
Modeling Computational Security in Long-Lived Systems

Ran Canetti1,2, Ling Cheung2, Dilsun Kaynar3, Nancy Lynch2, and Olivier Pereira4

1 IBM T. J. Watson Research Center
2 Massachusetts Institute of Technology

3 Carnegie Mellon University
4 Université catholique de Louvain,

Abstract. For many cryptographic protocols, security relies on the assumption that adversarial entities have lim-
ited computational power. This type of security degrades progressively over the lifetime of a protocol. However,
some cryptographic services, such as timestamping services or digital archives, are long-lived in nature; they are
expected to be secure and operational for a very long time (i.e., super-polynomial). In such cases, security cannot
be guaranteed in the traditional sense: a computationally secure protocol may become insecure if the attacker has a
super-polynomial number of interactions with the protocol.
This paper proposes a new paradigm for the analysis of long-lived security protocols. We allow entities to be active
for a potentially unbounded amount of real time, provided they perform only a polynomial amount of work per unit
of real time. Moreover, the space used by these entities is allocated dynamically and must be polynomially bounded.
We propose a new notion of long-term implementation, which is an adaptation of computational indistinguishability
to the long-lived setting. We show that long-term implementation is preserved under polynomial parallel composi-
tion and exponential sequential composition. We illustrate the use of this new paradigm by analyzing some security
properties of the long-lived timestamping protocol of Haber and Kamat.

1 Introduction

Computational security in Long-lived systems: Security properties of cryptographic protocols typically hold only
against resource-bounded adversaries. Consequently, mathematical models for representing and analyzing security of
such protocols usually represent all participants as resource-bounded computational entities. The predominant way
of formalizing such bounds is by representing all entities as time-bounded machines, specifically, polynomial-time
machines (a very partial list of works representative of this direction includes [11, 5, 19, 7, 10, 3, 2, 8]).

This modeling approach has been successful in capturing the security of protocols for many cryptographic tasks.
However, it has a fundamental limitation: it assumes that the analyzed system runs for only a relatively “short” time.
In particular, since all entities are polynomially-bounded (in the security parameter), the system’s execution must end
after a polynomial amount of time. This type of modeling is inadequate for analyzing security properties of protocols
that are supposed to run for a “long” time, that is, an amount of time that is not bounded by a polynomial.

There are a number of natural tasks for which one would indeed be interested in the behavior of systems that run
for a long time. Furthermore, a number of protocols have been developed for such tasks. However, none of the existing
models for analyzing security against computationally bounded adversaries is adequate for asserting and proving
security properties of protocols for such “long-lived” tasks.

One such task is proactive security [18]. Here, some secret information is distributed among several parties, in
a way that allows the parties to jointly reconstruct the information, while preventing an adversary that breaks into
any small subset of the parties from reconstructing the information. Furthermore, the parties periodically engage in a
protocol for “refreshing” their shares in a way that guarantees secrecy of the information even if all parties are broken
into multiple times, as long as not too many parties are broken into between two refreshes. The overall intention is to
provide long-lived security of the system. Another such task is forward secure signatures [1, 6], where the system runs
for a “long” time, and the signer periodically refreshes its secret key so that an adversary that corrupts the signer cannot
forge signatures that bear time prior to the time of corruption. Forward secure encryption [1, 9] is defined analogously.
Yet another task of the same flavor is timestamping [4, 12, 13]. Although the literature contains protocols for these
long-lived tasks, we do not currently have the analytical tools to formulate and prove interesting assertions about their
security.

Related works A first suggestion for an approach might be to use existing models, such as the PPT calculus [16], the
Reactive Simulatability [3], or the Universally Composable security frameworks [7], with a sufficiently large value of



the security parameter. However, this would be too limited for our purpose in that it would force protocols to protect
against an overly powerful adversary even in the short run, while not providing any useful information in the long
run. Similarly, turning to information theoretic security notions is not appropriate in our case because unbounded
adversaries would be able to break computationally secure schemes instantaneously. We are interested in a notion of
security that can protect protocols against an adversary that runs for a long time, but is only “reasonably powerful”
at any point in time. Recently, Müller-Quade and Unruh proposed a notion of long-term security for cryptographic
protocols [17]. However, they consider adversaries that try to derive information from the protocol transcript after
protocol conclusion. This work does not consider long-lived protocol execution and, in particular, the adversary of [17]
has polynomially bounded interactions with the protocol parties, which is not suitable for the analysis of long-lived
tasks such as those we described above.

Our approach: In this paper, we propose a new mathematical model for analyzing the security of such long-lived
systems. Our understanding of a long-lived system is that some protocol parties, including adversaries, may be active
for an unbounded amount of real time, subject to the condition that only a polynomial amount of work can be done
per unit of real time. Other parties may be active for only a short time, as in traditional settings. Thus, the adversary’s
interaction with the system is unbounded, and the adversary may perform an unbounded number of computation steps
during the entire protocol execution. This renders traditional security notions insufficient: computationally and even
statistically secure protocols may fail if the adversary has unbounded interactions with the protocol.

Modeling long-lived systems requires significant departures from standard cryptographic modeling. First and fore-
most, unbounded entities cannot be modeled as probabilistic polynomial time (PPT) Turing machines. In search of
a suitable alternative, we see the need to distinguish between two types of unbounded computation: steps performed
steadily over a long period of time, versus those performed very rapidly in a short amount of time. The former conforms
with our understanding of boundedness, while the latter does not. Guided by this intuition, we introduce real time ex-
plicitly into a basic probabilitic automata model, the Task-PIOA model [8], and impose computational restrictions in
terms of rates, i.e., number of computation steps per unit of real time.

Another interesting challenge is the restriction on space, which traditionally is not an issue because PPT Turing
machines can, by their nature, access only a polynomially bounded amount of space. In the long-lived setting, space
restriction warrants explicit consideration. For instance, we would like to model dynamic allocation of space, as new
entities are invoked and old entities die off. We achieve this by restricting the use of state variables. In particular, all
state variables of a dormant entity (either not yet invoked or already dead) are set to a special null value ⊥. A system
is regarded as bounded only if, at any point in its execution, only a bounded amount of space is needed to maintain all
variables with non-⊥ values. For example, a sequential composition (in the temporal sense) of an unbounded number
of entities is bounded if each entity uses a bounded amount of space.

Having appropriate restrictions on space and computation rates, we then define a new long-term implementation
relation,≤neg,pt, for long-lived systems. This is intended to extend the familiar notion of computational indistinguisha-
bility, where two systems (real and ideal) are deemed equivalent if their behaviors are indistinguishable from the point
of view of a computationally bounded environment. However, notice that, in the long-lived setting, an environment
with super-polynomial run time can typically distinguish the two systems trivially, e.g., by launching brute force at-
tacks. This is true even if the environment has bounded computation rate. Therefore, our definition cannot rule out
significant degradation of security in the overall lifetime of a system. Instead, we require that the rate of degradation is
small at any point in time; in other words, the probability of a new successful attack during any polynomial-bounded
window of time remains bounded during the lifetime of the system.

To capture this intuition, we extend the ideal systems traditionally used in cryptography by allowing them to take
some designated failure steps, which allow an ideal system to take actions that could only occur in the real world,
e.g., accepting forgeries as valid signatures, or producing ciphertexts that could allow recovering the corresponding
plaintext. However, if failure steps are prevented from some time t, then the ideal system starts following the specified
ideal behavior.

Our long-term implementation relation ≤neg,pt requires that the real system approximates the ideal’s system’s
handling of failures. More precisely, we quantify over all real time points t and require that the real and ideal systems
are computationally indistinguishable up to time t + q (where q is polynomial in the security parameter), even if no
failures steps are taken by the ideal system in the interval [t, t+ q]. Notice that we do allow failure steps before time t.
This expresses the idea that, despite any security breaches that may have occurred before time t, the success probability
of a fresh attack in the interval [t, t + q] is small. Our formal definition of ≤neg,pt includes one more generalization:



it considers failure steps in the real system as well as the ideal system, in both cases before the same real time t. This
natural extension is intended to allow repeated use of≤neg,pt, in verifying protocols using several levels of abstraction.

We show that ≤neg,pt is transitive, and is preserved under the operations of polynomial parallel composition and
exponential sequential composition. The sequential composition result highlights the power of our model to formulate
and prove properties of an exponential number of entities in a meaningful way.

Example: Digital Timestamping: As a proof of concept, we analyze some security properties of the digital timestamp-
ing protocol of Haber et al. [4, 12, 13], which was designed to address the problem of content integrity in long-term
digital archives. In a nutshell, a digital timestamping scheme takes as input a document d at a specific time t0, and
produces a certificate c that can be used later to verify the existence of d at time t0. The security requirement is that
timestamp certificates are difficult to forge. Haber et al. note that it is inadvisable to use a single digital signature
scheme to generate all timestamp certificates, even if signing keys are refreshed periodically. This is because, over
time, any single signature scheme may be weakened due to advances in algorithmic research and/or discovery of vul-
nerabilities. Haber et al. propose a solution in which timestamps must be renewed periodically by generating a new
certificate for the pair 〈d, c〉 using a new signature scheme. Thus, even if the signature scheme used to generate c is
broken in the future, the new certificate c′ still provides evidence that d existed at the time t0 stated in the original
certificate c.

We model the protocol of Haber et al. as the composition of a dispatcher component and a sequence of signature
services. Each signature service “wakes up” at a certain time and is active for a specified amout of time before becom-
ing dormant again. This can be viewed as a regular update of the signature service, which may entail a simple refresh
of the signing key, or the adoption of a new signing algorithm. The dispatcher component accepts various timestamp
requests and forwards them to the appropriate signature service. We show that the composition of the dispatcher and
the signature services is indistinguishable from an ideal system, consisting of the same dispatcher composed with ideal
signature functionalities. Specifically, this guarantees that the probability of a new forgery is small at any given point
in time, regardless of any forgeries that may have happened in the past.

2 Task-PIOAs

We build our new framework using task-PIOAs [8], which are a version of Probabilistic Automata [20], augmented
with an oblivious scheduling mechanism based on tasks. A task is a set of related actions (e.g., actions representing the
same activity but with different parameters). We view tasks as basic groupings of events, both for real time scheduling
and for imposing computational bounds (cf. Sections 3 and 4). In this section, we review basic notations related to
task-PIOAs.

Notations: Given a set S, let Disc(S) denote the set of discrete probability measures on S. For s ∈ S, let δ(s) denote
the Dirac measure on s, i.e., δ(s)(s) = 1.

Let V be a set of variables. Each v ∈ V is associated with a (static) type type(v), which is the set of all possible
values of v. We assume that type(v) is countable and contains the special symbol ⊥. A valuation s for V is a function
mapping every v ∈ V to a value in type(v). The set of all valuations for V is denoted val(V ). Given V ′ ⊆ V , a
valuation s′ for V ′ is sometimes referred to as a partial valuation for V . Observe that s′ induces a (full) valuation
ιV (s′) for V , by assigning ⊥ to every v 6∈ V ′. Finally, for any set S with ⊥ 6∈ S, we write S⊥ := S ∪ {⊥}.

PIOA: We define a probabilistic input/output automaton (PIOA) to be a tuple A = 〈V, S, sinit, I, O,H,∆〉, where:
(i) V is a set of state variables and S ⊆ val(V ) is a set of states;

(ii) sinit ∈ S is the initial state;
(iii) I , O and H are countable and pairwise disjoint sets of actions, referred to as input, output and hidden actions,

respectively;
(iv) ∆ ⊆ S × (I ∪O ∪H)× Disc(S) is a transition relation.

