki, yi) and the response is xi = E−1

ki
(yi). Since Ek(·) is a permutation on

{0, 1}n, it holds

Pr[Eki
(xi) = yi] = Pr[E−1

ki
(yi) = xi] =

1
n

.

In the ideal cipher model, the complexity of an attack is measured by
the total number of the optimal adversary’s queries to the two oracles E
and E−1.

2.2 Indifferentiability

Here we recall the definition for the indifferentiability analysis [17].

Definition 2.1 A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε)-indifferentiable from an ideal primitive Rand if
there exists a simulator S, such that for any distinguisher D it holds the
advantage of indifferentiability that:

5

Adv(D) = |Pr[DC,F = 1]− Pr[DRand,S = 1]| < ε,

where S has oracle access to Rand and runs in polynomial time at most tS,
and D runs in polynomial time at most tD and makes at most q queries. CF
is said to be (computationally) indifferentiable from Rand if ε is a negligible
function of the security parameter k (in polynomial time tD and tS).

It is proved in [17] that if CF is indifferentiable from Rand, then CF can
replace Rand in any cryptosystem, and the resulting cryptosystem is at least
as secure in the F model as in the Rand model. In other words, if a block-
cipher-based hash function CF is indifferentiable from a random oracle Rand
in the ideal cipher model, then CF can replace Rand in any cryptosystem,
while keeping the resulting system (with CF) to remain secure in the ideal
cipher model if the original system (with Rand) is secure in the random
oracle model.

In this paper, hash function H denotes the Turing machine CF where
the ideal primitive F is the round function of C. Let E denote the block
cipher used in the round function F and E−1 is its inverse. Since we focus
on block-cipher-based hash functions in case of the ideal cipher model, S has
to simulate the encryption oracle E and the decryption oracle E−1. There-
fore, any distinguisher D obtains the following rules: either the block-cipher
E, E−1 is chosen at random and the hash function H is constructed from
it, or the hash function H is chosen at random (Rand) and the simulated
encryption and decryption oracles S,S−1 are implemented by a simulator
S with oracle access to Rand. Those two ways to build up a cryptographic
hash function should be indifferentiable.

2.3 Indifferentiability Adversary in Block-Cipher-Based Hash
Functions

For indifferentiability analysis of block-cipher-based hash functions, first it
needs to formally define an adaptive adversary’s activities in those hash
functions. In [7], Chang et al. just defined the adversary in hash functions
based on dedicated compression functions in the random oracle model. A
more precise definition of the indifferentiability adversary in block-cipher-
based hash functions is defined as follows.

Let D be a distinguisher and S be a simulator for the formal analy-
sis of indifferentiability. By following Definition 2.1, the goal of D is to

6

distinguish two cryptosystems O1 and O2, such that O1 = (H, E,E−1)
and O2 = (Rand,S,S−1). H : K × M → Y denotes a hash function
constructed from a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n where
K ∈ {0, 1}κ,M ∈ {0, 1}∗ and Y ∈ {0, 1}`. Rand is a random oracle which
has the same domain and range with H. hi denotes the hash value of
the i-th query. The function Pad(·) denotes the padding rule of the hash
function H. Let ri ← (hi−1

mi−→ hi) be the i-th query-response to the or-
acles (E, E−1,S,S−1) where mi ∈ {0, 1}n. Ri = (r1, · · · , ri) denotes the
query-response set on the oracles (E, E−1,S,S−1) after the i-th query. Let
r′i ← (IV

M−→ hi) be the i-th query-response to the oracles (H, Rand) where
M ∈ M. R′i = (r′1, · · · , r′i) denotes the query-response set on the oracles
(H, Rand) after the i-th query. A functional closure R∗ on R is the set with
the following properties.

1. If hi−1
mi−→ hi, hi

mi+1−→ hi+1 ∈ Ri+1, then hi−1
mi||mi+1−→ hi+1 ∈ R∗i+1.

2. If hi−1
mi−→ hi, hi−1

mi||mi+1−→ hi+1 ∈ Ri+1, then hi
mi+1−→ hi+1 ∈ R∗i+1.

