
Predicate Encryption Supporting Disjunctions,

Polynomial Equations, and Inner Products

Jonathan Katz
jkatz@cs.umd.edu

Amit Sahai
sahai@cs.ucla.edu

Brent Waters∗

bwaters@csl.sri.com

Abstract

Predicate encryption is a new paradigm generalizing, among other things, identity-based
encryption. In a predicate encryption scheme, secret keys correspond to predicates and cipher-
texts are associated with attributes; the secret key SKf corresponding to a predicate f can be
used to decrypt a ciphertext associated with attribute I if and only if f(I) = 1. Constructions
of such schemes are currently known for relatively few classes of predicates.

We construct such a scheme for predicates corresponding to the evaluation of inner products
over ZN (for some large integer N). This, in turn, enables constructions in which predicates
correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulae, or threshold
predicates (among others). Besides serving as a significant step forward in the theory of predicate
encryption, our results lead to a number of applications that are interesting in their own right.

1 Introduction

Traditional public-key encryption is rather coarse-grained: a sender encrypts a message M with
respect to a given public key PK, and only the owner of the (unique) secret key associated with
PK can decrypt the resulting ciphertext and recover the message. These straightforward semantics
suffice for point-to-point communication, where encrypted data is intended for one particular user
who is known to the sender in advance. In other settings, however, the sender may instead want to
define some complex policy determining who is allowed to recover the encrypted data. For example,
classified data might be associated with certain keywords; this data should be accessible to users
who are allowed to read all classified information, as well as to users allowed to read information
associated with the particular keywords in question. Or, in a health care application, a patient’s
records should perhaps be accessible only to a physician who has treated the patient in the past.

Applications such as those sketched above require new cryptographic mechanisms that provide
more fine-grained control over access to encrypted data. Predicate encryption offers one such tool.
At a high level (formal definitions are given in Section 2), secret keys in a predicate encryption
scheme correspond to predicates in some class F , and a sender associates a ciphertext with an
attribute in a set Σ; a ciphertext associated with the attribute I ∈ Σ can be decrypted by a secret
key SKf corresponding to the predicate f ∈ F if and only if f(I) = 1.

∗Supported by NSF CNS-0524252, CNS-0716199; the US Army Research Office under the CyberTA Grant No.
W911NF-06-1-0316; and the U.S. Department of Homeland Security under Grant Award Number 2006-CS-001-
000001. The views and conclusions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland
Security.

1

The “basic” level of security achieved by such schemes guarantees, informally, that a ciphertext
associated with attribute I hides all information about the underlying message unless one is in the
possession of a secret key giving the explicit ability to decrypt. I.e., if an adversary A holds keys
SKf1 , . . . , SKf`

, then A learns nothing about the message if f1(I) = · · · = f`(I) = 0. We refer to
this security notion as payload hiding. A stronger notion of security, that we call attribute hiding,
requires further that a ciphertext hides all information about the associated attribute I except that
which is explicitly leaked by the keys in one’s possession; i.e., an adversary holding secret keys as
above learns only the values f1(I), . . . , f`(I). Formal definitions are given in Section 2.

Much recent work aimed at constructing different types of fine-grained encryption schemes can
be cast in the framework of predicate encryption. Identity-based encryption (IBE) [21, 9, 14, 4, 5, 23]
can be viewed as predicate encryption for the class of equality tests; the standard notion of security
for IBE [9, 13] corresponds to payload-hiding, while anonymous IBE [8, 12, 15] corresponds to the
stronger notion of attribute hiding. Attribute-based encryption schemes [20, 16, 3, 19] can also
be cast in the framework of predicate encryption, though in this case all the listed constructions
achieve payload hiding only. Boneh and Waters [11] construct a predicate encryption scheme that
handles conjunctions of, e.g., equality tests and range searches; their scheme satisfies the stronger
notion of attribute hiding. Shi [22] et. al. looked at providing more efficient range searching, but
under a weaker security model in which attribute hiding only holds if none of the attacker secret
keys are associated with predicates that evaluate to 1 on the challenge ciphertext.

Other work introducing concepts related to the idea of predicate encryption includes [2, 1]. In
contrast to the present work, however, the threat model in those works do not consider collusion
among users holding different secret keys.

1.1 Our Results

An important research direction is to construct predicate encryption schemes for predicate classes
F that are as expressive as possible, with the ultimate goal being to handle all polynomial-time
predicates. Most prior work, listed above, yields only payload-hiding schemes; existing techniques
for obtaining attribute-hiding schemes seem limited to enforcing conjunctions. (Indeed, handling
disjunctions was left as an open question in [11].) Getting slightly technical, this is because the
underlying cryptographic mechanism used in the above schemes is to pair components of the secret
key with corresponding components of the ciphertext and then multiply the intermediate results
together; a “cancelation” occurs if everything “matches”, but a random group element results if
there is any “mismatch”. Thus, the holder of a non-matching secret key learns only that there
was a mismatch in at least one position, but does not learn the number of mismatches or their
locations. Very different cryptographic techniques seem needed to support disjunctions, since a
mismatch in a single position cannot result in a completely random group element but must still
somehow result in a “cancelation” if there is a match in any other position. (We stress that what
makes this difficult is that we must hide the position of a match and only reveal that there was a
match in at least one position.)

The aim of our work is to construct attribute-hiding schemes handling disjunctions. As a
stepping stone toward this goal, we first focus on predicates corresponding to the computation
of inner products over ZN (for some large integer N). Formally, we take Σ = Zn

N as our set of
attributes, and take our class of predicates to be F = {f~x | ~x ∈ Zn

N} where f~x(~y) = 1 iff 〈~x, ~y〉 = 0.
(Here, 〈~x, ~y〉 denotes the standard inner product

∑n
i=1 xi · yi mod N of two vectors ~x and ~y.) We

construct a predicate encryption scheme for this F without random oracles, based on two new

2

assumptions in composite-order groups equipped with a bilinear map. Our assumptions are non-
interactive and of fixed size (i.e., not “q-type”), and can be shown to hold in the generic group
model. A pessimistic interpretation of our results would be that we prove security in the generic
group model, but we believe it is of importance that we are able to distill our necessary assumptions
to ones that are compact and falsifiable. Our construction uses new techniques, including the fact
that we work in a bilinear group whose order is a product of three primes.

We view our main construction as a significant step toward increasing the expressiveness of
predicate encryption in general. Moreover, we show that any predicate encryption scheme sup-
porting “inner product” predicates as described above can be used as a building block to construct
predicates of more general types:
• As an easy warm-up, we show that it implies (anonymous) identity-based encryption as well

as hidden-vector encryption [11]. As a consequence, our work implies all the results of [11].

• We can also construct predicate encryption schemes supporting polynomial evaluation. Here,
we take ZN as our set of attributes, and predicates correspond to polynomials over ZN of
some bounded degree; a predicate evaluates to 1 iff the corresponding polynomial evaluates
to 0 on the attribute in question. We can also extend this to include multi-variate polynomials
(in some bounded number of variables). A “dual” of this construction allows the attributes
to be polynomials, and the predicates to correspond to evaluation at a fixed point.

• Given the above, we can fairly easily support predicates that are disjunctions of other predi-
cates (e.g., equality), thus achieving our main goal. In the context of identity-based encryp-
tion, this gives the ability to issue secret keys corresponding to a set of identities that enables
decryption whenever a ciphertext is encrypted to any identity in this set (without leaking
which identity was actually used to encrypt).

• We also show how to handle predicates corresponding to DNF and CNF formulas of some
bounded size.

• Working directly with our “inner product” construction, we can derive a scheme supporting
threshold queries of the following form: Attributes are subsets of A = {1, . . . , `}, and pred-
icates take the form {fS,t | S ⊆ A} where fS,t(S′) = 1 iff S ∩ S′ = t. This is useful in the
“fuzzy IBE” setting of Sahai and Waters [20], and improves on their work in that we achieve
attribute hiding (rather than only payload hiding) and handle exact thresholds.

We defer further discussion regarding the above until Section 5.

2 Definitions

We define the syntax of predicate encryption and the security properties discussed informally in the
Introduction. (Our definitions follow the general framework of those given in [11].) Throughout
this section, we consider the general case where Σ denotes an arbitrary set of attributes and F
denotes an arbitrary set of predicates over Σ. Formally, both Σ and F may depend on the security
parameter and/or the master public parameters; for simplicity, we leave this implicit.

Definition 2.1. A predicate encryption scheme for the class of predicates F over the set of attributes
Σ consists of four ppt algorithms Setup,GenKey,Enc,Dec such that:
• Setup takes as input the security parameter 1n and outputs a (master) public key PK and a
(master) secret key SK.