The set Act := I ∪ O ∪ H is the action alphabet of A. If I = ∅, then A is said to be closed. The set of external
actions of A is I ∪O and the set of locally controlled actions is O ∪H . An execution is a sequence α = q0a1q1a2 . . .
of alternating states and actions where q0 = sinit and, for each 〈qi, ai+1, qi+1〉, there is a transition 〈qi, ai+1, µ〉 ∈ ∆
with qi+1 ∈ Supp(µ). A sequence obtained by restricting an execution of A to external actions is called a trace. We
write s.v for the value of variable v in state s. An action a is enabled in a state s if 〈s, a, µ〉 ∈ ∆ for some µ. We
require that A satisfies the following conditions.



– Input Enabling: For every s ∈ S and a ∈ I , a is enabled in s.
– Transition Determinism: For every s ∈ S and a ∈ Act , there is at most one µ ∈ Disc(S) with 〈s, a, µ〉 ∈ ∆. We

write ∆(s, a) for such µ, if it exists.
Parallel composition for PIOAs is based on synchronization of shared actions. PIOAs A1 and A2 are said to be

compatible if Vi ∩ Vj = Act i ∩Hj = Oi ∩ Oj = ∅ whenever i 6= j. In that case, we define their composition
A1‖A2 to be 〈V1 ∪ V2, S1 × S2, 〈sinit

1 , sinit
2 〉, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2, H1 ∪ H2, ∆〉, where ∆ is the set of

triples 〈〈s1, s2〉, a, µ1 × µ2〉 satisfying: (i) a is enabled in some si, and (ii) for every i, if a ∈ Act i, then 〈si, a, µi〉 ∈
∆i, otherwise µi = δ(si). It is easy to check that input enabling and transition determinism are preserved under
composition. Moreover, the definition of composition can be generalized to any finite number of components.

Task-PIOAs: To resolve nondeterminism, we make use of the notion of tasks introduced in [14, 8]. Formally, a task-
PIOA is a pair 〈A,R〉 where A is a PIOA and R is a partition of the locally-controlled actions of A. The equivalence
classes in R are called tasks. For notational simplicity, we often omit R and refer to the task-PIOA A. The following
additional axiom is assumed.

– Action Determinism: For every state s and every task T , at most one action a ∈ T is enabled in s.
Unless otherwise stated, terminologies are inherited from the PIOA setting. For instance, if some a ∈ T is enabled in
a state s, then T is said to be enabled in s.

Example 1 (Clock automaton). Figure 1 describes a simple task-PIOA Clock(T), which has a tick(t) output action for
every t in some discrete time domain T. For concreteness, we assume that T = N, and write simply Clock. Clock has a
single task tick, consisting of all tick(t) actions. These clock ticks are produced in order, for t = 1, 2, . . .. In Section 3,
we will define a mechanism that will ensure that each tick(t) occurs exactly at real time t.

Clock(T)

Signature

Input:
none

Output:
tick(t : T), t > 0

Tasks
tick = {tick(∗)}

States
count ∈ T, initially 0

Transitions
tick(t)
Precondition:

count = t− 1
Effect:

count := t

Fig. 1. Task-PIOA Code for Clock(T)

Operations: Given compatible task-PIOAs A1 and A2, we define their composition to be 〈A1‖A2,R1 ∪ R2〉. Note
that R1 ∪ R2 is an equivalence relation because compatibility requires disjoint sets of locally controlled actions.
Moreover, it is easy to check that action determinism is preserved under composition.

We also define a hiding operator: givenA = 〈V, S, sinit, I, O,H,∆〉 and S ⊆ O, hide(A, S) is the task-PIOA given
by 〈V, S, sinit, I, O′, H ′, ∆〉, where O′ = O \S and H ′ = H ∪S. This prevents other PIOAs from synchronizing with
A via actions in S: any PIOA with an action in S in its signature is no longer compatible with A.

Executions and traces: A task schedule for a closed task-PIOA 〈A,R〉 is a finite or infinite sequence ρ = T1, T2, . . .
of tasks inR. This induces a well-defined run of A as follows.

(i) From the start state sinit, we apply the first task T1: due to action- and transition-determinism, T1 specifies at
most one transition from sinit; if such a transition exists, it is taken, otherwise nothing happens.

(ii) Repeat with remaining Ti’s.



Such a run gives rise to a unique probabilistic execution, which is a probability distribution over executions in A.
For finite ρ, let lstate(A, ρ) denote the state distribution of A after executing according to ρ. A state s is said to be
reachable under ρ if lstate(A, ρ)(s) > 0. Moreover, the probabilistic execution induces a unique trace distribution
tdist(A, ρ), which is a probability distribution over the set of traces of A. We refer to [8] for more details on these
constructions.

3 Real Time Scheduling Constraints

In this section, we describe how to model entities with unbounded lifetime but bounded processing rates. A natural
approach is to introduce real time, so that computational restrictions can be stated in terms of the number of steps
performed per unit real time. Thus, we define a timed task schedule τ for a closed task-PIOA 〈A,R〉 to be a finite or
infinite sequence 〈T1, t1〉, 〈T2, t2〉, . . . such that: Ti ∈ R and ti ∈ R≥0 for every i, and t1, t2, . . . is non-decreasing.

The limit time, denoted ltime(τ), is defined as follows.
– If τ is empty, then ltime(τ) := 0.
– If t1, t2, . . . is bounded, then ltime(τ) := limi→∞ ti, otherwise ltime(τ) :=∞.

Following [15], we associate lower and upper real time bounds to each task. If l and u are, respectively, the lower
bound and upper bound for a task T , then the amount of time between consecutive occurrences of T is at least l and at
most u. To limit computational power, we impose a rate bound on the number of occurrences of T within an interval
I , based on the length of I . A burst bound is also included for modeling flexibility.

Formally, a bound map for a task-PIOA 〈A,R〉 is a tuple 〈rate, burst, lb, ub〉 such that: (i) rate, burst, lb : R →
R≥0, (ii) ub : R → R∞>0, and (iii) for all T ∈ R, lb(T ) ≤ ub(T ). To ensure that rate and ub can be satisfied
simultaneously, we require rate(T ) ≥ 1/ ub(T ) whenever rate(T ) 6= 0 and ub(T ) 6= ∞. From this point on, we
assume that every task-PIOA is associated with a particular bound map.

Given a timed schedule τ and a task T , let projT (τ) denote the result of removing all pairs 〈Ti, ti〉 with Ti 6= T .
Let I be any left-closed interval with left endpoint 0. We say that τ is valid for the interval I (under a bound map
〈rate, burst, lb, ub〉) if the following hold for every task T .

(i) If the pair 〈T, t〉 appears in τ , then t ∈ I .
(ii) If lb(T ) > 0, then: (a) if 〈T, t〉 is the first element of projT (τ), then t ≥ lb(T ); (b) for every interval I ′ of a

non-negative real length less than lb(T ), projT (τ) contains at most one element 〈T, t〉 with t ∈ I ′.
(iii) If ub(T ) 6=∞, then, for every interval I ′ ⊆ I of a non-negative real length greater than ub(T ), projT (τ) contains

at least one element 〈T, t〉 with t ∈ I ′.
(iv) For any d ∈ R≥0 and any interval I ′ of length d, projT (τ) contains at most rate(T ) · d + burst(T ) elements
〈T, t〉 with t ∈ I ′.

We sometimes say that a task schedule τ is valid, without specifying an interval, to mean that it is valid for the
interval [0, ltime(τ)].

Note that every timed schedule τ projects to an untimed schedule ρ by removing all real time information ti,
thereby inducing a trace distribution tdist(A, τ) := tdist(A, ρ). The set of trace distributions induced by all valid
timed schedules for A and 〈rate, burst, lb, ub〉 is denoted TrDists(A, 〈rate, burst, lb, ub〉). Since the bound map is
typically fixed, we often omit it and write TrDists(A).

In a parallel composition A1‖A2, the composite bound map is the union of component bound maps:

〈rate1 ∪ rate2, burst1 ∪ burst2, lb1 ∪ lb2, ub1 ∪ ub2〉.

This is well defined since the task partition of A1‖A2 isR1 ∪R2.

Example 2 (Bound map for Clock). We use upper and lower bounds to ensure that Clock’s internal counter evolves at
the same rate as real time. Namely, we set lb(tick) = ub(tick) = 1. The rate and burst bounds are also set to 1. It is
not hard to see that, regardless of the system of automata with which Clock is composed, we always obtain the unique
sequence 〈tick, 1〉, 〈tick, 2〉, . . . when we project a valid schedule to the task tick.

Note that we use real time solely to express constraints on task schedules. We do not allow computationally-
bounded system components to maintain real-time information in their states, nor to communicate real-time informa-
tion to each other. System components that require knowledge of time will maintain discrete approximations to time
in their states, based on inputs from Clock.



4 Complexity Bounds

We are interested in modeling systems that run for an unbounded amount of real time. During this long life, we expect
that a very large number of components will be active at various points in time, while only a small proportion of them
will be active simultaneously. During the life time of a long-lived system, especially for systems such as those that use
short-lived cryptographic primitives, it is natural to expect that many components will become obsolete or die, and will
be replaced with other components. Defining complexity bounds in terms of the total number of components would
then introduce unrealistic security constraints. Therefore, we find it more reasonable to define complexity bounds in
terms of the characteristics of the components that are simultaneously active at any point in time.

To capture these intuitions, we define a notion of step bound, which limits the amount of computation a task-PIOA
can perform, and the amount of space it can use, in executing a single step. By combining the step bound with the
rate and burst bounds of Section 3, we obtain an overall bound, encompassing both bounded memory and bounded
computation rates.

Note that we do not model situations where the rates of computation, or the computational power of machines,
increases over time. This is an interesting direction in which the current research could be extended.

Step Bound: We assume some standard bit string encoding for Turing machines and for the names of variables, actions,
and tasks. We also assume that variable valuations are encoded in the obvious way, as a list of name/value pairs. Let
A be a task-PIOA with variable set V . Given state s, let ŝ denote the partial valuation obtained from s by removing all
pairs of the form 〈v,⊥〉. We have ιV (ŝ) = s, therefore no information is lost by reducing s to ŝ. This key observation
allows us to represent a “large” valuation s with a “condensed” partial valuation ŝ.

Let p ∈ N be given. We say that a state s is p-bounded if the encoding of ŝ is at most p bits long. The task-PIOA
A is said to have step bound p if the following hold.

(i) For every variable v ∈ V , type(v) ⊆ {0, 1}p.
(ii) The name of every action, task, and variable of A has length at most p.

(iii) The initial state sinit is p-bounded.
(iv) There exists a deterministic Turing machine Menable satisfying: for every p-bounded state s, Menable on input ŝ

outputs the list of tasks enabled in s.
(v) There exists a probabilistic Turing machineMR satisfying: for every p-bounded state s and task T , MR on input
〈ŝ, T 〉 decides whether T is enabled in s. If so, MR computes and outputs a new partial valuation ŝ′, along with
the unique a ∈ T that is enabled in s. The distribution on ιV (ŝ′) coincides with ∆(s, a).

(vi) There exists a probabilistic Turing machineMI satisfying: for every p-bounded state s and action a,MI on input
〈ŝ, a〉 decides whether a is an input action of A. If so, MI computes a new partial valuation ŝ′. The distribution
on ιV (ŝ′) coincides with ∆(s, a).

(vii) The encoding of Menable is at most p bits long, and Menable terminates after at most p steps on every input. The
same hold for MR and MI .

Thus, step bound p limits the size of action names, which often represent protocol messages. It also limits the
number of tasks enabled from any p-bounded state (Condition (iv)) and the complexity of individual transitions (Con-
ditions (v) and (vi)). Finally, Condition (vii) requires all of the Turing machines to have description bounded by p.