The (H, Rand)-query inputs an arbitrary length message and outputs
a fixed length hash value, while the (E, E−1,S,S−1)-query inputs a fixed
length plain-text or cipher-text and outputs the corresponding cipher-text
or plain-text, respectively. The details of the two categories of queries are
described below.

• Query on (E, E−1,S,S−1):

– For the i-th query on (E,S), distinguisher D queries (1, hi−1,mi)
and the response is yi = Ehi−1

(mi) or S(hi−1,mi), where yi,mi ∈
{0, 1}n. By computing the hash value hi from the tuple (yi, hi−1,mi),
the i-th query-response set Ri = Ri−1 ∪ (hi−1

mi−→ hi).

– For the i-th query on (E−1,S−1), distinguisherD queries (−1, hi−1, yi)
and the response is mi = E−1

hi−1
(yi) or S−1(hi−1, yi), where yi,mi ∈

{0, 1}n. By computing the hash value hi from the tuple (yi, hi−1,mi),
the i-th query-response set Ri = Ri−1 ∪ (hi−1

mi−→ hi).

– Let Rq be the query-response set of the oracles (E, E−1,S,S−1)
after the maximum q queries. According to the transitive and
substitute properties of Rq, the functional closure R∗q is the com-
plete view of distinguisher D on the oracles (E, E−1,S,S−1).

7

• Query on (H, Rand):

– For the i-th query on (H, Rand), distinguisher D selects an arbi-
trary length message Mi ∈M and a key ki ∈ K. Thus, the query
on hash functions will be (ki,Mi). In particular, ki equals a fixed
value IV in unkeyed hash functions. The response of (H, Rand)
is hi = H(ki, Pad(Mi)) or Rand(ki, Pad(Mi)) where hi ∈ Y.

– Let R′i = R′i−1 ∪ (ki
Mi−→ hi) be the query-response set on the or-

acles (H, Rand) after the i-th query. The query-response set R′q
is the complete view of distinguisher D on the oracles (H, Rand)
after the maximum q queries.

In indifferentiability analysis, all repetition queries will be ignored, e.g.,
Ri = Rj or R′

i = R′
j for any i 6= j. For simplicity, one can assume there are

no such trivial queries since they do not help anything in the view of the
distinguisher.

3 Indifferentiability Analysis of Some Block-Cipher-
Based Hash Functions

In this section, a synthetic indifferentiability analysis of block-cipher-based
hash functions is considered. First, we give a definition on the advantage
of indifferentiability in block-cipher-based hash functions of keyed and un-
keyed modes. Next, we observe a limitation in Chang et al.’s indifferentiable
attacks on the four PGV and the PBGV hash functions, then formally prove
the fact that those hash functions are indifferentiable from a random oracle
with the prefix-free padding, the HMAC/NMAC and the chop construction.

3.1 Advantage of Indifferentiability

In fact, the original advantage of indifferentiability presented by Chang et
al. [7] is incomplete because it just covered the collision event, while there
are some other indifferentiable events need to be totally considered. For
an exact bound of the advantage, one has to carefully consider all the se-
curity events that will affect the advantage of indifferentiability. Based on
the original analysis in [7] and the extended definition of the adversary in

8

block-cipher-based hash functions in Section 2.3, a more precise advantage
of indifferentiability is analyzed as follows.

Let Badi, i = 1, 2 be the set of the indifferentiable events on the two
cryptosystems O1 = (H, E, E−1) and O2 = (Rand, S, S−1), respectively.
The oracles (H, E,E−1) and (Rand, S, S−1) are identically distributed in
the past view of the distinguisher and Badi does not occur. If D is a dis-
tinguisher then we write Adv(D) as a measure of the maximal advantage
of indifferentiability overall distinguishers D. For brevity, D1 denotes the
event DH,E,E−1

= 1 and D2 denotes the event DRand,S,S−1
= 1. The function

Max() returns the biggest value of inputs. The advantage of indifferentia-
bility on the two cryptosystems O1 = (H, E, E−1) and O2(Rand, S, S−1) is
at most