3

• GenKey takes as input the master secret key SK and a (description of a) predicate f ∈ F .
It outputs a key SKf .

• Enc takes as input the public key PK, an attribute I ∈ Σ, and a message M in some
associated message space. It returns a ciphertext C. We write this as C ← EncPK(I, M).

• Dec takes as input a secret key SKf and a ciphertext C. It outputs either a message M or
the distinguished symbol ⊥.

For correctness, we require that for all n, all (PK, SK) generated by Setup(1n), all f ∈ F , any key
SKf ← GenKeySK(f), and all I ∈ Σ:

• If f(I) = 1 then DecSKf
(EncPK(I, M)) = M .

• If f(I) = 0 then DecSKf
(EncPK(I, M)) =⊥ with all but negligible probability.

We will also consider a variant of the above that we call a predicate-only scheme. Here, Enc takes
only an attribute I (and no message); the correctness requirement is that DecSKf

(EncPK(I)) = f(I)
and so all the receiver learns is whether the predicate is satisfied. A predicate-only scheme can
serve as a useful building block toward a full-fledged predicate encryption scheme.

Our definition of attribute-hiding security corresponds to the notion described informally earlier.
Here, an adversary may request keys corresponding to the predicates f1, . . . , f` and is then given
either EncPK(I0,M0) or EncPK(I1,M1) for attributes I0, I1 such that fi(I0) = fi(I1) for all i.
Furthermore, if M0 6= M1 then it is required that fi(I0) = fi(I1) = 0 for all i. The goal of the
adversary is to determine which attribute/message pair was encrypted, and the stated conditions
ensure that this is not trivial. Our definition uses the “selective” notion of security introduced
in [13]. Observe that when specialized to the case when F consists of equality tests on strings, this
notion corresponds to anonymous identity-based encryption (with selective-ID security).

Definition 2.2. A predicate encryption scheme with respect to F and Σ is attribute hiding (or
simple secure) if for all ppt adversaries A, the advantage of A in the following experiment is
negligible in the security parameter n:

1. A(1n) outputs I0, I1 ∈ Σ.

2. Setup(1n) is run to generate PK, SK, and the adversary is given PK.

3. A may adaptively request keys for any predicates f1, . . . , f` ∈ F subject to the restriction that
fi(I0) = fi(I1) for all i. In response, A is given the corresponding keys SKfi

← GenKeySK(fi).

4. A outputs two equal-length messages M0,M1. If there is an i for which fi(I0) = fi(I1) = 1,
then it is required that M0 = M1. A random bit ν is chosen, and A is given the ciphertext
C ← EncPK(Ib,Mb).

5. The adversary may continue to request keys for additional predicates, subject to the same
restrictions as before.

6. A outputs a bit ν ′, and succeeds if ν ′ = ν.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Payload hiding, a strictly weaker notion, is defined by forcing I0 = I1 = I in the above (in which case
A has no possible advantage if it ever holds that fi(I) = 1). For predicate-only encryption schemes
we simply omit the messages in the above experiment. For convenience, we include in Appendix A
a re-statement of the definition of security given above for the particular inner-product predicate
we use in our main construction.

4

3 Background on Pairings and Complexity Assumptions

We review some general notions about bilinear groups of composite order, first used in cryptographic
applications by [10]. In contrast to all prior work using composite-order bilinear groups, however,
we use groups whose order N is a product of three (distinct) primes. This is for simplicity only, since
a variant of our construction can be proven secure based on a “decisional linear”-type assumption
[7] in a group of composite order N which is a product of two primes.1

Let G be an algorithm that takes as input a security parameter 1n and outputs a tuple
(p, q, r, G, GT , ê) where p, q, r are distinct primes, G and GT are two cyclic groups of order N = pqr,
and ê : G × G → GT is bilinear (i.e., ∀u, v ∈ G and ∀a, b ∈ Z we have ê(ua, vb) = ê(u, v)ab) and
non-degenerate (i.e., if g generates G then ê(g, g) generates GT). We assume that the group action
in G and GT as well as the bilinear map ê are all computable in time polynomial in n. Furthermore,
we assume that the description of G and GT includes generators of G and GT respectively.

We use the notation Gp, Gq, Gr to denote the subgroups of G having order p, q, and r, respec-
tively. Observe that G = Gp ×Gq ×Gr. Note also that if g is a generator of G, then the element
gpq is a generator of Gr; the element gpr is a generator of Gq; and the element gqr is a generator
of Gp. Furthermore, if, e.g., hp ∈ Gp and hq ∈ Gq then

ê(hp, hq) = ê
(
(gqr)α1 , (gpr)α2

)
= ê

(
gα1 , grα2

)pqr
= 1,

where α1 = loggqr hp and α2 = loggpr hq. Similar rules hold whenever ê is applied to non-identity
elements in distinct subgroups.

3.1 Our Assumptions

We now state the assumptions we use to prove security of our construction. As remarked earlier,
these assumptions are new but we justify them in Appendix B by proving that they hold in the
generic group model under the assumption that finding a non-trivial factor of N (the group order)
is hard. At a minimum, then, our construction can be viewed as secure in the generic group model.
Nevertheless, we state our assumptions explicitly and highlight that they are non-interactive and
of fixed size.

Assumption 1. Let G be as above. We say that G satisfies Assumption 1 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random Q1, Q2, Q3 ∈ Gq, random R1, R2, R3 ∈ Gr, random a, b, s ∈ Zp, and a random
bit ν. Give to A the values (N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

If ν = 0 give A the value T = gb2s
p R3, while if ν = 1 give A the value T = gb2s

p Q3R3.

3. A outputs a bit ν ′, and succeeds if ν ′ = ν.
1This is analogous to the “folklore” transformation (based on the decisional linear assumption) that converts any

scheme using groups whose order N is a product of two primes, to a scheme that uses prime-order groups. (See, for
example [17]). Typically, using composite order groups gives a simpler scheme; however, since the group sizes are
larger group operations are less efficient.

5

The advantage of A is the absolute value of the difference between its success probability and 1/2.

Assumption 2. Let G be as above. We say that G satisfies Assumption 2 if the advantage of any
ppt algorithm A in the following experiment is negligible in the security parameter n:

1. G(1n) is run to obtain (p, q, r, G, GT , ê). Set N = pqr, and let gp, gq, gr be generators of Gp,
Gq, and Gr, respectively.

2. Choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random bit ν. Give to A
the values (N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

pQ2, ê(gp, h)γ .

If ν = 0 then give A the value ê(gp, h)γs, while if ν = 1 then give A a random element of GT .

3. A outputs a bit ν ′, and succeeds if ν ′ = ν.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

Note that both the above assumptions imply the hardness of factoring N .

4 Our Main Construction

Our main construction is a predicate-only scheme where the set of attributes is Σ = Zn
N , and the

class of predicates is F = {f~x | ~x ∈ Zn
N} with f~x(~y) = 1 iff 〈~x, ~y〉 = 0 mod N . In this section

we provide our predicate-only construction and give some intuition about our proof. For space
considerations the details of the proof are presented in Appendix C. In Appendix D we show how
our scheme can be extended to give a full-fledged predicate encryption scheme.

Intuition. In our construction, each ciphertext has associated with it a (secret) vector ~x, and each
secret key corresponds to a vector ~v. The decryption procedure must check whether ~x · ~v = 0, and
reveal nothing about ~x but whether this is true. To do this, we will make use of a bilinear group G
whose order N is the product of three primes p, q, and r. Let Gp, Gq, and Gr denote the subgroups
of G having order p, q, and r, respectively. We will (informally) assume, as in [10], that a random
element in any of these subgroups is indistinguishable from a random element of G.2 Thus, we can
use random elements from one subgroup to “mask” elements from another subgroup.

At a high level, we will use these subgroups as follows. Gq will be used to encode the vectors ~x
and ~v in the ciphertext and secret keys, respectively. Computation of the inner product 〈~v, ~x〉 will
be done in Gq (in the exponent), using the bilinear map. Gp will be used to encode an equation
(again in the exponent) that evaluates to zero when decryption is done properly. This subgroup is
used to prevent an adversary from improperly “manipulating” the computation (by, e.g., changing
the ordering of components of the ciphertext or secret key, raising these components to some power,
etc.). On an intuitive level, if the adversary tries to manipulate the computation in any way, then
the computation occurring in the Gp subgroup will no longer yield the identity (i.e., will no longer
yield 0 in the exponent), but will instead have the effect of “masking” the correct answer with a
random element of Gp (which will invalidate the entire computation). Elements in Gr are used for
“general masking” of terms in other subgroups; i.e., random elements of Gr will be multiplied with
various components of the ciphertext (and secret key) in order to “hide” information that might
be present in the Gp and Gq subgroups.