Lemma 1 guarantees that a task-PIOA with step bound p will never reach a state in which more than p variables
have non-⊥ values. The proof is a simple inductive argument.

Lemma 1. LetA be a task-PIOA with step bound p. For every valid timed task schedule τ and every state s reachable
under τ , there are at most p variables v such that s.v 6= ⊥.

Proof. By the definition of step bounds, we have sinit is p-bounded. For a state s′ reachable under schedule τ ′, let s be
a state immediately preceding s′ in the probabilistic execution induced by τ ′. Thus s is reachable under some prefix of
τ . If the transition from s to s′ is locally controlled, we use the fact that MR always terminates after at most p steps,
therefore every possible output, including ŝ′, has length at most p. This implies ŝ′ is a partial valuation on at most p
variables. If the transition from s to s′ is an input, we follow the same argument with MI . ut

Given a closed (i.e., no input actions) task-PIOAA with step bound p, one can easily define a Turing machine MA
with a combination of nondeterministic and probabilistic branching that simulates the execution of A. Lemma 1 can
be used to show that the amount of work tape needed by MA is polynomial in p. This is reminiscent of the PSPACE
complexity class, except that our setting introduces bounds on the computation rate, and allows probabilistic choices.



Lemma 2 says that, when we compose task-PIOAs in parallel, the complexity of the composite is proportional to
the sum of the component complexities. The proof is similar to that of the full version of [8, Lemma 4.2]. We also note
that the hiding operator introduced in Section 2 preserves step bounds.

Lemma 2. Suppose {Ai|1 ≤ i ≤ b} is a compatible set of task-PIOAs, where each Ai has step bound pi ∈ N. The
composition ‖bi=1Ai has step bound ccomp ·

∑b
i=1 pi, where ccomp is a fixed constant.

Overall Bound: We now combine real time bounds and step bounds. To do so, we represent global time using the
clock automaton Clock (Figure 1). Let p ∈ N be given and let A be a task-PIOA compatible with Clock. We say that
A is p-bounded if the following hold:

(i) A has step bound p.
(ii) For every task T of A, rate(T ) and burst(T ) are both at most p.

(iii) Let π be any execution that has nonzero probability under some valid schedule, and t ∈ N. Then the total number
of tasks enabled in states in π in which count = t is at most p.

Conditions (i) and (ii) are self-explanatory. Condition (iii) is a technical condition that ensures that the enabling of
tasks does not change too rapidly. Without such a restriction, A could cycle through a large number of tasks between
two clock ticks, without violating the rate bound of any individual task.

Task-PIOA Families: We now extend our definitions to task-PIOA families, indexed by a security parameter k. More
precisely, a task-PIOA family Ā is an indexed set {Ak}k∈N of task-PIOAs. Given p : N → N, we say that Ā is p-
bounded just in case: for all k, Ak is p(k)-bounded. If p is a polynomial, then we say that Ā is polynomially bounded.
The notions of compatibility and parallel composition for task-PIOA families are defined pointwise. We now present an
example of a polynomially bounded family of task-PIOAs—a signature service that we use in our digital timestamping
example in Section 8.

Example: Signature Service: A signature scheme Sig consists of three algorithms: KeyGen, Sign and Verify. KeyGen
is a probabilistic algorithm that outputs a signing-verification key pair 〈sk , vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk . Finally, Verify is a deterministic algorithm that maps
〈m,σ, vk〉 to a boolean. The signature σ is said to be valid for m and vk if Verify(m,σ, vk) = 1.

Let SID be a domain of service identifiers. For each j ∈ SID , we build a signature service as a family of task-
PIOAs indexed by security parameter k. Specifically, we define three task-PIOAs, KeyGen(k, j), Signer(k, j), and
Verifier(k, j) for every pair 〈k, j〉, representing the key generator, signer, and verifier, respectively. We assume a
function alive : T → 2SID such that, for every t, alive(t) is the set of services alive at time t. The lifetime of each
service j is then given by aliveTimes(j) := {t ∈ T|j ∈ alive(t)}; we assume this to be a finite set of consecutive
numbers.

For every security parameter k, we assume the following finite domains: RIDk (request identifiers),Mk (messages
to be signed) and Σk (signatures). The representations of elements in these domains are bounded by p(k), for some
polynomial p. Similarly, the domain Tk consists of natural numbers representable using p(k) bits. Each of the com-
ponents KeyGen(k, j), Signer(k, j), and Verifier(k, j) has a set of input actions tick(t), t ∈ Tk, which are intended to
match with corresponding outputs from the clock automaton Clock (Figure 1). These inputs allow each component to
record discrete time information in its state variable clock .

KeyGen(k, j) chooses a signing key mySK and a corresponding verification key myVK . It does this exactly once,
at any time when service j is alive. It outputs the two keys separately, via actions signKey(sk)j and verKey(vk)j . The
signing key goes to Signer(k, j), while the verification key goes to Verifier(k, j).

The code for KeyGen(k, j) is given in Figure 2. As we mentioned before, the tick(t) action brings in the current
time. If j is alive at time t, then clock is set to the current time t. Also, if j has just become alive, as evidenced by the
fact that the awake flag is currently ⊥, the awake flag is set to true. On the other hand, if j is no longer alive at time
t, all variables are set to ⊥.

The chooseKeys action uses KeyGenj to choose the key pair, and is enabled only when j is awake and the keys are
currently ⊥. Note that the KeyGen algorithm is indexed by j, because different services may use different algorithms.
The same applies to Signj in Signer(k, j) and Verifyj in Verifier(k, j). The signKey and verKey actions output the
keys, and they are enabled only when j is awake and the keys have been chosen.

Signer(k, j) receives the signing key from another component, e.g., KeyGen(k, j). It then responds to signing
requests by running the Signj algorithm on the given message m and the received signing key sk . Figure 3 presents
the code for Signer(k, j), which is fairly self-explanatory.



KeyGen(k : N, j : SID)

Signature

Input:
tick(t : Tk)

Output:
signKey(sk : 2k)j

verKey(vk : 2k)j

Internal:
chooseKeysj

Tasks
verKeyj = {verKey(∗)j}
signKeyj = {signKey(∗)j}
chooseKeysj = {chooseKeysj}

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
myVK : (2k)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
else

awake, clock ,mySK ,
myVK := ⊥

chooseKeysj

Precondition:
awake = true
mySK = myVK = ⊥

Effect:
〈mySK ,myVK 〉
← KeyGenj(1

k)

signKey(sk)j

Precondition:
awake = true
sk = mySK 6= ⊥

Effect:
none

verKey(vk)j

Precondition:
awake = true
vk = myVK 6= ⊥

Effect:
none

Fig. 2. Task-PIOA Code for KeyGen(k, j)

The data type quek represents queues with maximum length p(k), where p is a polynomial. The enqueue operation
automatically discards the new entry if the queue is already of length p(k). This models the fact that Signer(k, j) has a
bounded amount of memory. For concreteness, we assume here that p is the constant function 1 for the queues toSign
and signed .

Verifier(k, j) accepts verification requests and simply runs the Verifyj algorithm. The code appears in Figure 4.
Again, all queues have maximum length 1.

Assuming the algorithms KeyGenj , Signj and Verifyj are polynomial time, it not hard to check that the composite
KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j) has step bound p(k) for some polynomial p. If rate(T ) and burst(T ) are at
most p(k) for every T , then the composite is p(k)-bounded. The family {KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j)}k∈N
is therefore polynomially bounded.

5 Long-Term Implementation Relation

Much of modern cryptography is based on the notion of computational indistinguishability. For instance, an encryption
algorithm is (chosen-plaintext) secure if the ciphertexts of two distinct but equal-length messages are indistinguish-
able from each other, even if the plaintexts are generated by the distinguisher itself. The key assumption is that the
distinguisher is computationally bounded, so that it cannot launch a brute force attack. In this section, we adapt this
notion of indistinguishability to the long-lived setting.

We define an implementation relation based on closing environments and acceptance probabilities. Let A be a
closed task-PIOA with output action acc and task {acc}. Let τ be a timed task schedule for A. The acceptance
probability of A under τ is: Pacc(A, τ) := Pr[β contains acc : β ←R tdist(A, τ)]; that is, the probability that a trace
drawn from the distribution tdist(A, τ) contains the action acc. If A is not necessarily closed, we include a closing



environment. A task-PIOA Env is an environment forA if it is compatible withA andA‖Env is closed. From here on,
we assume that every environment has output action acc.

In the short-lived setting, we say that a system A1 implements another system A2 if every run of A1 can be
“matched” by a run of A2 such that no polynomial time environment can distinguish the two runs. As we discussed in
the introduction, this type of definition is too strong for the long-lived setting, because we must allow environments
with unbounded total run time (as long as they have bounded rate and space).

For example, consider the timestamping protocol of [12, 13] described in Section 1. After running for a long period
of real time, a distinguisher environment may be able to forge a signature with non-negligible probability. As a result,
it can distinguish the real system from an ideal timestamping system, in the traditional sense. However, the essence
of the protocol is that such failures can in fact be tolerated, because they do not help the environment to forge new
signatures, after a new, uncompromised signature service becomes active.

This timestamping example suggests that we need a new notion of long-term implementation that makes mean-
ingful security guarantees in any polynomial-bounded window of time, in spite of past security failures. Our new
implementation relation aims to capture this intuition.

First we define a comparability condition for task-PIOAs: A1 and A2 are said to be comparable if they have the
same external interface, that is, I1 = I2 andO1 = O2. In this case, every environmentE forA1 is also an environment
for A2, provided E is compatible with A2.

Let A1 and A2 be comparable task-PIOAs. To model security failure events in both automata, we let F1 be a set
of designated failure tasks of A1, and let F2 be a set of failure tasks of A2. We assume that each task in F1 ∪ F2 has
∞ as its upper bound.

Given t ∈ R≥0 and an environment Env for bothA1 andA2, we consider two experiments. In the first experiment,
Env interacts with A1 according to some valid task schedule τ1 of A1‖Env, where τ1 does not contain any tasks from
F1 from time t onwards. In the second experiment, Env interacts with A2 according to some valid task schedule τ2
of A2‖Env, where τ2 does not contain any tasks from F2 from time t onwards. Our definition requires that the first
experiment “approximates” the second one, that is, if A1 acts ideally (does not perform any of the failure tasks in F1)
after time t, then it simulates A2, also acting ideally after time t.

More specifically, we require that, for any valid τ1, there exists a valid τ2 as above such that the two executions
are identical up to time t from the point of view of the environment. That is, the acceptance probabilities in these
experiments are the same up to time t and Env has the same state distribution immediately before time t. Moreover,
the two executions are overall computationally indistinguishable, namely, the difference in acceptance probabilities in
these two experiments is negligible provided Env is computationally bounded.

Given a task schedule τ = 〈T1, t1〉, 〈T2, t2〉, . . ., let trunc≥t(τ) denote the result of removing all pairs 〈Ti, ti〉 with
ti ≥ t. If τ is a schedule ofA‖B, then we define projB(τ) to be the result of removing all 〈Ti, ti〉 where Ti is not a task
of B. Moreover, let lstateB(A‖B, τ) denote the final state distribution of B after executing with A under the schedule
τ (assuming τ is finite).