Adv(D) = |Pr[DH,E,E−1
= 1]− Pr[DRand,S,S−1

= 1]|
= |(Pr[D1 ∩Bad1] + Pr[D1 ∩ ¬Bad1])
− (Pr[D2 ∩Bad2] + Pr[D2 ∩ ¬Bad2])|

= |(Pr[D1|Bad1]× Pr[Bad1]− Pr[D2|Bad2]× Pr[Bad2])
+ (Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[¬Bad2])|

≤ Max(Pr[Bad1], P r[Bad2]])× |Pr[D1|Bad1]− Pr[D2|Bad2]|
+ |Pr[D1|¬Bad1]× Pr[¬Bad1]− Pr[D2|¬Bad2]× Pr[Bad2]|

≤ Max(Pr[Bad1], P r[Bad2]])× (1 + Pr[D1|¬Bad1])
≤ 2×Max(Pr[Bad1], P r[Bad2]]).

Then we analyze the set of the indifferentiable events Badi in block-
cipher-based hash functions. For unkeyed hash functions, the events include
the collision(Coll), the second preimage(Sec) and the preimage(Pre). Be-
cause collision resistance implies second preimage resistance, while separates
from preimage resistance, then the set of the indifferentiable events in un-
keyed hash functions is

Badi = {Colli, P rei}, i = 1, 2.

For keyed hash functions, there are more indifferentiable events need to
be considered. Depends on the key and the challenge are fixed or random,
one thus has seven sensible notions, which are named Pre, ePre, aPre, Sec,
eSec, aSec, and Coll. The leading “a” in the name of a notion is meant

9

to suggest always: if a hash function is secure for any fixed key, then it is
always secure. The leading “e” in the name of a notion is meant to sug-
gest everywhere: if a hash function is secure for any fixed challenge, then it
is everywhere secure. According to the implications and separations of the
seven security notions[23], collision resistance implies (always) second preim-
age resistance and always/everywhere preimage resistance implies preimage
resistance, the set of the indifferentiable events in keyed hash functions is

Badkey
i = {Colli, eSeci, aPrei, ePrei}, i = 1, 2.

For brevity, we ignore the description of those security notions and the
proofs of the implications and separations here. See [18, 23] for more details.

3.2 Indifferentiability of The Four PGV Hash Functions

In [7], Chang et al. first proved there are sixteen out of the twenty collision
resistant PGV hash functions[2] which are indifferentiable from a random
oracle in the ideal cipher model with the prefix-free padding. Then they
designed two indifferentiable attacks on the four PGV and the PBGV hash
functions, respectively. The authors of [7] claimed that the two attacks are
not only possible with one-block message, but also more than one block.
Furthermore, they said by using the same idea one can find indifferentiable
attacks on some of the double block length hash functions, e.g., MDC2,
QG-I, and LOKI-DBH, etc. Here we show a limitation in their attacks,
which implies that their attacks are rather artificial and only possible in
the one-block padded message. Then we construct the simulations to prove
that the four PGV and the PBGV hash functions are indifferentiable from
a random oracle in the ideal cipher model with the prefix-free padding, the
NMAC/HMAC and the chop construction. First we give the analysis of the
four PGV hash functions.

The four PGV hash functions are Ehi−1
(mi)⊕mi (PGV-17), Ehi−1

(mi⊕
hi−1) ⊕mi ⊕ hi−1(PGV-18), Ehi−1

(mi) ⊕mi ⊕ hi−1(PGV-19), Ehi−1
(mi ⊕

hi−1)⊕mi(PGV-20). Let H : K ×M → Y be a hash function constructed
from a block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n where K ∈ {0, 1}κ,M∈
{0, 1}∗ and Y ∈ {0, 1}`. Rand is a random oracle which has the same domain
and range with H. hi denotes the hash value of the i-th query. The function
Pad(·) denotes the prefix-free padding. Let ri ← (hi−1

mi−→ hi) be the i-th
query-response to the oracles (E, E−1,S,S−1) where mi ∈ {0, 1}n. Ri =

10

(r1, · · · , ri) denotes the query-response set on the oracles (E, E−1,S,S−1)
after the i-th query and R∗ is its functional closure. Let r′i ← (IV

M−→ hi)
be the i-th query-response to the oracles (H, Rand) where M ∈ M. R′i =
(r′1, · · · , r′i) denotes the query-response set on the oracles (H, Rand) after
the i-th query. Let IV be the initial value. Chang et al.’s indifferentiable
attack on PGV-17 is recalled in Fig 3.1.

Distinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1)
and O2 = (Rand,S,S−1).

1. D selects a message M such that Pad(M) = m and |m| = n, then
he makes the query M to H and receives H(M) = hi.

2. D makes an inverse query (−1, hi−1, hi ⊕m) to S−1 and receives
m∗, where hi−1 = h0 = IV .

3. If m = m∗ output 1, otherwise output 0.

Fig 3.1 Chang et al.’s indifferentiable attack on PGV-17.

It is obvious that the simulator S can return m∗ = m only with proba-
bility 2−n, thus PGV-17 is differentiable from a random oracle in the ideal
cipher model. But their attack needs the key (hi−1) in the first iteration is
fixed (IV) or assumed known by the distinguisher. If one limits the mes-
sage space to messages of at least two blocks, e.g., the prefix-free padding
Pad(M) returns 1||mi if mi is the last block, else returns 0||mi. Because the
distinguisher D only queried the hash value hi = H(M) from (H, Rand),
D cannot make an inverse query (−1, hi−1, hi ⊕m) since the internal hash
value hi−1 is unknown, and D only knows (IV

M−→ hi) ∈ R′i. If D queried
the internal value hi−1 before, then S can track it since hi−1 ∈ R∗i . There-
fore, Chang et al.’s indifferentiable attack on the four PGV hash functions is
rather artificial and only possible with one-block message. In practice, the
attack can be avoided by using some well-known MD variants which were
proposed in [8], namely, the prefix-free padding, the NMAC/HMAC and the
chop construction, described in Fig 3.2.

Now we give a simulation to prove the fact that PGV-17 is indifferen-
tiable from a random oracle in the ideal cipher model with the prefix-free
padding. To avoid some trivial attacks, the last block contains the length of
input. Let q be the maximum times of oracle access and l is the maximum

11

Prefix-free MD(IV,M) NMAC Construction (IV, M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (Pad(mi), hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi Return Perm(hi)
HMAC Construction (IV, M) Chop Construction (IV, M)
M = m1|| · · · ||mi, h0 = IV M = m1|| · · · ||mi, h0 = IV
For i = 1 to i do hi = F (mi, hi−1) For i = 1 to i do hi = F (mi, hi−1)
Return hi+1 = F (hi, IV) Return Chop(hi)

Fig 3.2 Definitions of the four MD variants proposed in [8]. Pad(mi) is the

prefix-free padding, returns 1||mi if mi is the last block, else returns 0||mi.

Perm(x), x ∈ {0, 1}` is a random permutation in {0, 1}`. Chop(x), x ∈ {0, 1}` returns

first s-bit of x.

length of a query made by D. Based on the definition in Section 2.3, the
simulation is described below.

• Rand-Query. For the i-th Rand-query Mi ∈ M, if Mi is a rep-
etition query, the simulator S retrieves r′j ← (IV

Mi−→ hj) where
r′j ∈ R′i−1, j ≤ i − 1, then returns Rand(Mi) = hj . Else S randomly

selects a hash value hi ∈ Y and updates R′i = R′i−1 ∪ {IV
Mi−→ hi},

then returns Rand(Mi) = hi.

• (S,S−1)-Query. To answer the distinguisher D’s encryption and de-
cryption queries, the simulator S responses as follows.

1. For the i-th query (1, hi−1,mi) on S:

(a) If ∃IV
M−→ hi−1 ∈ R′i−1 and Pad(M) = mi, S runs Rand(M)

and obtains the response hi, updates Ri = Ri−1 ∪ {hi−1
mi−→

hi}, then returns hi ⊕mi;
(b) Else S randomly selects a hash value hi ∈ Y and updates

Ri = Ri−1 ∪ {hi−1
mi−→ hi}, then returns hi ⊕mi.