We now proceed to the formal description of our scheme.
2This is only for intuition. Our actual computational assumption is given in Section 3.

6

4.1 The Construction

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uniformly at
random. The public parameters include (N = pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
.

EncPK(~x) Let ~x = (x1, . . . , xn) with xi ∈ ZN . This algorithm chooses random s, α, β ∈ ZN and
R3,i, R4,i ∈ Gr for i = 1 to n. (Note: a random element R ∈ Gr can be sampled by choosing
random δ ∈ ZN and setting R = gδ

r .) It outputs the ciphertext

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i ·Qα·xi ·R3,i, C2,i = Hs

2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn), and recall SK =
(
p, q, r, gq, {h1,i, h2,i}ni=1

)
. This algorithm

chooses random r1,i, r2,i ∈ Zp for i = 1 to n, random R5 ∈ Gr, random f1, f2 ∈ Zq, and random
Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C =

(
C0, {C1,i, C2,i}ni=1

)
and SK~v =

(
K, {K1,i, K2,i}ni=1

)
be as above. The

decryption algorithm outputs 1 iff

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)
?= 1.

Correctness. To see that correctness holds, let C and SK~v be as above. Then

ê(C0,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= ê

(
gs
p, R5Q6

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= ê

(
gs
p,

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i · gα·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i · gβ·xi
q , g

r2,i
p gf2·vi

q

)
=

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = ê(gq, gq)(αf1+βf2 mod q)〈~x,~v〉,

7

where α, β are random in ZN and f1, f2 are random in Zq. If 〈~x,~v〉 = 0 mod N , then the above
evaluates to 1. If 〈~x,~v〉 6= 0 mod N there are two cases: if 〈~x,~v〉 6= 0 mod q then with all but
negligible probability (over choice of α, β, f1, f2) the above evaluates to an element other than the
identity. The other possibility is that 〈~x,~v〉 = 0 mod q, in which case the above would always
evaluate to 1; however, this would reveal a non-trivial factor of N and so this occurs with only
negligible probability (recall, our assumptions imply hardness of finding a non-trivial factor of N).

There may appear to be some redundancy in our construction. For instance, the C1,i and C2,i

components play almost identical roles. In fact we can view the encryption system as two parallel
sub-systems linked via the C0 component (and the corresponding component of the secret key). This
two sub-system approach was first used by Boyen and Waters [12]; it can be viewed as a complex
generalization of the Naor-Yung [18] “two-key” paradigm to the predicate encryption setting. A
natural question is whether this redundancy can be eliminated to achieve better performance.
While such a construction appears to be secure, our current proof (that utilizes a non-interactive
assumption) relies in an essential way on having two parallel subsystems.

4.2 Proof Intuition

The most challenging aspect to providing a proof of our scheme naturally arises from the disjunc-
tive capabilities of our system. In previous conjunctive systems (such as the one by Boneh and
Waters [11]) the authors proved security by moving through a sequence of hybrid games, in which
an encryption of a vector ~x was changed component-by-component to the encryption of a vector ~y.
The adversary could only ask for queries that did not match either ~x or ~y, or queries that did not
“look at” the components in which ~x and ~y differed. Thus, it was relatively straightforward to
perform hybrid experiments over the components of ~x and ~y that differed, since the private keys
given to the adversary did not “look at” these components.

In our proof an adversary will again try to determine whether a given ciphertext was encrypted
with respect to ~x or ~y. However, in our case the adversary can legally request a secret key for a
vector ~v such that 〈~x,~v〉 = 0 and 〈~y,~v〉 = 0; i.e., it may obtain a key that should enable correct
decryption in either case. This means that we cannot use the same proof strategy as in previous,
conjunctive schemes. For example, if we change just one component at a time, then the “hybrid”
vector used in an intermediate step will likely not be orthogonal to ~v (and the adversary will be
able to detect this because its secret key will no longer decrypt the given ciphertext). Therefore,
we need to use a sequence of hybrid games in which entire vectors are changed in one step, instead
of using a sequence of hybrid games where the vector is changed component-by-component.

To do this we take advantage of the fact that, as noted earlier, our encryption scheme contains
two parallel sub-systems. In our proof we will use hybrid games where a challenge ciphertext will
be encrypted with respect to one vector in the first sub-system and a different vector in the second
sub-system. (Note that such a ciphertext is ill-formed, since any valid ciphertext will always use
the same vector in each sub-system.) Let (~a,~b) denote a ciphertext encrypted using vector ~a in the
first sub-system and ~b in the second sub-system. To prove indistinguishability when encrypting to
~x (which corresponds to (~x, ~x)) and when encrypting to ~y (which corresponds to (~y, ~y)), we will
prove indistinguishability of the following sequence of hybrid games:

(~x, ~x) ≈ (~x,~0) ≈ (~x, ~y) ≈ (~0, ~y) ≈ (~y, ~y).

Using this structure in our proof allows us to use a simulator that will essentially be able to work
in one sub-system without “knowing” what is happening in the other one. The simulator embeds

8

a “subgroup decision-like” assumption into the challenge ciphertext for each experiment. The
structure of the challenge will determine whether a sub-system encrypts the given vector or the
zero vector. Details of our proof and further discussion are given in Appendix C.

5 Applications of Our Main Construction

In this section we discuss some applications of predicate encryption schemes of the type constructed
in this paper. Our treatment here is general and can be based on any predicate encryption scheme
supporting “inner product” queries; we do not rely on any specific details of our construction.

Given a vector ~x ∈ Z`
N , we denote by f~x : Z`

N → {0, 1} the function such that f~x(~y) = 1 iff

〈~x, ~y〉 = 0. We define F`
def= {f~x | ~x ∈ Z`

N}. An inner product encryption scheme of dimension ` is
an attribute-hiding predicate encryption scheme for the class of predicates F`.

5.1 Anonymous Identity-Based Encryption

As a warm-up, we show how anonymous identity-based encryption (IBE) can be recovered from
any inner product encryption scheme of dimension 2. To generate the master public and secret keys
for the IBE scheme, simply run the setup algorithm of the underlying inner product encryption
scheme. To generate secret keys for the identity I ∈ ZN , set ~I := (1, I) and output the secret
key for the predicate f~I . To encrypt a message M for the identity J ∈ ZN , set ~J ′ := (−J, 1) and
encrypt the message using the encryption algorithm of the underlying inner product encryption
scheme and the attribute ~J ′. Since

〈
~I, ~J ′

〉
= 0 iff I = J , correctness and security follow.

5.2 Hidden-Vector Encryption

Given a set Σ, let Σ? = Σ ∪ {?}. Hidden-vector encryption (HVE) [11] corresponds to a predicate
encryption scheme for the class of predicates Φhve

` = {φhve
(a1,...,a`)

| a1, . . . , a` ∈ Σ?}, where

φhve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or ai = ?
0 otherwise

.

A generalization of the ideas from the previous section can be used to realize hidden-vector en-
cryption with Σ = ZN from any inner product encryption scheme (Setup,GenKey,Enc,Dec) of
dimension 2`:
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the predicate φhve
(a1,...,a`)

, first construct a vector
~A = (A1, . . . , A2`) as follows:

if ai 6= ? : A2i−1 := 1, A2i := ai

if ai = ? : A2i−1 := 0, A2i := 0.

Then output the key obtained by running GenKeySK(f ~A).

• To encrypt a message M for the attribute x = (x1, . . . , x`), choose random r1, . . . , r` ∈ ZN

and construct a vector ~X~r = (X1, . . . , X2`) as follows:

X2i−1 := −ri · xi, X2i := ri

9

(multiplication is done modulo N). Then output the ciphertext C ← EncPK(~X~r,M).
To see that correctness holds, let (a1, . . . , a`), ~A, (x1, . . . , x`), ~r, and ~X~r be as above. Then:

φhve
(a1,...,a`)

(x1, . . . , x`) = 1 ⇒ ∀~r :
〈

~A, ~X~r

〉
= 0 ⇒ ∀~r : f ~A(~X~r) = 1.