Definition 1. Let A1 and A2 be comparable task-PIOAs that are both compatible with Clock. Let F1 and F2 be sets
of tasks of, respectively, A1 and A2, such that for any T ∈ (F1 ∪ F2), ub(T ) = ∞. Let p, q ∈ N and ε ∈ R≥0 be
given. Then we say that (A1, F1) ≤p,q,ε (A2, F2) provided that the following is true:
For every t ∈ R≥0, every environment Env of the form Env′‖Clock with Env′ p-bounded, and every valid timed
schedule τ1 for A1‖Env for the interval [0, t + q] that does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F1

and ti ≥ t, there exists a valid timed schedule τ2 for A2‖Env for the interval [0, t+ q] such that:
(i) Pacc(A1‖Env, trunc≥t(τ1)) = Pacc(A2‖Env, trunc≥t(τ2));

(ii) lstateEnv(A1‖Env, trunc≥t(τ1)) = lstateEnv(A2‖Env, trunc≥t(τ2));
(iii) projEnv(τ1) = projEnv(τ2);
(iv) τ2 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F2 and ti ≥ t; and
(v) |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)| ≤ ε.

The following lemma says that ≤p,q,ε (Definition 1) is transitive up to additive errors.

Lemma 3. Let A1, A2, and A3 be comparable task-PIOAs, and let F1 be a set of task of A1, F2 be a set of tasks for
A2, and F3 be a set of tasks of A3 such that for any T (∈ F1 ∪ F2 ∪ F3), ub(T ) = ∞. Let p, q ∈ N and ε ∈ R≥0 be
given. Assume that (A1, F1) ≤p,q,ε1 (A2, F2) and (A2, F2) ≤p,q,ε2 (A3, F3). Then (A1, F1) ≤p,q,ε1+ε2 (A3, F3).

Proof. Let t ∈ R≥0, a p-bounded environment Env of the form Env′‖Clock, and a valid timed schedule τ1 forA1‖Env
for the interval [0, t+ q] be given, where τ1 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F1 and ti ≥ t.



Choose τ2 for A2‖Env according to the assumption (A1, F1) ≤p,q,ε1 (A2, F2). Using τ2, choose τ3 for A3‖Env
according to the assumption (A2, F2) ≤p,q,ε2 (A3, F3).

Clearly, we have

– Pacc(A1‖Env, trunc≥t(τ1))
= Pacc(A2‖Env, trunc≥t(τ2))
= Pacc(A3‖Env, trunc≥t(τ3));

– lstateEnv(A1‖Env, trunc≥t(τ1))
= lstateEnv(A2‖Env, trunc≥t(τ2))
= lstateEnv(A3‖Env, trunc≥t(τ3));

– projEnv(τ1) = projEnv(τ2) = projEnv(τ3).

It is also immediate that τ3 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F3 and ti ≥ t. Finally,

|Pacc(A1‖Env, τ1)−Pacc(A3‖Env, τ3)|
≤ |Pacc(A1‖Env, τ1)−Pacc(A2‖Env, τ2)|

+ |Pacc(A2‖Env, τ2)−Pacc(A3‖Env, τ3)|
≤ ε1 + ε2. ut

The relation≤p,q,ε can be extended to task-PIOA families as follows. Let Ā1 = {(Ā1)k}k∈N and Ā2 = {(Ā2)k}k∈N
be pointwise comparable task-PIOA families. Let F̄1 be a family of sets such that each (F̄1)k is a set of tasks of
(Ā1)k and let F̄2 be a family of sets such that each (F̄2)k is a set of tasks of (Ā2)k, satisfying the condition that
each task of those sets has an infinite upperbound. Let ε : N → R≥0 and p, q : N → N be given. We say that
(Ā1, F̄1) ≤p,q,ε (Ā2, F̄2) just in case ((Ā1)k, (F̄1)k) ≤p(k),q(k),ε(k) ((Ā2)k, (F̄2)k) for every k.

Restricting our attention to negligible error and polynomial time bounds, we obtain the long-term implementation
relation ≤neg,pt. Formally, a function ε : N → R≥0 is said to be negligible if, for every constant c ∈ N, there exists
k0 ∈ N such that ε(k) < 1

kc for all k ≥ k0. (That is, ε diminishes more quickly than the reciprocal of any polynomial.)
Given task-PIOA families Ā1 and Ā2 and task set families F̄1 and F̄2, respectively, of Ā1 and Ā2, we say that
(Ā1, F̄1) ≤neg,pt (Ā2, F̄2) if ∀p, q ∃ε : (Ā1, F̄1) ≤p,q,ε (Ā2, F̄2), where p, q are polynomials and ε is a negligible
function.

Lemma 4 (Transitivity of ≤neg,pt). Let Ā1, Ā2, and Ā3 be comparable task-PIOA families. Let F̄1 be a task set
family of Ā1, Let F̄2 be a task set family of Ā2, and let F̄3 be a task set family of Ā3 (satisfying the upperbound
condition). Suppose (Ā1, F̄1) ≤neg,pt (Ā2, F̄2) and (Ā2, F̄2) ≤neg,pt (Ā3, F̄3). Then (Ā1, F̄1) ≤neg,pt (Ā3, F̄3).

Proof. Given polynomials p and q, choose negligible functions ε1 and ε2 according to the assumptions. Then ε1 + ε2
is negligible. By Lemma 3, we have (Ā1, F̄1) ≤p,q,ε1+ε2 (Ā3, F̄3).

6 Ideal Signature Functionality

In this section, we specify an ideal signature functionality SigFunc, and show that it is implemented, in the sense of
our ≤neg,pt definition, by the real signature service of Section 4.

As with KeyGen, Signer, and Verifier, each instance of SigFunc is parameterized with a security parameter k and
an identifier j. The code for SigFunc(k, j) appears in Figure 5. It is very similar to the composition of Signer(k, j) and
Verifier(k, j). The important difference is that SigFunc(k, j) maintains an additional variable history , which records
the set of signed messages. In addition, SigFunc(k, j) has an internal action failj , which sets a boolean flag failed . If
failed = false, then SigFunc(k, j) uses history to answer verification requests: a signature is rejected if the submitted
message is not in history , even if Verifyj returns 1. If failed = true, then SigFunc(k, j) bypasses the check on history ,
so that its answers are identical to those from the real signature service.

Recall that, for every task T of the real signature service, rate(T ) and burst(T ) are bounded by p(k) for some
polynomial p. We assume that the same bound applies to SigFunc(k, j). Since aliveTimes(j) is a finite set of con-
secutive numbers, it represents essentially an interval whose length is constant in the security parameter k. Therefore,
p(k) gives rise to a bound p′(k) on the maximum number of signatures generated by SigFunc(k, j), where p′ is also
polynomial. We set the maximum length of the queue history to p′(k). All other queues have maximum length 1.

We claim that the real signature service implements the ideal signature functionality. The proof relies on a reduction
to standard properties of a signature scheme, namely, completeness and existential unforgeability, as defined below.



Definition 2. A signature scheme Sig = 〈KeyGen,Sign,Verify〉 is complete if Verify(m,σ, vk) = 1 whenever 〈sk , vk〉 ←
KeyGen(1k) and σ ← Sign(sk ,m). We say that Sig is existentially unforgeable under adaptive chosen message at-
tacks (or EUF-CMA secure) if no probabilistic polynomial-time forger has non-negligible success probability in the
following game.
Setup The challenger runs KeyGen to obtain 〈sk , vk〉 and gives the forger vk .
Query The forger submits message m. The challenger responds with signature σ ← Sign(m, sk). This may be re-

peated adaptively.
Output The forger outputs a pair 〈m∗, σ∗〉 and he wins if m∗ is not among the messages submitted during the query

phase and Verify(m∗, σ∗, vk) = 1.

For all k ∈ N and j ∈ SID , we define RealSig(j)k to be hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
and IdealSig(j)k to be hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj).

These automata are gathered into families in the obvious way: RealSig(j) := {RealSig(j)k}k∈N and IdealSig(j) :=
{IdealSig(j)k}k∈N. Note that the hiding operation prevents the environment from learning the signing key.

Theorem 1. Let j ∈ SID be given. Suppose that 〈KeyGenj ,Signj ,Verifyj〉 is a complete and EUF-CMA secure
signature scheme. Then (RealSig(j), {}) ≤neg,pt (IdealSig(j), {failj}).

To prove Theorem 1, we show that, for every time point t, the environment cannot distinguish RealSig(j)k from
IdealSig(j)k with high probability between time t and t + q(k), where q is a polynomial. This holds even when the
task {failj} is not scheduled in the interval [t, t + q]. The interesting case is when j is awakened after time t. That
implies the failed flag is never set and SigFunc(k, j) uses history to reject forgeries.

We use the the EUF-CMA assumption to obtain a bound on the distinguishing probability of any environment.
Essentially, we build a forger that emulates the execution of our various task-PIOAs under some valid schedule. When
the environment interacts with the Signer and Verifier automata, this forger uses the signature oracle and verification
algorithm in the EUF-CMA game. Moreover, the success probability of this forger is maximized over all environments
satisfying a particular polynomial bound. (Note that, given polynomial p and security parameter k, there are only a
finite number of p(k)-bounded environments.) Applying the definition of EUF-CMA security, we obtain the desired
negligible bound on distinguishing probability.

Proof (Proof of Theorem 1). Unwinding the definition of ≤neg,pt using the given failure sets, we need to show the
following: for every polynomials p and q, there is a negligible function ε such that, for every k ∈ N, t ∈ R≥0, p(k)-
bounded environment Env for RealSig(j)k, and valid schedule τ1 for RealSig(j)k‖Env for the interval [0, t + q(k)],
there is a valid schedule τ2 for IdealSig(j)k, ‖Env such that

(i) Pacc(RealSig(j)k‖Env, trunc≥t(τ1)) is the same as Pacc(IdealSig(j)k‖Env, trunc≥t(τ2));
(ii) lstateEnv(RealSig(j)k‖Env, trunc≥t(τ1)) is the same as lstateEnv(IdealSig(j)k‖Env, trunc≥t(τ2));

(iii) projEnv(τ1) = projEnv(τ2);
(iv) τ2 does not contain any pairs of the form 〈failj , ti〉 where ti ≥ t;
(v) Pacc(RealSig(j)k‖Env, τ1) is at most ε(k) away from Pacc(IdealSig(j)k‖Env, τ2).

Let polynomial p and q be given. We need to obtain a negligible ε bound that makes all the conditions above
satisfied for every k, t, p(k)-bounded Env, valid τ1, and some corresponding τ2.

Fix tl and tr to be time points such that [tl, tr] = {t ∈ T|j ∈ alive(t)}. So, we know that both RealSig(j)k and
IdealSig(j)k are dormant outside the interval [tl, tr].

First consider the cases in which tl < t. We obtain τ2 by inserting 〈{failj}, tl〉 immediately after 〈tick, tl〉. This sets
the failed flag in SigFunc(k, j) to true immediately after awake becomes true. Notice that, if failed = true, the verify
transition bypasses the checkm ∈ history (Figure 5). In other words, SigFunc(k, j) answers verify requests in exactly
the same way as Verifier(k, j), using the Verify algorithm only. Furthermore, it is easy to check that failed remains
true as long as SigFunc(k, j) is alive. Therefore, IdealSig(j)k has exactly the same visible behavior as RealSig(j)k
and Conditions (i) through (v) above are satisfied if we choose ε(k) = 0, for every k, p(k)-bounded Env and valid τ1.

Now, consider the cases in which t ≤ tl. Set τ2 := τ1. Since both RealSig(j)k and IdealSig(j)k are dormant during
[0, t], Conditions (i) and (ii) must hold. Condition (iii) is immediate and Condition (iv) holds because failj is not a task
of RealSig(j)k. It remains to argue that there exists a negligible function ε such that Condition (v) is satisfied.

To this purpose, we rely on the EUF-CMA security of Sig. We however do not need to bound the success probability
of one specific forger, as in the EUF-CMA definition, but the success probability of all forgers that satisfy fixed
polynomial p and q bounds, for every time t and schedule τ1.