2. For the i-th query (−1, hi−1, ci) on S−1:

(a) If ∃IV
M−→ hi−1 ∈ R′i−1, S runs Rand(M) and obtains the

response hi. Then if ci = hi ⊕ Pad(M), S updates Ri =

Ri−1 ∪ {hi−1
Pad(M)−→ hi} and returns mi = Pad(M);

12

(b) Else S randomly selects a message mi ∈ {0, 1}n and updates
Ri = Ri−1 ∪ {hi−1

mi−→ ci ⊕mi}, then returns mi.

Before stating the main result of the four PGV hash functions, the
probability of the indifferentiable events Badi, i = {1, 2} is analyzed for the
two cryptosystems O1 and O2.

Lemma 1 In PGV-17 hash function with the prefix-free padding, Pr[Bad1] =
2−n+1 · O(q2) and Pr[Bad2] = 2−n+1 · l2 · O(q2), where l is the maximum
number of length in a hash query.

Proof. For the i-th query (−1, hi−1, ci) on S, it is possible that distinguisher
D’s query ci is a valid cipher-text such that ci = Ehi−1

(mi) where hi−1 was
never queried before. Since q is the maximum times of oracle access and
l is the maximum length of a query made by D, thus the probability that
the above event occurs is Pr[Pre1] = O(q

2n) or Pr[Pre2] = l · O(q
2n). In

the worst case, the simulator S has to track at most l × O(q) times to
find if ∃IV

M−→ hi−1 ∈ R′i. Thus, in case of O1, the probability of the
indifferentiable events Bad1 is

Pr[Bad1] = 2×Max(Pr[Coll1], P r[Pre1]) = 2×Pr[Coll1] = 2−n+1 ·O(q2).

In case of O2, the total number of choices is l · q, where l is the max-
imum number of length in a hash query. Similarly, the probability of the
indifferentiable events Bad2 is

Pr[Bad2] = 2×Max(Pr[Coll2], P r[Pre2]) = 2×Pr[Coll2] = 2−n+1·l2·O(q2).

By implementing the advantage of indifferentiability in keyed hash func-
tion, similar results can be easily deduced in keyed mode. ¤

Conventionally, the running time should be the worst case’s running
time of D. According to Lemma 1, we have the following theorem.

Theorem 1 PGV-17 hash function is (tD, tS , q, ε)-indifferentiable from a
random oracle in the ideal cipher model with the prefix-free padding, for any
distinguisher D in polynomial time bound td, with ts = l · O(q) and the
advantage ε = 2−n+1 · l2 · O(q2), where l is the maximum length of a query
made by D.

13

Proof. The results are obvious from the proof of Lemma 1, so we omit the
proof here. ¤

By using the similar method one can find PGV-18, PGV-19, PGV-20
are also indifferentiable from a random oracle with the prefix-free padding
in the ideal cipher model. It is easy to extend the same results with the
NMAC/HMAC and the chop construction. Thus we obtain the following
main theorem of this section.

Theorem 2 The four PGV hash functions are (tD, tS , q, ε)-indifferentiable
from a random oracle in the ideal cipher model with the prefix-free padding,
the HMAC/NMAC, and the chop construction, for any distinguisher D in
polynomial time bound tD, with tS = l ·O(q) and the advantage ε = 2−n+1 ·
l2 ·O(q2), where l is the maximum length of a query made by D.

3.3 Indifferentiability of The PBGV Hash Function

Similar to the four PGV hash functions, Chang et al.’s indifferentiable attack
on the PBGV hash function is only possible with one-block message. In this
section, we give an indifferentiability analysis on the PBGV hash function.

Let H : K ×M → Y be the PBGV hash function constructed from
block-cipher E : {0, 1}κ × {0, 1}n → {0, 1}n where κ = n, K ∈ {0, 1}κ,M ∈
{0, 1}∗ and Y ∈ {0, 1}2n. Rand is a random oracle which has the same
domain and range with H. (hi, gi) denotes the hash value of the i-th query.
The function Pad(·) denotes the prefix-free padding. Let IV = (h0, g0) be
the initial value. The PBGV hash function takes l · 2n-bit message M =
(m1,m2, · · · ,ml) (where mi = mi,1||mi,2, |mi,1| = |mi,2| = n) and IV as
inputs. For i = 1 to l, the PBGV hash function H : H(M) = (hl, gl) is
iterated as follows.

hi = Emi,1⊕mi,2(hi−1 ⊕ gi−1)⊕mi,1 ⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕hi−1
(mi,2 ⊕ gi−1)⊕mi,2 ⊕ hi−1 ⊕ gi−1

Chang et al’s indifferentiable attack on the PBGV hash function is
recalled in Fig 3.3. By the same reason, this attack is also impossible if one
limits the message space to messages of at least two blocks.