Furthermore, assuming gcd(ai − xi, N) = 1 for all i:

φhve
(a1,...,a`)

(x1, . . . , x`) = 0 ⇒ Pr~r
[〈

~A, ~X~r

〉
= 0
]

= 1/N ⇒ Pr~r
[
f ~A(~X~r) = 1

]
= 1/N,

which is negligible. Using this, one can prove security of the construction as well.
A straightforward modification of the above gives a scheme that is the “dual” of HVE, where

the set of attributes is (Σ?)` and the class of predicates is Φ̄hve
` = {φ̄hve

(a1,...,a`)
| a1, . . . , a` ∈ Σ} with

φ̄hve
(a1,...,a`)

(x1, . . . , x`) =
{

1 if, for all i, either ai = xi or xi = ?
0 otherwise

.

5.3 Predicate Encryption Schemes Supporting Polynomial Evaluation

We can also construct predicate encryption schemes for classes of predicates corresponding to
polynomial evaluation. Let Φpoly

≤d = {fp | p ∈ ZN [x], deg(p) ≤ d}, where

φp(x) =
{

1 if p(x) = 0
0 otherwise

for x ∈ ZN . 3 Given an inner product encryption scheme (Setup,GenKey,Enc,Dec) of dimension d+
1, we can construct a predicate encryption scheme for Φpoly

≤d as follows:
• The setup algorithm is unchanged.

• To generate a secret key corresponding to the polynomial p = adx
d + · · · + a0x

0, set ~p :=
(ad, . . . , a0) and output the key obtained by running GenKeySK(f~p).

• To encrypt a message M for the attribute w ∈ ZN , set ~w := (wd mod N, . . . , w0 mod N) and
output the ciphertext C ← EncPK(~w,M).

Since p(w) = 0 iff 〈~p, ~w〉 = 0, correctness and security follow.
The above shows that we can construct predicate encryption schemes where predicates corre-

spond to univariate polynomials whose degree d is polynomial in the security parameter. This can
be generalized to the case of polynomials in t variables, and degree at most d in each variable, as
long as dt is polynomial in the security parameter.

We can also construct schemes that are the “dual” of the above, in which attributes correspond
to polynomials and predicates involve the evaluation of the input polynomial at some fixed point.

3Since this is a genral treatment of innerproducts over ZN , we use p to denote a polynomial and not a factor of
N in this context.

10

5.4 Disjunctions, Conjunctions, and Evaluating CNF and DNF Formulas

Given the polynomial-based constructions of the previous section, we can fairly easily build pred-
icate encryption schemes for disjunctions of equality tests. For example, the predicate ORI1,I2 ,
where ORI1,I2(x) = 1 iff either x = I1 or x = I2, can be encoded as the univariate polynomial

p(x) = (x− I1) · (x− I2),

which evaluates to 0 iff the relevant predicate evaluates to 1. Similarly, the predicate ORI1,I2 , where
ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2, can be encoded as the bivariate polynomial

p′(x1, x2) = (x1 − I1) · (x2 − I2).

Conjunctions can be handled in a similar fashion. Consider, for example, the predicate ANDI1,I2

where ANDI1,I2(x1, x1) = 1 if both x1 = I1 and x2 = I2. Here, we determine the relevant secret
key by choosing a random r ∈ ZN and letting the secret key correspond to the polynomial

p′′(x1, x2) = r · (x1 − I1) + (x2 − I2).

Note that if ANDI1,I2(x1, x1) = 1 then p′′(x1, x2) = 0, whereas if ANDI1,I2(x1, x1) = 0 then, with
all but negligible probability over choice of r, it will hold4 that p′′(x1, x2) 6= 0.

The above ideas extend to more complex combinations of disjunctions and conjunctions, and
for boolean variables this means we can handle arbitrary CNF or DNF formulas. (For non-boolean
variables we do not know how to directly handle negation.) As pointed out in the previous section,
the complexity of the resulting scheme depends polynomially on dt, where t is the number of
variables and d is the maximum degree (of the resulting polynomial) in each variable.

5.5 Exact Thresholds

We conclude with an application that relies directly on inner product encryption. Here, we consider
the setting of “fuzzy IBE” [20], which can be mapped to the predicate encryption framework as
follows: fix a set A = {1, . . . , `} and let the set of attributes be all subsets of A. Predicates take
the form Φ = {φS | S ⊆ A} where φS(S′) = 1 iff |S ∩ S′| ≥ t, i.e., S and S′ overlap in at least
t positions. Sahai and Waters [20] show a construction of a payload-hiding predicate encryption
scheme for this class of predicates.

We can construct a scheme where the attribute space is the same as before, but the class of
predicates corresponds to overlap in exactly t positions. (Our scheme will also be attribute hiding.)
Namely, set Φ′ = {φ′

S | S ⊆ A} with φ′
S(S′) = 1 iff |S ∩ S′| = t. Then, given any inner product

encryption scheme of dimension ` + 1:
• The setup algorithm is unchanged.

• To generate a secret key for the predicate φ′
S , first define a vector ~v ∈ Z`+1

N as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S
v`+1 = 1.

Then output the key obtained by running GenKeySK(f~v).
4In general, the secret key may leak the value of r in which case the adversary will be able to find x1, x2 such that

ANDI1,I2(x1, x1) 6= 1 yet p′′(x1, x2) = 0. Since, however, we consider the “selective” notion of security (where the
adversary must commit to x1, x2 at the outset of the experiment), this is not a problem in our setting.

11

• To encrypt a message M for the attribute S′ ⊆ A, define a vector ~v′ as follows:

for 1 ≤ i ≤ `: vi = 1 iff i ∈ S′

v`+1 = −t mod N.

Then output the ciphertext C ← EncPK(~v′,M).
Since |S ∩ S′| = t exactly when 〈~v,~v′〉 = 0, correctness and security follow.

References

[1] S. Al-Riyami, J. Malone-Lee, and N. Smart. Escrow-free encryption supporting cryptographic
workflow. Intl. J. Information Security, 5(4):217–229, 2006.

[2] W. Bagga and R. Molva. Policy-based cryptography and applications. In Financial Cryptog-
raphy, 2005.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based encryption. In
IEEE Symposium on Security and Privacy, 2007.

[4] D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without random
oracles. In Advances in Cryptology — Eurocrypt 2004.

[5] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In Advances
in Cryptology — Crypto 2004.

[6] D. Boneh, X. Boyen, and E. Goh. Hierarchical identity based encryption with constant size
ciphertexts. In Proceedings of Eurocrypt ’05, 2005.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology —
Crypto 2004.

[8] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public-key encryption with key-
word search. In Advances in Cryptology — Eurocrypt 2004.

[9] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM J. Com-
puting, 32(3):586–615, 2003.

[10] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In Theory
of Cryptography Conference, 2005.

[11] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In Theory
of Cryptography Conference, 2007.

[12] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In Advances in Cryptology — Crypto 2006.

[13] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In Advances
in Cryptology — Eurocrypt 2003.

[14] C. Cocks. An identity based encryption scheme based on quadratic residues. In Proc. IMA
Intl. Conf. on Cryptography and Coding, 2001.

12

[15] C. Gentry. Practical identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2006.

[16] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCCS, 2006.

[17] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. 2008.

[18] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In STOC, pages 427–437, 1990.

[19] R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-monotonic access
structures. In ACM CCCS, 2007.

[20] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryptology —
Eurocrypt 2005.

[21] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology
— Crypto ’84.

[22] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig. Multi-dimensional range
queries over encrypted data. In IEEE Symposium on Security and Privacy, 2007.

[23] B. Waters. Efficient identity-based encryption without random oracles. In Advances in Cryp-
tology — Eurocrypt 2005.

A Security Definition for Inner-Product Encryption

Here, we re-state Definition 2.2 in the particular setting of our main construction, which is a
predicate-only scheme where the set of attributes5 is Σ = Zn

N and the class of predicates is F =
{f~x | ~x ∈ Zn

N} such that f~x(~y) = 1⇔ 〈~x, ~y〉 = 0.

Definition A.1. A predicate-only encryption scheme for Σ,F as above is attribute-hiding if for
all ppt adversaries A, the advantage of A in the following experiment is negligible in the security
parameter n:

1. Setup(1n) is run to generate keys PK, SK. This defines a value N which is given to A.

2. A outputs ~x, ~y ∈ Zn
N , and is then given PK.

3. A may adaptively request keys corresponding to the vectors ~v1, . . . , ~v` ∈ Zn
N , subject to the

restriction that, for all i, 〈~vi, ~x〉 = 0 if and only if 〈~vi, ~y〉 = 0. In response, A is given the
corresponding keys SK~vi

← GenKeySK(f~vi
).