For every k ∈ N, we define a time (tmax)k ≤ tl, a p(k)-bounded environment (Envmax)k for RealSigk, and a valid
schedule (τ1max)k for RealSigk‖(Envmax)k for the time interval [0, (tmax)k + q(k)], with the following property: for
every time t ≤ tl, every p(k)-bounded environment Env for RealSigk, and every valid schedule τ1 for RealSigk‖Env
for the interval [0, t+ q(k)], we have:

|Pacc(RealSig(j)k‖Env, τ1)−Pacc(IdealSig(j)k‖Env, τ1)|
≤ |Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)|.

To see that such a (tmax)k, (Envmax)k and (τ1max)k exist, it is enough to observe that there are only a finite
number of times, environments and schedules respecting the tl, p(k) and q(k) bounds (up to isomorphism).

This means that is enough to show the existence of a negligible function ε such that, for every k ∈ N, we have:

|Pacc(RealSig(j)k‖(Envmax)k, (τ1max)k)−Pacc(IdealSig(j)k‖(Envmax)k, (τ1max)k)| ≤ ε(k).

Since Sig is complete, we observe that, for every value of k, the difference of acceptance probabilities of the two
automata compared in Condition (v) can only be non-zero if (Envmax)k succeeds in producing a forged signature
(that is, a valid signature for a message that was not signed by the Sign or SigFunc automata before) and in having this
signature rejected when the verify and respVer actions of SigFunc execute.

We now use each (Envmax)k and (τ1max)k to define a probabilistic polynomial-time (non-uniform) forger G =
{Gk}k∈N for Sig, in such a way that Gk essentially emulates an execution of the automaton IdealSig(j)k‖(Envmax)k
with schedule (τ1max)k.

More precisely, Gk successively reads all the tasks in the schedule (τ1max)k, and uses them to internally emulate
an execution of IdealSig(j)k‖(Envmax)k, up to the following exceptions:
1. when the {verKey(∗)} task has to be emulated, Gk replaces the verification algorithm obtained when emulating

the {chooseKeys} task with the one provided by Sig in the EUF-CMA game, and
2. when the {sign(∗, ∗)} task has to be emulated, Gk obtains signatures by using the signing oracle available in the

EUF-CMA game.
Furthermore,Gk stores a list of all messages that the emulated (Envmax)k asked to sign, and checks whether (Envmax)k
ever asks for the verification of a message with a valid signature that is not in the list. If such a signature is produced,
Gk outputs it as a forgery.

We observe that this emulation process is polynomial time-bounded because all transitions of the emulated systems
are polynomial time-bounded, the total running time of the system is bounded by tl + q(k), and Condition (iii) on the
overall bound of automata guarantees that no more than a polynomial number of transitions are performed per time
unit.

We also observe that the two proposed exceptions in the emulation of the execution of IdealSig(j)k‖(Envmax)k
do not change the distribution of the messages that (Envmax)k sees, since the verification algorithm used by Gk is
generated in the same way as KeyGen generates it, and since the message signatures are also produced in a valid way.
Therefore, it is with the same probability that the environment distinguishes the two systems it is interacting with (that
is, by producing a forgery early enough) in a real execution of the different automata and in the version emulated by
G.

Now, the assumption that Sig is EUF-CMA secure guarantees that there exists a negligible function ε bounding the
success probability of G. Selecting this function ε completes our proof. ut

7 Composition Theorems

In practice, cryptographic services are seldom used in isolation. Most likely, different types of services operate in
conjunction, interacting with each other and with multiple protocol participants. For example, a participant may submit
a document to an encryption service to obtain a ciphertext, which is later submitted to a timestamping service. In such
situations, it is important that the services are provably secure even in the context of composition.

In this section, we consider two types of composition. The first, parallel composition, is a combination of services
that are active at the same time and may interact with each other. Given a polynomially bounded collection of real
services such that each real service implement some ideal service, the parallel composition of the real services is
guaranteed to implement that of the ideal services.

The second type, sequential composition, is a combination of services that are active in succession. The interaction
between two distinct services is much more limited in this setting, because the earlier one must have finished execution



before the later one comes online. An example of such a collection is the signature services in the timestamping
protocol of [13, 12], where each service is replaced by the next at regular intervals.

As in the parallel case, we prove that the sequential composition of real services implements the sequential com-
position of ideal services. We are able to relax the restriction on the number of components from polynomial to
exponential.5 This highlights a unique aspect of our implementation relation: essentially, we walk down the real time
line and, at every point t, we focus on a polynomial length interval starting from t.

Parallel Composition: Using a standard hybrid argument, we show that the relation ≤p,q,ε (cf. Definition 1) is pre-
served under polynomial parallel composition, with some appropriate adjustment to the environment complexity bound
and to the error in acceptance probability.

Theorem 2. Let b ∈ N be given and, for each 1 ≤ i ≤ b, let A1
i and A2

i be comparable task-PIOAs. F 1
i be a set of

tasks of A1
i and let F 2

i be a set of tasks of A2
i satisfying the upperbound condition. Let F̂1 denote

⋃b
i=1 F

1
i and let F̂2

denote
⋃b
i=1 F

2
i . Suppose there exists a non-decreasing function r : N → N such that, for all i, both A1

i and A2
i are

r(i)-bounded. Suppose further that Aα1
1 , . . . ,Aαb

b are pairwise compatible for any combination of αi ∈ {1, 2}.
Let p, p′, q ∈ N and ε, ε′ ∈ R≥0 be given, and assume the following.

(1) p = ccomp · (b · r(b) + p′), where ccomp is the constant factor for composing task-PIOAs in parallel.
(2) ε′ = b · ε.
(3) For all i, (A1

i , F
1
i ) ≤p,q,ε (A2

i , F
2
i ).

Then we have (‖bi=1A1
i , F̂1) ≤p′,q,ε′ (‖bi=1A2

i , F̂2).

Proof. Let t ∈ R≥0 be given. Let Env = Env′‖Clock be a p′-bounded environment and let τ0 be a valid timed task
schedule for ‖bi=1A1

i ‖Env for the interval [0, t+ q] where τ0 contains no actions from F̂1 occuring at t or later.
For each 0 ≤ i ≤ b, let Hi denote A2

1‖ . . . ‖A2
i ‖A1

i+1‖ . . . ‖A1
b . In particular, H0 = ‖bi=1A1

i and Hb = ‖bi=1A2
i .

Similarly, let
Envi := A2

1‖ . . . ‖A2
i−1‖A1

i+1‖ . . . ‖A1
b‖Env

for each 1 ≤ i ≤ b. Note that every Envi is p-bounded and is an environment for A1
i and A2

i . In fact, we have
Hi−1‖Env = A1

i ‖Envi and Hi‖Env = A2
i ‖Envi.

Since τ0 does not contain any tasks from F̂1 at time t or later, it does not contain any tasks from F 1
1 from time t or

later. Since (A1
1, F

1
1 ) ≤p,q,ε (A2

1, F
2
2 ) and τ0 is a valid schedule for A1

1‖Env1 in which no tasks from F 1
1 occur from

time t onwards, we may choose a valid schedule τ1 for A2
1‖Env1 for the interval [0, t+ q] such that

(i) Pacc(A1
1‖Env1, trunc≥t(τ0)) = Pacc(A2

1‖Env1, trunc≥t(τ1));
(ii) lstateEnv1(A1

1‖Env1, trunc≥t(τ0)) = lstateEnv1(A2
1‖Env1, trunc≥t(τ1));

(iii) projEnv1
(τ0) = projEnv1

(τ1);
(iv) τ1 does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F 2

1 and ti ≥ t;
(v) |Pacc(A1

1‖Env1, τ0)−Pacc(A2
1‖Env1, τ1)| ≤ ε.

Repeating this argument, we choose valid schedules τ2, . . . , τb for H2‖Env, . . ., Hb‖Env, respectively, all satisfy-
ing the appropriate five conditions. By Condition (i), we have

Pacc(H0‖Env, trunc≥t(τ0)) = Pacc(H1‖Env, trunc≥t(τ1)) = . . . = Pacc(Hb‖Env, trunc≥t(τb)).

Also, since Env is part of every Envi, Condition (ii) guarantees that

lstateEnv(H0‖Env, trunc≥t(τ0)) = lstateEnv(Hb‖Env, trunc≥t(τb)).

Similarly, Condition (iii) guarantees that projEnv(τ0) = projEnv(τb).
Using both Conditions (iii) and (iv), we can infer that τb does not contain any pairs of the form 〈Ti, ti〉 where

Ti ∈ F̂2 =
⋃b
i=1 F

2
i and ti ≥ t. Finally,

|Pacc(‖bi=1A1
i ‖Env, τ0)−Pacc(‖bi=1A2

i ‖Env, τb)|
≤ |Pacc(H0‖Env, τ0)−Pacc(H1‖Env, τ1)|+ . . .

+ |Pacc(Hi‖Env, τi)−Pacc(Hi+1‖Env, τi+1)|+ . . .

+ |Pacc(Hb−1‖Env, τb−1)−Pacc(Hb‖Env, τb)|
≤ b · ε = ε′. ut

5 In our model, it is not meaningful to exceed an exponential number of components, because the length of the description of each
component is polynomially bounded.



Using Theorem 2, it is not hard to prove that ≤neg,pt is preserved under polynomial composition.

Theorem 3 (Parallel Composition Theorem for ≤neg,pt). Let two sequences of task-PIOA families Ā1
1, Ā1

2, . . . and
Ā2

1, Ā2
2, . . . be given, with Ā1

i comparable to Ā2
i for all i. Assume that Āα1

1 , Āα2
2 , . . . are pairwise compatible for any

combination of αi ∈ {1, 2}. For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of (Ā1
i )k for every

k and let F̄ 2
i be a family of sets such that (F̄ 2

i )k is a set of tasks of (Ā2
i )k for every k, satisfying the upperbound

condition.
Suppose there exist polynomials r, s : N → N such that, for all i, k, both (Ā1

i )k and (Ā2
i )k are bounded by

s(k) · r(i). Assume that r is non-decreasing and

∀p, q ∃ε ∀i (Ā1
i , F̄

1
i ) ≤p,q,ε (Ā2

i , F̄
2
i ), (1)

where p, q are polynomials and ε is a negligible function. (This is a strengthening of the statement ∀i (Ā1
i , F̄

1
i ) ≤neg,pt

(Ā2
i , F̄

2
i ).) Let b be any polynomial. For each k, let (Â1)k denote (Ā1

1)k‖ . . . ‖(Ā1
b(k))k. Similarly for (Â2)k. Also, let

(F̂1)k denote
⋃b(k)
i=1 (F̄ 1

i )k and let (F̂2)k denote
⋃b(k)
i=1 (F̄ 2

i )k. Then we have (Â1, F̂1) ≤neg,pt (Â2, F̂2).

Proof. By the definition of ≤neg,pt, we need to prove the following: ∀p′, q ∃ε′ (Â1, F̂1) ≤p′,q,ε′ (Â2, F̂2), where p′, q
are polynomials and ε′ is a negligible function. Let polynomials p′ and q be given and define p := ccomp ·(b·(r◦b)+p′),
where ccomp is the constant factor for composing task-PIOAs in parallel. Now choose ε using p, q, and Assumption (1).
Define ε′ := b · ε.

Let k ∈ N be given. We need to prove ((Â1)k, (F̂1)k) ≤p′(k),q(k),ε′(k) ((Â2)k, (F̂2)k). That is,

((Ā1
1)k‖ . . . ‖(Ā1

b(k))k,
b(k)⋃
i=1

(F̄ 1
i )k) ≤p′(k),q(k),ε′(k) ((Ā2

1)k‖ . . . ‖(Ā2
b(k))k,

b(k)⋃
i=1

(F̄ 2
i )k).