14

Distinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1)
and O2 = (Rand,S,S−1).

1. D selects a message M such that Pad(M) = m1 = m1,1||m1,2

and |m1| = 2n, then he makes the query M to H and receives
H(M) = (h1, g1).

2. D makes an inverse query (−1,m1,2 ⊕ h0 ⊕ g0 ⊕ g1,m1,1 ⊕ h0) to
S−1 and receives out.

3. If out = m1,2 ⊕ g0 output 1, otherwise 0.

Fig 3.3 Chang et al.’s indifferentiable attack on PBGV.

Now we give a simulation to prove the PBGV hash function with the
prefix-free padding is also indifferentiable from a random oracle. Let dis-
tinguisher D can access to oracles (O1,O2) where O1 = (H, E, E−1) and
O2 = (Rand,S,S−1). Let ri ← ((hi−1, gi−1)

mi−→ (hi, gi)) be the i-th
query-response to the oracles (E, E−1,S,S−1) where mi ∈ {0, 1}2n. Ri =
(r1, · · · , ri) denotes the query-response set on the oracles (E, E−1,S,S−1)
after the i-th query and R∗ is its functional closure. Let r′i ← (IV

M−→
(hi, gi)) be the i-th query-response to the oracles (H, Rand) where M ∈M.
R′i = (r′1, · · · , r′i) denotes the query-response set on the oracles (H, Rand)
after the i-th query.

• Rand-Query. For the i-th Rand-query Mi ∈M, if Mi is a repetition
query, the simulator S retrieves r′j ← (IV

Mi−→ (hj , gj)) where rj ∈
R′i−1, j ≤ i − 1, then returns Rand(Mi) = (hj , gj). Else S randomly

selects a hash value (hi, gi) ∈ Y and updates R′i = R′i−1 ∪ {IV
Mi−→

(hi, gi)}, then returns Rand(Mi) = (hi, gi).

• (S,S−1)-Query. To answer the distinguisher D’s encryption and de-
cryption queries, the simulator S proceeds as follows.

1. For the i-th query (1, xi, yi) on S:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, S computes Pad(M) = mi =

mi,1||mi,2. Then
i. if xi = mi,1⊕mi,2 and yi = hi−1⊕gi−1, S runs Rand(M)

and obtains the response (hi, gi), updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns hi ⊕mi,1 ⊕ yi;

15

ii. if xi = mi,1⊕hi−1 and yi = mi,2⊕gi−1, S runs Rand(M)
and obtains the response (hi, gi), and updatesRi = Ri−1∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns gi ⊕ hi−1 ⊕ yi.
(b) Else S randomly selects (hi, gi, hi−1,mi,1), computes mi,2 =

xi ⊕ mi,1 and gi−1 = yi ⊕ hi−1, and updates Ri = Ri−1 ∪
{(hi−1, gi−1)

mi−→ (hi, gi)}, then returns hi ⊕mi,1 ⊕ yi.

2. For the i-th query (−1, xi, yi) on S−1:

(a) If ∃IV
M−→ (hi−1, gi−1) ∈ R′i−1, the simulator S computes

Pad(M) = mi = mi,1||mi,2. Then
i. if xi = mi,1 ⊕ mi,2, S runs Rand(M) and obtains the

response (hi, gi). Then if yi = hi ⊕ mi,1 ⊕ hi−1 ⊕ gi−1,
S updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and
returns hi−1 ⊕ gi−1;

ii. if xi = mi,1 ⊕ hi−1, S runs Rand(M) and obtains the
response (hi, gi). Then if yi = gi ⊕ mi,2 ⊕ hi−1 ⊕ gi−1,
S updates Ri = Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)} and
returns mi,2 ⊕ gi−1.