4. A random bit ν is chosen. If ν = 0 then A is given C ← EncPK(~x), and if ν = 1 then A is
given C ← EncPK(~y).

5. The adversary may continue to request keys for additional vectors, subject to the same
restriction as before.

5Technically speaking, both Σ and F depend on the public parameters (since N is generated as part of PK),
but we ignore this technicality. We remark also that we consider vectors of length n, the security parameter, for
convenience only.

13

6. A outputs a bit ν ′, and succeeds if ν ′ = ν.
The advantage of A is the absolute value of the difference between its success probability and 1/2.

B Justifying our Assumptions in the Generic Group Model

We justify our assumptions by showing that they hold in generic bilinear groups of composite
order N , as long as finding a non-trivial factor of N is hard. In doing so, we first sketch a “master
theorem” for proving that certain assumptions hold in such groups. Our theorem generalizes the
result by Boneh, Boyen, and Goh [6]; in addition to handling groups of composite order, our
framework can be used for proving security of assumptions where the target element is in the
bilinear group G (instead of the target group GT). Thus, it also applies to assumptions such as
the linear assumption introduced by Boneh, Boyen, and Shacham [7] and the subgroup decision
assumption introduced by Boneh, Goh, and Nissim [10].

B.1 A “Master Theorem” for Hardness in Composite Order Bilinear Groups

Let (N, G, GT , ê) represent a bilinear group of order N , where N is the product of m distinct,
equal-length primes p1, . . . , pm. Every element h ∈ G can be written as h = ga1

p1
ga2
p2
· · · gam

pm
, where

ai ∈ Zpi and gpi denotes a generator of the subgroup of order pi. We can therefore represent each
element h ∈ G as an m-tuple (a1, . . . , am). We can do the same with elements in GT (with respect
to the generators ê(pi, pi)), and will represent elements in GT as bracketed tuples [a1, . . . , am]. We
will work with tuples of this sort for notational (and mathematical) convenience, but stress that
when, e.g., we say “the adversary is given (a1, . . . , am)” we mean that it is given the element h ∈ G
whose representation is (a1, . . . , am).

Note also that if h ∈ G corresponds to (a1, . . . , am) and h′ ∈ G corresponds to (a′1, . . . , a
′
m), then

ê(h, h′) corresponds to [a1a
′
1, . . . , ama′m] (where multiplication in the ith component is performed

modulo pi). We write (a1, . . . , am)+(b1, . . . , bm) = (a1 +b1, . . . , am +bm) and, for γ ∈ ZN , we write
γ · (a1, . . . , am) = (γa1, . . . , γam).

We will also refer to random variables in G and GT , and denote these by (X1, . . . , Xm) and
[X1, . . . , Xm], respectively, where Xi takes values in Zpi . Given such a tuple X = (X1, . . . , Xm)

and a set B = {Bi} where Bi
def= (Xi

1, . . . , X
i
m), we say that X is dependent on B if there exist

γi ∈ ZN such that Pr[X =
∑

i γi · Bi] is not negligible. Otherwise, X is independent of B. We
define dependence and independence in GT analogously.

Theorem B.1. Let {Ai} be a set of random variables in G, where Ai = (Xi
1, . . . , X

i
m), and let {Bi}

be a set of random variables in GT , where Bi = [Y i
1 , . . . , Y i

m]. Let T0 and T1 be random variables
in G. (We stress that all these random variables are in the same space, and may therefore be
correlated arbitrarily.) Let S

def= {i | ê(T0, Ai) 6= ê(T1, Ai)}, and assume that for all k ∈ S it holds
that ê(T0, Ak) is independent of {Bi} ∪ {ê(Ai, Aj)} ∪ {ê(Ai, T0)}i6=k (and similarly for ê(T1, Ak)).

Consider the following experiment:

An adversary is given (N, G, GT , ê) (generated using G(1n)) and { ai = (xi
1, . . . , x

i
m)},

{ bi = [yi
1, . . . , y

i
m] } distributed appropriately. A random bit ν is chosen, and the adver-

sary is also given Tν . The adversary makes queries to its generic group oracles, outputs
a guess for ν, and succeeds if this guess is correct. The adversary’s advantage is the
absolute value if the difference between its success probability and 1/2.

14

Then assuming it is hard to find a non-trivial factor of N , the advantage of any polynomial-time
adversary as above is negligible.

Theorem B.2. Let {Ai}, {Bi} be as in the previous theorem, and let T0, and T1 be random
variables in GT . Assume that T0 and T1 are each independent of {Bi} ∪ {ê(Ai, Aj)}. Consider the
following experiment:

An adversary is given (N, G, GT , ê) (generated using G(1n)) and { ai = (xi
1, . . . , x

i
m)},

{ bi = [yi
1, . . . , y

i
m] } distributed appropriately. A random bit ν is chosen, and the adver-

sary is also given Tν . The adversary makes queries to its generic group oracles, and
outputs a guess for ν; its advantage is defined as before.

Then assuming it is hard to find a non-trivial factor of N , the advantage of any polynomial-time
adversary as above is negligible.

Proof Sketch. We now sketch a proof of the above theorems.

• Two encoding lists E and ET are kept in the generic group model (one for the bilinear group
and one for the target group). The encoding lists contain pairs of symbolic polynomials and
encodings of length ν, where ν is chosen to be sufficiently large to avoid collisions for random
encodings. Every group operation requested by the adversary will result in the polynomials
two elements from the list being either component-wise added or subtracted (depending on
whether the requested operation was multiplication or division). Note again that polynomials
in the i-th component are added in Zpi . The generic group simulator checks to see whether
the resulting polynomial is already on the list. If it is, it gives out the previous encoding;
otherwise it picks a new random encoding and adds the polynomial m-tuple and new encoding
to the encoding list. The bilinear map operation is modeled by multiplying the polynomials
of two elements from the list E and checking the result against the encodings in ET , adding
a new encoding if necessary.

• To prove the generic security of our assumption we define a set of three hybrid security games
(in the generic group) model.

The first game is identical to the real (generic model) security game. In this game the
challenger controls the generic group interface. It chooses random values for the all variables in
the assumption. E.g. variables for the i-th component are chosen randomly in Zpi . Recall that
T0, T1 ∈ G are the two m-component tuples that the adversary is attempting to distinguish
between. The challenger flips a coin ν and give the adversary the target, which is based on
the coin flip T = Tν . The adversary then attempts to guess ν with non-negligible advantage.

• In the second game the generic group will output encodings such that two encoding will only
be the same if they are symbolically equivalent. A standard argument using the Schwartz-
Zippel lemma shows that with all but negligible probability the adversary’s view in these two
experiment will be the same. (Note the concrete parameters depend upon the number of
queries made and degrees of the polynomials in use.)

• In the next game we define the challenger will still interpret elements as m-tuples, however, for
the i− th component it will keep track of the coefficients in ZN instead of Zpi . Two different
elements will have a different representation if any of their coefficients are different in ZN .

15

The only way the adversary will notice the difference between this game and the previous
game is requests the encoding of a m-tuple polynomial such that in the previous game it was
symbolically equivalent to a previous requested encoding, but results in a different encoding
in this game. In this case, the coefficients for a particular polynomial in two elements in the
list are the same mod Zpi for some i, but are different mod ZN . If this condition happens with
non-negligible probability then we can use the generic adversary to find non-trivial factors of
N .

Intuitively, this final game puts us in a situation where the adversary needs to attack as set
of polynomials where each component is defined over ZN . This last hybrid step effectively
deals with the complexity that arises from using composite order groups.

• Suppose that the adversary is given elements represented by the polynomial tuples A1, . . . , As

in the bilinear group and B1, . . . , Bs′ in the target group GT . In addition, the adversary is
given the target T .

Consider a m-tuple of polynomials with coefficients in Zn formed as:∑
i=1,...,s

ti · T ·Ai +
∑

i,j=1,...,s

ai,j ·Ai,j ·Aj +
∑

i=1,...,s′

biBi

where ai,j , ti, bi values are in ZN . An adversary can win the game iff he can find coefficients
such that such an symbolic expression evaluates to 0 conditionally on the bit ν.

We now define a sufficient condition, which when met will ensure that this will not occur. Let
S be the set of all k such that the polynomial tuple T ·Ak is dependent upon ν. The condition
we must show is that for each k in S that A · T is linearly independent of the polynomials
Bi, Ai ·Aj for all i, j and AiT for i 6= k.

If our condition holds for all elements in S then any expression of the above form must not
include any non-zero coefficient for the terms T · Ak for k ∈ S. However, by definition all
terms of the form T ·Ak for k /∈ S are independent of ν therefore, the adversary will have no
advantage in guessing ν.