For every i, we know that (Ā1
i )k and (Ā2

i )k are bounded by (s(k) · r)(i). Also, by the choice of ε, we have
((Ā1

i )k, (F̄
1
i )k) ≤p(k),q(k),ε(k) ((Ā2

i )k, (F̄
2
i )k) for all i. Therefore, we may apply Theorem 2 to conclude that

((Â1)k,
⋃b(k)
i=1 (F̄ 1

i )k) ≤p′(k),q(k),ε′(k) ((Â2)k,
⋃b(k)
i=1 (F̄ 2

i )k). This completes the proof. ut

Sequential Composition: We now treat the more interesting case, namely, exponential sequential composition. The
first challenge is to formalize the notion of sequentiality. On a syntactic level, all components in the collection are
combined using the parallel composition operator. To capture the idea of successive invocation, we introduce some
auxiliary notions. Intuitively, we distinguish between active and dormant entities. Active entities may perform actions
and store information in memory. Dormant entities have no available memory and do not enable locally controlled
actions.6 In Definition 3, we formalize the idea of an entity A being active during one specific time interval. Then we
introduce sequentiality in Definition 4.

Definition 3. Let A be a task-PIOAs and let reals t1 ≤ t2 be given. We say that A is restricted to the interval [t1, t2]
if:

– for any t < t1, environment Env for A of the form Env′‖Clock, valid schedule τ for A‖Env for [0, t], and state s
reachable under τ , no locally controlled actions of A are enabled in s, and s.v = ⊥ for every variable v of A.

– the same for all t > t2.

Definition 4 (Sequentiality). LetA1,A2, . . . be pairwise compatible task-PIOAs. We say thatA1,A2, . . . are sequen-
tial if there exist reals 0 ≤ t1 < t2 < . . . such that: for all i, Ai is restricted to [ti, ti+1].

Note that each Ai may overlap with Ai+1 at the boundary time ti+1. Lemma 5 below states the intuitive fact that
no environment can distinguish two entities during an interval in which both entities are dormant.

Lemma 5. SupposeA1 andA2 are comparable task-PIOAs that are both restricted to the interval [t1, t2]. Let Env be
an environment for both A1 and A2 and of the form Env′‖Clock. Let t ∈ R≥0 and q ∈ N be given. Suppose we have
valid schedule τ1 for A1‖Env for the interval [0, t + q] and valid schedule τ2 for A2‖Env for the interval [0, t + q],
satisfying:

6 For technical reasons, dormant entities must synchronize on input actions. Some inputs cause dormant entities to become active,
while all others are trivial loops on the null state.



– Pacc(A1‖Env, trunc≥t(τ1)) = Pacc(A2‖Env, trunc≥t(τ2));
– lstateEnv(A1‖Env, trunc≥t(τ1)) = lstateEnv(A2‖Env, trunc≥t(τ2));
– projEnv(τ1) = projEnv(τ2).

Assume further that either t2 < t or t1 > t+ q. Then Pacc(A1‖Env, τ1) = Pacc(A2‖Env, τ2)).

Proof. First we consider the case t2 < t. SinceA1 andA2 are restricted to the interval [t1, t2], neither of them enables
any output actions during the interval [t, t + q]. By assumption, τ1 and τ2 agree on the tasks of Env and the state
distributions of Env just before time t are identical in the two experiments. Therefore, the probability that Env outputs
acc during [t, t+ q] must be identical in the two experiments. We also have the assumption that Env outputs acc with
the same probability during [0, t), therefore the acceptance probabilities are the same for the entire interval [0, t].

Similarly, if t1 > t + q, then neither A1 nor A2 enables any output actions during the interval [t, t + q]. Then we
follow the same argument as above. ut

Now we are ready to state the sequential composition theorems.

Theorem 4. LetA1
1,A1

2, . . . andA2
1,A2

2, . . . be two sequences of task-PIOAs such thatA1
i andA2

i are comparable for
every i. Assume that Aα1

1 ,Aα2
2 , . . . are pairwise compatible for any combination of αi ∈ {1, 2}. Also, let L, p̂ ∈ N be

given such that both ‖Li=1A1
i and ‖Li=1A2

i are p̂-bounded. Assume that bothA1
1, . . . ,A1

L andA2
1, . . . ,A2

L are sequential
for the same sequence of reals t1 < . . . < tL+1.

Let p, q ∈ N and ε ∈ R≥0 be given. Suppose there are sets of tasks F 1
i , F 2

i , 1 ≤ i ≤ L, such that (A1
i , F

1
i ) ≤p,q,ε

(A2
i , F

2
i ) for all i. Let F̂1 denote

⋃L
i=1 F

1
i and F̂2 denote

⋃L
i=1 F

2
i . Let b denote the largest number such that b

consecutive ti’s fall into a single closed interval of length q. (Such b must exist and is between 1 and L). Let p′ ∈ N
and ε′ ∈ R≥0 be given, with ε′ ≥ (b + 2) · ε and p ≥ ccomp · (p̂ + p′) (where ccomp is the constant factor for parallel
composition). Then we have (‖Li=1A1

i , F̂1) ≤p′,q,ε′ (‖Li=1A2
i , F̂2).

In the statement of Theorem 4, the error in acceptance probability increases by a factor of b + 2, where b is the
largest number of components that may be active in a closed time interval of length q. For example, if the life time of
each component is q

3 , then b is 5.7 This is the key difference between parallel composition and sequential composition:
for the former, error increases with the total number of components (namely, L), and hence no more than a polynomial
number of components can be tolerated. In the sequential case, L may be exponential, as long as b remains small.
The proof of Theorem 4 involves a standard hybrid argument for active components, while dormant components are
replaced without affecting the difference in acceptance probabilities.

Proof (Proof of Theorem 4). Let t ∈ R≥0 be given. Let Env = Env′‖Clock be a p′-bounded environment and let τ0 be
a valid timed task schedule for (‖Li=1A1

i )‖Env for the interval [0, t+ q] where τ0 has no tasks from F̂1 occuring at t or
later. We need to find τL for (‖Li=1A2

i )‖Env such that

(i) Pacc(‖Li=1A1
i ‖Env, trunc≥t(τ0)) = Pacc(‖Li=1A2

i ‖Env, trunc≥t(τL));
(ii) lstateEnv(‖Li=1A1

i ‖Env, trunc≥t(τ0)) = lstateEnv(‖Li=1A2
i ‖Env, trunc≥t(τL));

(iii) projEnv(τ0) = projEnv(τL);
(iv) τL does not contain any pairs of the form 〈Ti, ti〉 where Ti ∈ F̂2 and ti ≥ t;
(v) |Pacc(‖Li=1A1

i ‖Env, τ0)−Pacc(‖Li=1A2
i ‖Env, τL)| ≤ ε′.

Without loss of generality, assume there is an index i such that [ti, ti+1] intersects with [t, t + q]. Let l be the
smallest such index. Recall from the assumptions that at most b consecutive ti’s fall into a closed interval of length q.
Therefore, we know that tl−1 < t and tl+b > t+ q.

The rest of the proof proceeds as in the proof of Theorem 2. Namely, we define

Envi := A2
1‖ . . . ‖A2

i−1‖A1
i+1‖ . . . ‖A1

b‖Env

for each 1 ≤ i ≤ L. Note that Envi is p-bounded, therefore we may choose τi+1 using τi and the assumption that
(A1

i , F
1
2 ) ≤p,q,ε (A2

i , F
2
i ). Since Env is part of Envi for every i, Conditions (i) through (iii) are clearly satisfied at

every replacement step. Condition (iv) is satisfied because the following hold at every step i.

– The new task schedule τi+1 does not contain tasks from F 2
i+1.

7 Recall that two components may be active simultaneously at the boundary time.



– Condition (iii) guarantees that τi+1 does not contain tasks from
⋃i
j=1 F

2
j .

Finally, we consider Condition (v). There are two cases. If i < l−1 or i ≥ l+b, then we can apply Lemma 5 to con-
clude that Pacc(A1

i ‖Envi, τi) in fact equals Pacc(A2
i ‖Envi, τi+1). Otherwise, Pacc(A1

i ‖Envi, τi) and Pacc(A2
i ‖Envi, τi+1)

differ by at most ε. Summing over all indices i, we have |Pacc(‖Li=1A1
i ‖Env, τ0)−Pacc(‖Li=1A2

i ‖Env, τL)|
≤ (b+ 2) · ε = ε′. ut

Using Theorem 4, it is straightforward to prove the sequential composition theorem for ≤neg,pt.

Theorem 5 (Sequential Composition Theorem for ≤neg,pt). Let two sequences of task-PIOA families Ā1
1, Ā1

2, . . .
and Ā2

1, Ā2
2, . . . be given, with Ā1

i comparable to Ā2
i for all i. Assume that Āα1

1 , Āα2
2 , . . . are pairwise compatible for

any combination of αi ∈ {1, 2}. For each i, let F̄ 1
i be a family of sets such that (F̄ 1

i )k is a set of tasks of (Ā2 = 1i)k for
every k and let F̄ 2

i be a family of sets such that (F̄ 2
i )k is a set of tasks of (Ā2

i )k for every k satisfying the upperbound
condition. Let L : N → N be an exponential function and, for each k, let (Â1)k denote (Ā1

1)k‖ . . . ‖(Ā1
L(k))k.

Similarly for (Â2)k. Also, let (F̂1)k denote
⋃L(k)
i=1 (F̄ 1

i )k and let (F̂2)k denote
⋃L(k)
i=1 (F̄ 2

i )k.
Let p̂ be a polynomial such that both Â1 and Â2 are p̂-bounded. Suppose there exist a sequence of positive reals

t1 < t2 < . . . such that, for each k, both (Ā1
1)k, . . . , (Ā1

L(k))k and (Ā2
1)k, . . . , (Ā2

L(k))k are sequential for the
sequence t1 < . . . < tL(k)+1. Assume there is a constant real number c such that consecutive ti’s are at least c apart.

Suppose that, for every pair of polynomials 〈p, q〉, there exists negligible function ε such that (Ā1
i , F̄

1
i ) ≤p,q,ε

(Ā2
i , F̄

2
i ) for all i. Then we have (Â1, F̂1) ≤neg,pt (Â2, F̂2).

Proof. Let polynomials p′, q be given and define p := ccomp ·(p̂+p′), where ccomp is the constant factor for composing
task-PIOAs in parallel. Choose ε from p, q according to the assumption of the theorem. For each k, let b(k) be the
ceiling of q(k)c + 1. (The choice of b(k) ensures that at most b(k) consecutive ti’s fall within any interval of length at
most q(k). This is necessary in order to apply Theorem 4.) Since c is constant, b is a polynomial. Define ε′ := b · ε.

For every k ∈ N, we apply Theorem 4 to conclude that

((Ā1
1)k‖ . . . ‖(Ā1

L(k))k, (F̂1)k) ≤p′(k),q(k),ε′(k) ((Ā2
1)k‖ . . . ‖(Ā2

L(k))k, (F̂2)k).

That is, ((Â1)k, (F̂1)k) ≤p′(k),q(k),ε′(k) ((Â2)k, (F̂2)k. This completes the proof. ut

8 Application: Digital Timestamping

In this section, we present a formal model of the digital timestamping protocol of Haber et al. (cf. Section 1). Recall the
real and ideal signature services from Section 6. The timestamping protocol consists of a dispatcher component and
a collection of real signature services. Similarly, the ideal protocol consists of the same dispatcher with a collection
of ideal signature services. Using the parallel and sequential composition theorems (Theorems 3 and 5), we prove
that the real protocol implements the ideal protocol with respect to the long-term implementation relation ≤neg,pt.
This result implies that, no matter what security failures (forgeries, guessed keys, etc.) occur up to any particular time
t, new certifications and verifications performed by services that awaken after time t will still be correct (with high
probability) for a polynomial-length interval of time after t.