(b) Else S randomly selects (hi−1, gi−1,mi,1, gi), computes hi =
yi ⊕mi,1 ⊕ hi−1 ⊕ gi−1 and mi,2 = xi ⊕mi,1, updates Ri =
Ri−1 ∪ {(hi−1, gi−1)

mi−→ (hi, gi)}, then returns hi−1 ⊕ gi−1.

Before stating the main result of the PBGV hash function, a simple
lemma is proved.

Lemma 2 In PBGV double block length hash functions with the prefix-free
padding, Pr[Bad1] = 2−n−3 ·O(q2) and Pr[Bad2] = 2−n−3 · l2 ·O(q2), where
l is the maximum number of length in a hash query.

Proof. In [14], it is proved that the upper bound of the collision attack on
the PBGV hash function is 4×O(2n/2).

Pr[Bad1] = 2×Max(Pr[Coll1], P r[Pre1]) = 2×Pr[Coll1] = 2−n−3 ·O(q2).

In case of O2, the total number of choices is l · q, where l is the max-
imum number of length in a hash query. Similarly, the probability of the
indifferentiable events Bad2 is

Pr[Bad2] = 2×Max(Pr[Coll2], P r[Pre2]) = 2×Pr[Coll2] = 2−n−3·l2·O(q2).

16

By implementing the advantage of indifferentiability in keyed hash func-
tion, similar results can be easily deduced in keyed mode. ¤

Similar to the four PGV hash functions, one can easily obtain the fol-
lowing result from the above analysis.

Theorem 3 The PBGV hash function is (tD, tS , q, ε)-indifferentiable from
a random oracle in the ideal cipher model with the prefix-free padding, the
NMAC/HMAC, and the chop construction, for any distinguisher D in poly-
nomial time bound tD, with tS = 2l ·O(q) and the advantage ε = 2−n−3 · l2 ·
O(q2), where l is the maximum length of a query made by D.

Although Knudsen et al.[14] proved that the PBGV hash function and
some of fast DBL hash functions can not be optimally secure against the
preimage, the second preimage and the collision attacks, our indifferentiable
result of the PBGV hash function is not conflict with theirs. By assum-
ing the block cipher used in the hash function is ideal, the advantage of
indifferentiability will be reduced to a negligible value. We stress that the
advantage of indifferentiability is based on the computational complexity,
not on the measurement of the unconditional security at all. Similar results
can be extended from the proof of the PBGV hash function on some other
DBL hash functions, e.g., MDC2, QG-I, and LOKI-DBH, etc.

4 Conclusion

Since hash functions play a pivotal role in nearly all of the cryptosystems,
investigating how to design a better hash function is important. In this pa-
per, a synthetic indifferentiability analysis of some block-cipher-based hash
functions is described. The results show the fact that all of the 20 collision re-
sistant PGV hash functions and the PBGV hash function are indifferentiable
from a random oracle with the prefix-free padding, the HMAC/NMAC and
the chop construction. The analysis can be extended to MDC2, QG-I, and
LOKI-DBH, etc. As the notion of indifferentiability is a critical methodol-
ogy to find the gap between hash function and random oracle in a white-box
investigation, there are still many hash functions and MD variants open with
regarding to indifferentiability analysis.

Acknowledgments.We would like to thank the anonymous reviewers for
helpful comments that improved the presentation of this paper.

17

References

[1] M. Bellare and P. Rogaway. Random oracle are practical: a paradigm
for designing efficient protocols. In ACM CCS’93, ACM, pp. 62-73.
1993.

[2] J. Black, P. Rogaway and T. Shrimpton. Black-Box Analysis of
the Black-Cipher-Based Hash-Function Constructions from PGV. Ad-
vances in Cryptology - CRYPTO’02. LNCS 2442, pp. 320-335. 2002.

[3] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil
Pairing. SIAM J. of Computing, Vol. 32, No. 3, pp. 586-615. 2003.

[4] B.O. Brachtl, D. Coppersmith, M.M. Hyden, S.M. Matyas, C.H. Meyer,
J. Oseas, S. Pilpel and M. Schilling. Data Authentication Using Modi-
fication Detection Codes Based on a Public One Way Encryption Func-
tion. U.S. Patent Number 4,908,861, March 13, 1990.