• For the case when the target of the assumption is in the group GT the argument is even
simpler as we only need to consider whether T is linearly dependent of Bi, Ai ·Aj for all i, j.

�

B.2 Applying the Master Theorem to Our Assumptions

For completeness, we show how to apply the theorems of the previous section to prove that our
assumptions hold in the generic group model.

Assumption 1. Recall that in defining this assumption, we choose random Q1, Q2, Q3 ∈ Gq,
random R1, R2, R3 ∈ Gr, random a, b, s ∈ Zp, and a random bit ν; the adversary A is given
(N, G, GT , ê) as well as

gp, gr, gqR1, gb
p, gb2

p , ga
pgq, gab

p Q1, gs
p, gbs

p Q2R2.

Furthermore, if ν = 0 then A is given T0 = gb2s
p R3, while if ν = 1 then A is given T1 = gb2s

p Q3R3.

16

Write Ri = gci
r and Qi = gdi

q . Thus, the values in the assumption correspond to the following
tuples in Gp ×Gq ×Gr:

A1 = (1, 0, 0), A2 = (0, 0, 1), A3 = (0, 1, c1),
A4 = (b, 0, 0), A5 = (b2, 0, 0), A6 = (a, 1, 0),

A7 = (ab, d1, 0), A8 = (s, 0, 0), A9 = (bs, d2, c2),

and the two possible target values are: T0 = (b2s, 0, c3) and T1 = (b2s, d3, c3).
Since T0, T1 ∈ G, we are in the setting of Theorem B.1. Note that only A3, A6, A7, A9 give

different results when paired with T0 or T1. Considering T0 first, we obtain the following tuples:

ê(A3, T0) = C1
def= [0, 0, c1c3] ê(A6, T0) = C2

def= [ab2s, 0, 0]

ê(A7, T0) = C3
def= [ab3s, 0, 0] ê(A9, T0) = C4

def= [b3s2, 0, c2c3].

Assumption 2. We now move on to Assumption 2. Recall that in defining this assumption, we
choose random h ∈ Gp and Q1, Q2 ∈ Gq, random s, γ ∈ Zq, and a random bit ν; the adversary A
is given (N, G, GT , ê) as well as

gp, gq, gr, h, gs
p, hsQ1, gγ

pQ2, ê(gp, h)γ .

If ν = 0 then A is given T0 = ê(gp, h)γs, while if ν = 1 then A is given a random element T1 ∈ GT .
Write Qi = gdi

q and h = ga
p . Thus, the given values in the assumption correspond to the

following tuples:

A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1),
A4 = (a, 0, 0), A5 = (s, 0, 0), A6 = (as, d1, 0), A7 = (γ, d2, 0),

B1 = [aγ, 0, 0]

The two possible target tuples are T0 = [aγs, 0, 0] or T1 = [e, f, g].

C Proof of Security

This section is devoted to a proof of the following theorem:

Theorem C.1. If G satisfies Assumption 1 then the scheme described in Section 4 is an attribute-
hiding, predicate-only encryption scheme.

Throughout, we will refer to the experiment as described in Definition A.1. We establish the
theorem using a sequence of games, defined as follows:

Game1: The challenge ciphertext is generated as a proper encryption using ~x. (Recall from
Definition A.1 that we let ~x, ~y denote the two vectors output by the adversary.) That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.

17

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3: In Game4 the
{Ci,1} components are generated using ~0. That is, we choose random s, α, β ∈ ZN and random
{R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,i R3,i, C2,i = Hs

2,iQ
βyiR4,i

}n

i=1

)
.

In Game5, the {Ci,1} components are generated using ~y. I.e., we choose random s, α, β ∈ ZN

and random {R3,i, R4,i} ∈ Gr and compute the ciphertext as

C =
(
C0 = gs

p,
{

C1,i = Hs
1,iQ

αyiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

In Game5 the challenge ciphertext is a proper encryption with respect to the vector ~y. So, the
proof of the theorem is concluded once we show that the adversary cannot distinguish between
Gamei and Gamei+1 for each i.

As discussed in Section 4.2, it is difficult to proceed directly from a game in which the challenge
ciphertext is generated as a proper encryption using ~x, to a game in which the challenge ciphertext
is generated as a proper encryption using ~y. (Indeed, this is the reason our construction uses two
“sub-systems” to begin with.) That is why our proof proceeds via the intermediate Game3 where
half of the challenge ciphertext corresponds to an encryption using ~x and the other half corresponds
to an encryption using ~y. Intermediate games Game2 and Game4 are used to simplify the proof;
informally speaking, it helps when part of the ciphertext corresponds to an encryption using ~0 since
this vector is orthogonal to everything.

The main difficulty in our proofs will be to answer queries for decryption keys. In considering
the indistinguishability of Game1 and Game2 (and, symmetrically, Game4 and Game5), we will
actually be able to construct all decryption keys (i.e., even keys that would allow the adversary
to distinguish an encryption relative to ~x from an encryption relative to ~y). In essence, we will be
showing that even such keys cannot be used to distinguish a well-formed encryption of ~x (or ~y)
from a badly-formed one.

On the other hand, in considering the indistinguishability of Game2 and Game3 (and, symmet-
rically, Game3 and Game4) we will not be able to construct all decryption keys. Instead, we will
deal separately with the problems of (1) providing keys for vectors ~v with 〈~v, ~x〉 = 0 = 〈~v, ~y〉 and
(2) providing keys for vectors ~v with 〈~v, ~x〉 6= 0 6= 〈~v, ~y〉.

18

C.1 Indistinguishability of Game1 and Game2

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element T = gb2s

p gβ
q R3

where β is either 0 or uniform in Zq (cf. Assumption 1).
Before describing the simulation in detail, we observe that the simulator can sample a random

element R ∈ Gr by choosing random δ ∈ ZN and setting R = gδ
r . Although there does not appear

to be any way for the simulator to sample a random element of Gq (since gq is not provided to

the simulator), it is possible for the simulator to choose a random element QR ∈ Gqr
def= Gq × Gr:

this can be done by choosing random δ1, δ2 ∈ ZN and setting QR = (gqR1)δ1 · gδ2
r . Henceforth, we

simply describe the simulator as sampling uniformly from Gr and Gqr with the understanding that
such sampling is done in this way.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remaining values as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i, H2,i = (kp)xig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kxi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. We now describe how the simulator prepares the secret key corresponding to the
vector ~v = (v1, . . . , vn). We stress that although Definition A.1 restricts the vectors ~v for which the
adversary is allowed to request secret keys, we do not rely on this restriction here. This is because
the purpose of this hybrid proof is to show that the adversary cannot distinguish between properly
formed encryptions of ~x and improperly formed encryptions (a combination of an encryption of ~x
and ~0).

We begin with some intuition: We must construct the K1,i and K2,i components of the key.
Note that we do not have access to gq, but we do have gqg

a
p . We will make use of this element from

the assumption here. This will give rise to terms containing a in the exponent of gp. Note, however,
that we will later have to construct the K component of the key, whose purpose is to cancel out
terms in the Gp subgroup. If 〈~v, ~x〉 6= 0, then additional terms involving ab and ab2 will have to
appear in K. However, we do not have access to gab2

p ; indeed if we did, the assumption would be
false and we could easily distinguish between Game1 and Game2. We deal with this problem by
adding a term (using the gab

p gd
q term given in the assumption) to the K1,i components that will

allow us to cancel out the ab2 terms that will appear in K due to the K2,i components.
The simulator begins by choosing random f ′

1, f
′
2, {r′1,i}, {r′2,i} ∈ ZN . In constructing the key,

the simulator will be implicitly setting:

r1,i = r′1,i + vi · (af ′
1 − abf ′

2) (1)
r2,i = r′2,i + a f ′

2 vi, (2)

as well as f1 = f ′
1 − d f ′

2 and f2 = f ′
2, where we set d = loggq

Q1. Note that these values are
each independently and uniformly distributed in ZN , just as they would be in actual secret key
components.

19

Next, for all i it computes:

K1,i =
(
ga
pgq

)f ′
1vi ·

(
gab
p Q1

)−f ′
2vi

· g
r′1,i
p

= g
(af ′

1−abf ′
2)·vi+r′1,i

p · g(f ′
1−df ′

2)·vi
q

and

K2,i =
(
ga
pgq

)f ′
2vi · g

r′2,i
p

= g
af ′

2vi+r′2,i
p · gf ′

2vi
q .