Note that this result does not imply that any particular document is reliably certified for super-polynomial time.
In fact, the protocol does not guarantee this: even if a document certificate is refreshed frequently by new services,
there is at any time a small probability that the environment guesses the current certificate, thus creating a forgery.
That probability, over super-polynomial time, becomes large. Once the environment guesses a current certificate, it
can continue to refresh the certificate forever, thus maintaining the forgery.

Let SID , the domain of service names, be N. In addition to alive and aliveTimes (cf. Section 4), we assume the
following.

– pref : T → SID . For every t ∈ T, the service pref(t) is the designated signer for time t, i.e., any signing request
sent by the dispatcher at time t goes to service pref(t).

– usable : T → 2SID . For every t ∈ T, usable(t) specifies the set of services that are accepting new verification
requests.
Assume, for every t ∈ T, pref(t) ∈ usable(t) ⊆ alive(t). If a service is preferred, it accepts both signing and

verification requests. If it is alive but not usable, no new verification requests are accepted, but those already submitted
will still be processed.



Dispatcher: We define Dispatcherk for each security parameter k. If the environment sends a first-time certificate re-
quest reqCert(rid , x), Dispatcherk requests a signature from service j = pref(t) via the action reqSign(rid , 〈x, t,⊥〉)j ,
where t is the clock reading at the time of reqSign. In this communication, we instantiate the message space Mk as
Xk ×Tk × (Σk)⊥, where Xk is the domain of documents to which timestamps are associated. After service j returns
with action respSign(rid , σ)j , Dispatcherk issues a new certificate via respCert(rid , σ, j).

If a renew request reqCert(rid , x, t, σ1, σ2, j) comes in, Dispatcherk first checks to see if j is still usable. If not,
it responds with respCert(rid , false). Otherwise, it sends reqVer(rid , 〈x, t, σ1〉, σ2)j to service j. If service j answers
affirmatively, Dispatcherj sends a signature request reqSign(rid , 〈x, t, σ2〉)j′ , where j′ is the current preferred service.
When service j′ returns with action respSignj′(rid , σ3), Dispatcherk issues a new certificate via respCert(rid , σ3, j

′).
The code for Dispatcher appears in The task-PIOA code for the component Dispatcher appears in Figure 7. As a

convention, we use σ1, σ2 and σ3 to denote previous, current, and new signatures, respectively.

Concrete Time Scheme: Let d be a positive natural number. Each service j is alive from time (j − 1) · d to (j + 2) · d.
Thus, at any given point in time, there can be at most three services that are concurrently alive. Moreover, service j is
preferred for signing from time (j− 1) · d to j · d, and is usable from time (j− 1) · d to (j+ 1) · d. Between (j+ 1) · d
and (j + 2) · d, services j continues to process requests already submitted, without receiving new requests.

Protocol Correctness: For every security parameter k, let SIDk ⊆ SID denote the set of p(k)-bit numbers, for some
polynomial p. Recall from Section 6 that RealSig(j)k = hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj)
and IdealSig(j)k = hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj). Here we define

RealSigSysk := Dispatcherk‖(‖j∈SIDk
RealSig(j)k) and IdealSigSysk := Dispatcherk‖(‖j∈SIDk

IdealSig(j)k).

Next, define RealSigSys := {RealSigSysk}k∈N and IdealSigSys := {IdealSigSysk}k∈N. Our goal is to show that

(RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ),

where we use ∅ for a family of empty failure sets and F̄k :=
⋃
j∈SIDk

{{failj}} for every k (Theorem 6).
First we make a key observation.

Lemma 6. Suppose we have k ∈ N, j ∈ SIDk. Then RealSig(j)k is restricted to [(j − 1) · d, (j + 2) · d]. Similarly
for IdealSig(j)k.

Proof. Suppose we have t < (j − 1) · d, environment Env for RealSig(j)k of the form Env′‖Clock, valid schedule τ
for RealSig(j)k‖Env for [0, t], and state s reachable under τ . Recall from Section 3 that, for every t′ ∈ T, the action
tick(t′) must take place at time t′. Therefore, τ does not trigger a tick(t′) action with t′ ∈ [(j − 1) · d, (j + 2) · d]. On
the other hand, all variables of RealSig(j)k remains ⊥ unless such a tick(t′) action takes place, so we can conclude
that s.v = ⊥ for every variable v of RealSig(j)k.

For t > (j + 2) · d, we know that τ must have triggered the action tick((j + 2) · d), which sets all variables of
RealSig(j)k to ⊥. Moreover, every subsequent tick(t′) has t′ > t, therefore the variables remain ⊥.

Finally, by inspection of the code for RealSig(j)k, we know that no locally controlled actions are enabled if all
variables are ⊥.

The proof for IdealSig(j)k is similar. ut

For each i ∈ {0, 1, 2}, define Reali,k to be the parallel composition of all RealSig(j)k with (j − 1) mod 3 = i.
Let Reali be {Reali,k}k∈N. By Lemma 6, we know that RealSig(i)k,RealSig(i+3)k, . . . are sequential. Thus, we have
partitioned the collection of real signature services into three classes, Real0, Real1, and Real2, such that the services
within each Reali are sequential. For instance, the first class consists of services 1, 4, . . ., which are alive in intervals
[0, 3d], [3d, 6d], . . . respectively.

Define Ideali,k and Ideali similarly. We make the following observations.

Lemma 7. The task-PIOA families Real0, Real1, Real2, Ideal0, Ideal1, and Ideal2 are polynomially bounded.

Lemma 8. The following hold for every k.
1. RealSig(1)k,RealSig(4)k, . . . in Real0 and IdealSig(1)k, IdealSig(4)k, . . . in Ideal0 are sequential for the sequence

0 < 3d < 6d < . . .



2. RealSig(2)k,RealSig(5)k, . . . in Real1 and IdealSig(2)k, IdealSig(5)k, . . . in Ideal1 are sequential for the sequence
d < 4d < . . .

3. RealSig(3)k,RealSig(6)k, . . . in Real2 and IdealSig(3)k, IdealSig(6)k, . . . in Ideal2 are sequential for the sequence
2d < 5d < . . .

Proof. Follows directly from Lemma 6.

Since each ideal service j has the same lifetime as the real service j, we can apply Theorem 5 to show that Reali
implements Ideali. This is the core step in the proof of the following correctness theorem. Then, the result follows
from the application of Theorem 3 to the parallel composition of Reali and Dispatcher, and the parallel composition
of Ideali and Dispatcher.

Theorem 6. Assume the concrete time scheme described above and that every signature scheme used in the timestamp-
ing protocol is complete and existentially unforgeable. By Theorem 1, this implies (RealSig(j), ∅) ≤neg,pt (IdealSig(j), {failj})
for every j ∈ SID . Assume further that, for every pair of polynomials 〈p, q〉, there exists a negligible function ε such
that (RealSig(j), ∅) ≤p,q,ε (IdealSig(j), {failj}) for every j ∈ SID . Then (RealSigSys, ∅) ≤neg,pt (IdealSigSys, F̄ ),
where F̄k :=

⋃
j∈SIDk

{{failj}} for every k.

Proof. First we apply Theorem 5 three times to show:
1. (Real0, ∅) ≤neg,pt (Ideal0, F̄0) where (F̄0)k :=

⋃
j∈{1,4,...}{{failj}} for every k.

2. (Real1, ∅) ≤neg,pt (Ideal1, F̄1) where (F̄1)k :=
⋃
j∈{2,5,...}{{failj}} for every k.

3. (Real2, ∅) ≤neg,pt (Ideal2, F̄2) where (F̄2)k :=
⋃
j∈{3,6,...}{{failj}} for every k.

It is easy to see that for each i ∈ {0, 1, 2} and j ∈ SID, RealSigj ∈ Reali is comparable to IdealSigj ∈ Ideali.
Observe also that compatibility conditions are also satisfied. The number of components in Reali,k is bounded by the
cardinality of the set SIDk. Since SIDk is the set of p(k)-bit numbers for some polynomial p, the size of SIDk is
bounded by some exponential in k. We use this exponential for the L bound in Theorem 5. By Lemma 7 we know
that conditions on the complexity bounds are met. By Lemma 8 we exhibit the needed sequence of positive reals for
sequentiality. By Theorem 1, we have for every pair of polynomials p and q, there exists a negligible function such
that (RealSigj , ∅) ≤p,q,ε (IdealSigj , {failj}). Hence, we can apply Theorem 5 to get 1–3 above.

Then, we apply Theorem 3 to Dispatcher‖Real0‖Real1‖Real2 and Dispatcher‖Ideal0‖Ideal1‖Ideal2. In order to
apply this theorem we first observe that Dispatcher is comparable to Dispatcher, and for each i ∈ {0, 1, 2} and
j ∈ SID, RealSigj ∈ Reali is comparable to IdealSigj ∈ Ideali. Observe also that compatibility conditions are also
satisfied.

It is also obvious that for every pair of polynomials p and q, (Dispatcher, ∅) ≤p,q,0 (Dispatcher, ∅), and we just
showed that there are negligible functions εi such that (Reali, ∅) ≤p,q,εi (Ideali, F̄i) for each i ∈ {0, 1, 2}. The fact
that each of the composed families is polynomially bounded, and that we are only considering the composition of a
constant number of them (that is, 4) provides the r, s bounds and guarantees the uniformity condition (1) required
for Theorem 3 (we can simply select the largest of the bounds of each individual families). Those observations are
sufficient to apply Theorem 3, which yields the result we need.

9 Conclusion

We have introduced a new model for long-lived security protocols, based on task-PIOAs augmented with real-time task
schedules. We express computational restrictions in terms of processing rates with respect to real time. The heart of our
model is a long-term implementation relation, ≤neg,pt, which expresses security in any polynomial-length interval of
time, despite of prior security violations. We have proved polynomial parallel composition and exponential sequential
composition theorems for ≤neg,pt. Finally, we have applied the new theory to show security properties for a long-lived
timestamping protocol.

This work suggests several directions for future work. First, for our particular timestamping case study, it would
be interesting to define a higher-level “centralized” functionality specification for a long-lived timestamp service, and
to use ≤neg,pt to show that our ideal system, and hence, the real protocol, implements that specification.

We would also like to know whether or not it is possible to achieve stronger properties for long-lived timestamp
services, such as reliably certifying a document for super-polynomial time.



It remains to use these definitions to study additional long-lived protocols and their security properties. The use
of real time in the model should enable quantitative analysis of the rate of security degradation. Finally, it would be
interesting to generalize the framework to allow the computational power of the various system components to increase
with time.

References

1. Ross Anderson. Two remarks on public key cryptology. Technical Report UCAM-CL-TR-549, University of Cambridge, dec
2002.

2. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive systems. In M. Naor, editor,
First Theory of Cryptography Conference, TCC 2004, volume 2951 of LNCS, pages 336–354, Cambridge, MA, USA, February
2004. Springer-Verlag.

3. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asynchronous reactive systems. Cryptology ePrint Archive,
Report 2004/082, 2004. http://eprint.iacr.org/.

4. D. Bayer, S. Haber, and S. W. Stornetta. Improving the efficiency and reliability of digital time-stamping. In R. M. Capocalli,
A. De Santis, , and U. Vaccaro, editors, Sequences II: Methods in Communication, Security, and Computer Science, pages
329–334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, 1991).