[5] D. Brown. Generic Groups, Collision Resistance, and ECDSA. In
http://eprint.iacr.org/2002/026. 2002.

[6] R. Canetti, O. Goldreich and S. Halevi. The randoom oracle methodol-
ogy, revisited. In Proceedings of 30th ACM Symposium on the Theory
of Computing, ACM Press, pp. 209-218. 1998.

[7] D. H. Chang, S. J. Lee, M. Nandi and M. Yung. Indifferentiable Security
Analysis of Popular Hash Functions with Prefix-Free Padding. X. Lai
and K. Chen(Eds): ASIACRYPT 2006, LNCS 4284, pp. 283-298. 2006.

[8] J. S. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard
Revisited: How to Construct a Hash Function. Advances in Cryptology
- CRYPTO’05, LNCS 3621, pp. 21-39. 2005.

[9] I. Damgard. A Design Principle for Hash Functions, Advances in Cryp-
tology, Cyrpto’89, LNCS 435, pp. 416-427. 1989.

[10] A. Dent. Adapting the weakness of the random oracle to the generic
model. In ASIACRYPT 2002, LNCS 2501, pp. 101-109. 2002.

[11] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and
Symmetric Encryption Schemes. In CRYPTO’99, LNCS 1666, pp. 537-
554. 1999.

18

[12] S. Goldwasser and Y. Tauman. On the (In)security of the Fiat-Shamir
Paradigm. In FOCS 2003, IEEE Computer Society, pp. 102-122. 2003.

[13] S. Hirose. Some Plausible Constructions of Double-Block-Length Hash
Functions. In FSE 2006, LNCS 4047, pp. 210-225. 2006.

[14] L.R. Knudsen, X. Lai and B. Preneel. Attacks on Fast Double Block
Length Hash Functions. Journal of Cryptology(1998) 11: 59-72.

[15] X. Lai and J. L. Massey. Hash Functions Based on Block Ciphers. In
Advances in Cryptology-Eurocrypt’92, LNCS 658, pp. 55-70. 1993.

[16] S. Lucks. A Failure-Friendly Design Principle for Hash Functions. In
ASIACRYPT 2005, LNCS 3788, pp. 474-494. 2005.

[17] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, Impossi-
bility Results on Reductions, and Applications to the Random Oracle
Methodology. Theory of Cryptography - TCC 2004, LNCS 2951, pp.
21-39. 2004.

[18] R.C. Merkle. One way hash functions and DES, Advances in Cryptol-
ogy, Crypto’89, LNCS 435, pp. 428-446. 1989.

[19] J.B. Nielsen. Separating Random Oracle Proofs from Complexity The-
oretic Proofs: The Non-committing Encryption Case. In CRYPTO’98,
LNCS 2442, pp. 111-126. 2002.

[20] P. Paillier and D. Vergnaud. Discrete-Log-Based Signatures May Not
Be Equivalent to Discrete Log. In ASIACRYPT 2005, LNCS 3788, pp.
1-20. 2005.

[21] B. Preneel, A, Bosselaers, R. Govaerts and J. Vandewalle. Collision-
free Hash-functions Based on Blockcipher Algorithms. In Proceeding of
1989 International Carnahan Conference on Security Technology, pp.
203-210. 1989.

[22] B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on
block ciphers: A synthetic approach. In Advances in Cryptology -
CRYPTO’93, LNCS 773, pp. 368-378. 1994.

[23] P. Rogaway and T. Shrimpton. Cryptographic Hash-Function Basics:
Definitions, Implications, and Separations for Preimage Resistance,
Second-Preimage Resistance and Collision Resistance. In FSE 2004,
LNCS 3017, pp. 371-388. 2004.

19

[24] C. Shannon. Communication theory of secrecy systems. Bell Systems
Techincal Journal, 28(4): pages 656-715. 1949.

[25] X. Wang, Y. Yin and H. Yu. Finding Collision in the Full SHA-1. In
CRYPTO’05, LNCS 3621, pp. 17-36. 2005.

[26] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions.
In EUROCRYPT’05, LNCS 3494, pp. 19-35. 2005.

20