Now, to construct the K element for the decryption key. Recall that h1,i = (gp)bxig
w1,i
p . There-

fore, the exponents in K will contain a term of the form
∑

i r1,ibxi. But because of how we chose
r1,i, we have that

∑
i r1,ibxi = k(abf ′

1 − ab2f2) +
∑

i r
′
1,ixi where k = 〈~v, ~x〉. A similar equation

holds for the terms arising out of the h2,i parts of K, and allows us to cancel out all the ab2 terms
that arise in K. Thus, we can compute K as follows:

Let k = 〈~v, ~x〉. Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
(
gab
p Q1

)−k·f ′
1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2viw2,i ·
(
gab
p Q1

)f ′
2viw1,i

· g
−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−xi·r′2,i
p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see formally that the K component has the correct distribution, let Kp,Kq, and Kr denote the

projections of K in Gp, Gq, and Gr, respectively. It is easy to see that Kq and Kr are independently
and uniformly distributed, as required. Furthermore,

Kp = g
−abkf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2viw2,i

p g
abf ′

2viw1,i
p g

−w1,ir
′
1,i−w2,ir

′
2,i

p h
−xir

′
1,i

p k
−xir

′
2,i

p

= h
−akf ′

1
p

∏
i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
=

∏
i

h
−axivif

′
1

p ·
(

h
−xir

′
1,i

p g
−w1,ir

′
1,i

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(
h

abxivif
′
2

p · h−abxivif
′
2

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p g
−w2,iaf ′

2vi
p

)
,

using the fact that k = 〈~x,~v〉 =
∑

i xi, vi. Using simple (but tedious) algebra, we obtain

Kp

=
∏

i

(
h
−xir

′
1,i

p g
−w1,ir

′
1,i

p h
−xivi·(af ′

1−abf ′
2)

p g
−w1,ivi(af ′

1−abf ′
2)

p

)
·
(

k
−xir

′
2,i

p g
−w2,ir

′
2,i

p k
−xiaf ′

2vi
p g

−w2,iaf ′
2vi

p

)
=

∏
i

(
hxi

p g
w1,i
p

)−r1,i
(
kxi

p g
w2,i
p

)−r2,i =
∏

i

h
−r1,i

1,i h
−r2,i

2,i

(using Eqs. (1) and (2)), and thus Kp has the correct distribution.

20

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way, as
follows. The simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C0 equal to gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= hxis
p g

w1,is
p Qxi

2 R′
7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T xi · (gs
p)

w2,i ·R8,i

= (h2,i)s
(
gβ
q

)xi

R′
8,i,

where {R′
7,i, R

′
8,i} refer to elements of Gr whose exact values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game1, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

C.2 Indistinguishability of Game2 and Game3

Fix again some adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along
with the elements gp, gr, gqR1, hp = gb

p, kp = gb2
p , ga

pgq, gab
p Q1, gs

p, gbs
p Q2R2, and an element

T = gb2s
p gβ

q R3 where β is either 0 or uniform in Zq. Recall that sampling uniform elements from
Gr or Gqr can be done efficiently. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The
simulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i} ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the public parameters as follows:

PK =
(
gp, gr, gqR1,

{
H1,i = (hp)xig

w1,i
p R1,i H2,i = (kp)yig

w2,i
p R2,i

})
.

By doing so, the simulator is implicitly setting h1,i = hxi
p g

w1,i
p and h2,i = kyi

p g
w2,i
p . Note that PK

has the appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors,
and we now describe how the simulator prepares the secret key corresponding to the vector ~v =
(v1, . . . , vn). Here, the simulator will only be able to produce the appropriate secret key when the
vector ~v satisfies the restriction imposed by Definition A.1. We distinguish two cases, depending
on whether 〈~v, ~x〉 and 〈~v, ~y〉 are both 0 or whether they are both non-zero.

Case 1. We first consider the case where 〈~v, ~x〉 = 0 = 〈~v, ~y〉. The simulator begins by choosing
random f1, f2, {r′1,1}, {r′2,1} ∈ ZN . Then for all i it computes:

K1,i =
(
ga
pgq

)f1vi · (gp)r′1,i

= g
af1vi+r′1,i
p · gf1vi

q

K2,i =
(
ga
pgq

)f2vi · (gp)r′2,i

= g
af2vi+r′2,i
p · gf2vi

q .

21

Finally, the simulator chooses random QR ∈ Gqr and computes

K = QR ·
∏

i

(
ga
pgq

)−f1viw1,i−f2viw2,i · g
−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−yi·r′2,i
p .

The simulator then hands the adversary SK~v = (K, {K1,i,K2,i}) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the values f1, f2 are random; furthermore, the simulator implicity sets

r1,i = r′1,i + af1vi

r2,i = r′2,i + af2vi,

which are uniformly distributed as well. Looking at Kp, the projection of K in Gp (as in the proof
in the previous section), we see that

Kp =
∏

i

g
−af1viw1,i−af2viw2,i
p · g

−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−yi·r′2,i
p

=
∏

i

h−af1xivi
p · k−af2yivi

p · g−af1viw1,i−af2viw2,i
p · g

−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−yi·r′2,i
p ,

using the fact that
∏

i h
−af1xivi
p = h

−af1·
P

i xivi
p = 1 =

∏
i k

−af2yivi
p (because 〈~v, ~x〉 = 0 = 〈~v, ~y〉).

Algebraic manipulation as in the previous section shows that Kp has the correct distribution.

Case 2. Here, we consider the case where 〈~v, ~x〉 = cx 6= 0 and 〈~v, ~y〉 = cy 6= 0. The simulator
begins by choosing random f ′

1, f
′
2, {r′1,1}, {r′2,1} ∈ ZN . Next, for all i it computes

K1,i =
(
ga
pgq

)f ′
1vi
(
gab
p Q1

)−cy ·f ′
2vi

· (gp)r′1,i

= g
(af ′

1−abcyf ′
2)·vi+r′1,i

p · g(f ′
1−cydf ′

2)·vi
q

K2,i =
(
ga
pgq

)cx·f ′
2vi · (gp)r′2,i

= g
acxf ′

2vi+r′2,i
p · gcx·f ′

2vi
q ,

where we set d = loggq
Q1 as in the previous proof. Finally, the simulator chooses random QR ∈ Gqr

and computes

K = QR · (gab
p Q1)−cxf ′

1

·
∏

i

(
ga
pgq

)−f ′
1viw1,i−f ′

2cxviw2,i · (gab
p Q1)f ′

2cyviw1,i · g
−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−yi·r′2,i
p .

The simulator then hands the key SK~v = (K, {K1,i,K2,i}) to the adversary.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator implicity sets

r1,i = r′1,i + (af ′
1 − cyabf ′

2) · vi

r2,i = r′2,i + acxf ′
2vi,

22

as well as f1 = f ′
1− cy · df ′

2 and f2 = cx · f ′
2. It is clear that f1 and the {r1,i, r2,i} are independently

and uniformly distributed in ZN . The value f2 is also uniformly distributed in ZN as long as
gcd(cx, N) = 1. (If gcd(cx, N) 6= 1, then the adversary has found a non-trivial factor of N . This
occurs with negligible probability under Assumption 1.)

As for element K of the secret key, it is once again easy to see that the projection of K in Gqr

is uniformly distributed. Looking at Kp, the projection of K in Gp (as in the previous section), we
see that

Kp = g
−abcxf ′

1
p ·

∏
i

g
−af ′

1viw1,i−af ′
2cxviw2,i

p · gabf ′
2cyviw1,i

p · g
−w1,i·r′1,i−w2,i·r′2,i
p · h

−xi·r′1,i
p · k

−yi·r′2,i
p

=
∏

i

h
−axivif

′
1

p · g−af ′
1viw1,i−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)r′1,i(h2,i)r′2,i

= h
cxcyabf ′

2
p · h−cxcyabf ′

2
p

∏
i

g
−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′1,i−avif

′
1(h2,i)−r′2,i

=
∏

i

h
xivicyabf ′

2
p · k−cxyiviaf ′

2
p · g−af ′

2cxviw2,i
p · gabf ′

2cyviw1,i
p · (h1,i)−r′1,i−avif

′
1(h2,i)−r′2,i

=
∏

i

(h1,i)−r′1,i−avif
′
1+abf ′

2cyvi(h2,i)−r′2,i−acxvif
′
2 =

∏
i

(h1,i)−r1,i(h2,i)−r2,i ,

and so Kp has the right distribution.

The challenge ciphertext. The challenge ciphertext is generated in a straightforward way. The
simulator chooses {R7,i, R8,i} ∈ Gr at random, sets C0 = gs

p, and computes:

C1,i =
(
gbs
p Q2R2

)xi

· (gs
p)

w1,i ·R7,i

= (h1,i)sQxi
2 R′

7,i

C2,i = T yi(gs
p)

w2,iR8,i

= (h2,i)s
(
gβ
q

)yi

R′
8,i,

where {R′
7,i, R

′
8,i} again refer to elements of Gr whose values are unimportant.