5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proceedings of Advances in Cryptology: Crypto’93,
pages 232–249, Santa Barbara, USA, 1994. Springer-Verlag - LNCS Vol. 773.

6. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 431–448. Springer, 1999.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Moni Naor, editor, Proceedings
of the 42nd Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer Society, 2001. Full
version available on http://eprint.iacr.org/2000/067.

8. Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira, and Roberto Segala. Analyzing
security protocols using time-bounded Task-PIOAs. Discrete Event Dynamic Systems, 18(1), 2008. 49 p., to appear. (Full
version available on http://eprint.iacr.org/2005/452).

9. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In E. Biham, editor, Advances
in Cryptology — EUROCRYPT 2003, number 2656 in Lecture Notes in Computer Science, pages 255–271. Springer, 2003.

10. O. Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press, 2001 (reprint of 2003).
11. S. Goldwasser and L. Levin. Fair computation of general functions in presence of immoral majority. In Alfred J. Menezes and

Scott A. Vanstone, editors, Advances in Cryptology - Crypto ’90, pages 77–93, Berlin, 1990. Springer-Verlag. Lecture Notes
in Computer Science Volume 537.

12. S. Haber. Long-lived digital integrity using short-lived hash functions. Technical report, HP Laboratories, May 2006.
13. S. Haber and P. Kamat. A content integrity service for long-term digital archives. In Proceedings of the IS&T Archiving

Conference, 2006. Also published as Technical Memo HPL-2006-54, Trusted Systems Laboratory, HP Laboratories, Princeton.
14. N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. CWI Quarterly, 2(3):219–246, September 1989.
15. M. Merritt, F. Modugno, and M.R. Tuttle. Time constrained automata. In Proceedings of CONCUR 1991, volume 527 of

LNCS, pages 408–423, 1991.
16. John Mitchell, Ajith Ramanathan, Andre Scedrov, and Vanessa Teague. A probabilistic polynomial-time process calculus for

the analysis of cryptographic protocols. Theoretical Computer Science, 353:118–164, 2006.
17. J. Müller-Quade and D. Unruh. Long-term security and universal composability. In Theory of Cryptography, Proceedings of

TCC 2007, volume 4392 of LNCS, pages 41–60. Springer-Verlag, March 2007. Preprint on IACR ePrint 2006/422.
18. Rafail Ostrovsky and Moti Yung. How to withstand mobile virus attacks. In Proceedings of 10th annual ACM Symposium on

Principles of Distributed Computing (PODC-91), pages 51–59, August 1991.
19. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message transmission.

In IEEE Symposium on Security and Privacy, pages 184–200, Oakland, CA, May 2001. IEEE Computer Society.
20. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of Computing, 2(2):250–273,

1995.



Signer(k : N, j : SID)

Signature

Input:
tick(t : Tk)

signKey(sk : 2k)j

reqSign(rid : RIDk,
m : Mk)j

Output:
respSign(rid : RIDk,
σ : Σk)j

Internal:
sign(rid : RIDk,m : Mk)j

Tasks
respSignj = {respSign(∗, ∗)j}
signj = {sign(∗, ∗)j

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
mySK : (2k)⊥, init ⊥
toSign : quek(RIDk ×Mk)⊥,
init ⊥
signed : quek(RIDk ×Σk)⊥,
init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, signed

:= empty
else

awake, clock ,mySK ,
toSign, signed := ⊥

signKey(sk)j

Effect:
if awake = true
∧mySK = ⊥

then mySK := sk

reqSign(rid ,m)j

Effect:
if awake = true
∧¬ full(toSign)

then toSign :=
enq(toSign, 〈rid ,m〉)

sign(rid ,m)j

local σ : Σ
Precondition:

awake = true
head(toSign) = 〈rid ,m〉
mySK 6= ⊥

Effect:
toSign := deq(toSign)
σ ← Signj(m,mySK )
signed :=

enq(signed , 〈rid , σ〉)

respSign(rid , σ)j

Precondition:
awake = true
head(signed) = 〈rid , σ〉

Effect:
signed := deq(signed)

Fig. 3. Task-PIOA Code for Signer(k, j)



Verifier(k : N, j : SID)

Signature

Input:
tick(t : Tk)

verKey(vk : 2k)j

reqVer(rid : RIDk,
m : Mk, σ : Σk)j

Output:
respVer(rid : RIDk,
b : Bool)j

Internal:
verify(rid : RIDk,
m : Mk, σ : Σk)j

Tasks
respVerj = {respVer(∗, ∗)j}
verifyj = {verify(∗, ∗, ∗)j}

States
awake : {true}⊥, init ⊥
clock : (Tk)⊥, init ⊥
myVK : (2k)⊥, init ⊥
toVer : quek(RIDk ×Mk

×Σk)⊥, init ⊥
verified : quek(RIDk ×Mk

×Σk)⊥, init ⊥

Transitions
tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toV er, verified

:= empty
else

awake, clock ,myVK ,
toV er, verified := ⊥

verKey(vk)j

Effect:
if awake = true
∧myVK = ⊥

then myVK := vk

reqVer(rid ,m, σ)j

Effect:
if awake = true
∧¬ full(toVer)

then toVer :=
enq(toVer , 〈rid ,m, σ〉)

verify(rid ,m, σ)j

local b : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid ,m, σ〉
Effect:

toVer := deq(toVer)
b := Verifyj(m,σ,myVK )
verified :=

enq(verified , 〈rid , b〉)

respVer(rid , b)j

Precondition:
awake = true
head(verified) = 〈rid , b〉

Effect:
verified := deq(verified)

Fig. 4. Task-PIOA Code for Verifier(k, j)



SigFunc(k : N, j : SID)

Signature

Input:
IVerifier ∪ ISigner

Output:
OVerifier ∪OSigner

Internal:
HVerifier ∪HSigner ∪ {failj}

Tasks
RSigner ∪RVerifier ∪ {{failj}}

States
All variables of Signer
and Verifier
history : quek(Mk)⊥, init ⊥
failed : {true, false}⊥, init ⊥

Transitions
Same as Signer and Verifier,
except the following:

tick(t)
Effect:

if j ∈ alive(t) then
clock := t
if awake = ⊥ then

awake := true
toSign, toV er,
signed , verified

:= empty
history := ∅
failed := false

else
awake, clock ,mySK ,
myVK , toSign, toVer ,
signed , history , verified ,
failed := ⊥

failj
Precondition:

awake = true
Effect:

failed := true

sign(rid ,m)j

local σ : Σ
Precondition:

awake = true
∧mySK 6= ⊥

head(toSign) = 〈rid ,m〉
Effect:

toSign := deq(toSign)
σ := Signj(m,mySK )
signed :=

enq(signed , 〈rid , σ〉)
history :=

enq(history ,m)

verify(rid ,m, σ)j

Local b : Bool
Precondition:

awake = true
∧myVK 6= ⊥

head(toVer) = 〈rid ,m, σ〉
Effect:

toVer := deq(toVer)
b := (Verify(m,σ,myVK )
∧(m ∈ history ∨ failed))

verified :=
enq(verified , 〈rid , b〉)

Fig. 5. Code for SigFunc(k, j)



Dispatcher(k : N)

Signature

Input:
tick(t : Tk)
reqCert(rid : RIDk, x : Xk)
reqCert(rid : RIDk, x : Xk, t : Tk,
σ1 : (Σk)⊥, σ2 : Σk, j : SID)

reqCheck(rid : RIDk, x : Xk, t : Tk,
σ1 : (Σk)⊥, σ2 : Σk, j : SID)

respSign(rid : RIDk, σ : Σk)j , j ∈ SID
respVer(rid : RIDk, b : Bool)j , j ∈ SID

Output:
reqSign(rid : RIDk,m : Mk)j , j ∈ SID
reqVer(rid : RIDk,m : Mk, σ : Σk)j , j ∈ SID
respCert(rid : RIDk, σ : Σk, j : SID)
respCert(rid : RIDk, false)
respCheck(rid : RIDk, b : Bool)

Internal:
denyVer(rid : RIDk, op : {′cert′,′ check′},
m : Mk, σ : Σk, j : SID)

Tasks
reqSign = {reqSign(∗, ∗)∗}
reqVer = {reqVer(∗, ∗, ∗)∗}
respCert = {respCert(∗, ∗, ∗)} ∪ {respCert(∗, false)}
respCheck = {respCheck(∗, ∗)}
denyVer = {denyVer(∗, ∗, ∗, ∗, ∗)}

States
clock : Tk, init 0
toSign : quek(RIDk ×M), init empty
toVer : quek(RIDk × {′cert′,′ check′}
×M ×Σ × SID), init empty
pendingVer , pendingSign : Bool , init false
certified : quek((RIDk ×Σ × SID)
∪(RIDk × {false})), init empty
checked : quek(RIDk × Bool), init empty
currCt : N, init 0

Transitions
tick(t)
Effect:

clock := t

reqCert(rid , x)
Effect:

if currCt < b then
toSign := enq(toSign, 〈rid , 〈x, clock ,⊥〉〉)
currCt := currCt + 1

reqCert(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer ,
〈rid ,′ cert′, 〈x, t, σ1〉, σ2, j〉)

currCt := currCt + 1

reqCheck(rid , x, t, σ1, σ2, j)
Effect:

if currCt < b then
toVer := enq(toVer ,
〈rid ,′ check′, 〈x, t, σ1〉, σ2, j〉)

currCt := currCt + 1

reqSign(rid ,m)j

Precondition:
head(toSign) = 〈rid ,m〉
j = pref(clock)
¬pendingSign

Effect:
pendingSign := true

respSign(rid , σ3)j

Effect:
if pendingSign ∧ (∃m)(head(toSign) =
〈rid ,m, j〉) then

choose m where head(toSign) = 〈rid ,m, j〉
toSign := deq(toSign)
pendingSign := false
choose x, t where (∃σ2)(m = 〈x, t, σ2〉)
certified := enq(certified , 〈rid , σ3, j〉)

denyVer(rid , op,m, σ2, j)
Precondition:

head(toVer) = 〈rid , op,m, σ2, j〉
j /∈ usable(clock)

Effect:
toVer := deq(toVer)
if op =′ cert′ then

certified := enq(certified , 〈rid , false〉)
else checked := enq(checked , 〈rid , false〉)

reqVer(rid ,m, σ2)j

Precondition:
(∃op)(head(toVer) = 〈rid , op,m, σ2, j〉
j ∈ usable(clock)
¬pendingV er

Effect:
pendingVer := true

Fig. 6. Task-PIOA Code for Dispatcher(k : N), Part I



Transitions
respVer(rid , b)j

Effect:
if pendingVer
∧(∃op,m, σ2)(head(toVer) =
〈rid , op,m, σ2, j〉) then

choose op,m, σ2 where
head(toVer) = 〈rid , op,m, σ2, j〉

toVer := deq(toVer)
pendingVer := false
if op =′ cert′ ∧ ¬b then

certified := enq(certified , 〈rid , false〉)
if op =′ cert′ ∧ b then

choose x, t where (∃σ1)(m = 〈x, t, σ1〉)
toSign := enq(toSign, 〈rid , 〈x, t, σ2〉〉)

if op =′ check′ then
checked := enq(checked , 〈rid , b〉)

respCert(rid , false)
Precondition:

head(certified) = 〈rid , false〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCert(rid , σ3, j)
Precondition:

head(certified) = 〈rid , σ3, j〉
Effect:

certified := deq(certified)
currCt := currCt − 1

respCheck(rid , b)
Precondition:

head(checked) = 〈rid , b〉
Effect:

checked := deq(checked)
currCt := currCt − 1

Fig. 7. Task-PIOA Code for Dispatcher(k : N), Part II