Analysis. By examining the projections of the components of the challenge ciphertext in the groups
Gp, Gq, and Gr, it can be verified that when β is random the challenge ciphertext is distributed
exactly as in Game3, whereas if β = 0 the challenge ciphertext is distributed exactly as in Game2.
We conclude that, under Assumption 1, these two games are indistinguishable.

C.3 Completing the Proof

Our scheme is symmetric with respect to the roles of h1,i and h2,i. Thus, as mentioned earlier, the
proof that Game3 and Game4 are indistinguishable exactly parallels the proof (given in the previous
section) that Game2 and Game3 are indistinguishable, while the proof that Game4 and Game5 are
indistinguishable exactly parallels the proof (given in Section C.1) that Game1 and Game2 are
indistinguishable. This concludes the proof of our theorem.

23

D A Full-Fledged Predicate Encryption Scheme

In Section 4, we showed a construction of a predicate-only scheme. Here, we extend the previous
scheme to obtain a full-fledged predicate encryption scheme in the sense of Definition 2.1. The
construction follows.

Setup(1n) The setup algorithm first runs G(1n) to obtain (p, q, r, G, GT , ê) with G = Gp×Gq×Gr.
Next, it computes gp, gq, and gr as generators of Gp, Gq, and Gr, respectively. It then chooses
R1,i, R2,i ∈ Gr and h1,i, h2,i ∈ Gp uniformly at random for i = 1 to n, and R0 ∈ Gr uniformly
at random. It also chooses random γ ∈ Zp and h ∈ Gp. The public parameters include (N =
pqr, G, GT , ê) along with:

PK =
(
gp, gr, Q = gq ·R0, P = ê(gp, h)γ , {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1

)
.

The master secret key SK is
(
p, q, r, gq, h

−γ , {h1,i, h2,i}ni=1

)
.

EncPK(~x,M) View M as an element of GT , and let ~x = (x1, . . . , xn) with xi ∈ ZN . This algorithm
chooses random s, α, β ∈ ZN and R3,i, R4,i ∈ Gr for i = 1 to n. It outputs the ciphertext

C =
(
C ′ = M · P s, C1 = gs

p,
{

C1,i = Hs
1,i ·Qα·xi ·R3,i, C2,i = Hs

2,i ·Qβ·xi ·R4,i

}n

i=1

)
.

GenKeySK(~v) Let ~v = (v1, . . . , vn). This algorithm chooses random r1,i, r2,i ∈ Zp for i = 1 to n,
random f1, f2 ∈ Zq, random R5 ∈ Gr, and random Q6 ∈ Gq. It then outputs

SK~v =

(
K = R5 ·Q6 · h−γ ·

n∏
i=1

h
−r1,i

1,i · h−r2,i

2,i ,
{

K1,i = g
r1,i
p · gf1·vi

q , K2,i = g
r2,i
p · gf2·vi

q

}n

i=1

)
.

DecSK~v
(C) Let C and SK~v be as above. The decryption algorithm outputs

C ′ · ê(C1,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i).

As we have described it, decryption never returns an error (i.e., even when 〈~v, ~x〉 6= 0). We will
show below that when 〈~v, ~x〉 6= 0 then the output is essentially a random element in the order-q
subgroup of GT . By restricting the message space to some efficiently-recognizable set of negligible
density in this subgroup, we recover the desired semantics by returning an error if the recovered
message does not lie in this space.

24

Correctness. Let C and SK~v be as above. Then

C ′ · ê(C1,K) ·
n∏

i=1

ê(C1,i,K1,i) · ê(C2,i,K2,i)

= M · P s · ê

(
gs
p, R5Q6h

−γ
n∏

i=1

h
−r1,i

1,i h
−r2,i

2,i

)

·
n∏

i=1

ê
(
Hs

1,iQ
α·xiR3,i, g

r1,i
p gf1·vi

q

)
· ê
(
Hs

2,iQ
β·xiR4,i, g

r2,i
p gf2·vi

q

)
= M · P s · ê

(
gs
p, h−γ

n∏
i=1

h
−r1,i

1,i h
−r2,i

2,i

)
·

n∏
i=1

ê
(
hs

1,i g
α·xi
q , g

r1,i
p gf1·vi

q

)
· ê
(
hs

2,i g
β·xi
q , g

r2,i
p gf2·vi

q

)
= M · P s · ê(gp, h)−γs ·

n∏
i=1

ê(gq, gq)(αf1+βf2)xivi = M · ê(gq, gq)(αf1+βf2)〈~x,~v〉.

If 〈~x,~v〉 = 0 mod N , then the above evaluates to M . If 〈~x,~v〉 6= 0 mod N there are two cases: if
〈~x,~v〉 6= 0 mod q then the above evaluates to an element whose distribution is statistically close to
uniform in the order-q subgroup of GT . (Recall that α, β are chosen at random.) It is possible that
〈~x,~v〉 = 0 mod q, in which case the above always evaluates to M ; however, this reveals a non-trivial
factor of N and so an adversary can cause this condition to occur with only negligible probability.

D.1 Proof of Security

Theorem D.1. If G satisfies Assumptions 1 and 2 then the scheme described in the previous section
is an attribute-hiding predicate encryption scheme.

We prove that the scheme described in the previous section satisfies Definition 2.2. In proving
this, we distinguish two cases: when M0 = M1 and when M0 6= M1. We show that the adversary’s
probability of success conditioned on the occurrence of each case is negligibly-close to 1/2.

A proof for the case M0 = M1 follows mutatis mutandis from the proof given in Section 4.
Specifically, if M0 = M1 = M then the adversary gets no advantage from the extra term M · P s

included in the challenge ciphertext and so the only point to verify is that, throughout the proofs
in Sections C.1 and C.2, the simulator can compute the value P s (so that it can construct the
additional element C ′ = M · P s). This is easy to do if the simulator computes P exactly as in the
Setup algorithm, and stores h−γ . We omit the straightforward details.

Given the above, we concentrate here on proving security under the assumption that M0 6= M1.
Since we are considering only this case, we will assume the adversary is restricted to requesting keys
corresponding to vectors ~v for which 〈~v, ~x〉 6= 0 and 〈~v, ~y〉 6= 0, where ~x, ~y are the vectors output by
the adversary at the outset of the experiment (cf. Definition A.1). We establish the result in this
case using a sequence of games, defined as follows.

Game0: The challenge ciphertext is generated as a proper encryption of M0 using ~x. That is, we
choose random s, α, β ∈ ZN and random {R3,i, R4,i} ∈ Gr, and compute the ciphertext as

C =
(
C ′ = M0 · P s, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βxiR4,i

}n

i=1

)
.

25

Game1: We now generate the challenge ciphertext as a proper encryption of a random element
of GT , but still using ~x. I.e., the ciphertext is formed as above except that C ′ is chosen
uniformly from GT .

Game2: We now generate the {C2,i} components as if encryption were done using ~0. That is, we
choose random s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute
the ciphertext as

C =
(
C ′, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,i R4,i

}n

i=1

)
.

Note that this exactly parallels Game2 in the proof of Theorem C.1.

Game3: We now generate the {C2,i} components using vector ~y. That is, we choose random
s, α, β ∈ ZN , random {R3,i, R4,i} ∈ Gr, and random C ′ ∈ GT , and compute the ciphertext as

C =
(
C ′, C1 = gs

p,
{

C1,i = Hs
1,iQ

αxiR3,i, C2,i = Hs
2,iQ

βyiR4,i

}n

i=1

)
.

Note that this exactly parallels Game3 in the proof of Theorem C.1.

Game4 and Game5: These games are defined symmetrically to Game2 and Game3, as in the proof
of Theorem C.1. We continue to let C ′ be a random element of GT . Note that Game5

corresponds to a proper encryption of a random element of GT using ~y.

Game6: The challenge ciphertext is generated as a proper encryption of M1 using ~y.

In the next section we prove that, under Assumption 2, Game0 and Game1 are indistinguishable.
Indistinguishability of Game1 and Game5 follows, as mentioned earlier, mutatis mutandis from the
proofs in Sections C.1 and C.2. The proof that Game5 and Game6 are indistinguishable is symmetric
to the proof that Game0 and Game1 are indistinguishable, and is therefore omitted.

D.1.1 Indistinguishability of Game0 and Game1

Fix an adversary A. We describe a simulator who is given (N = pqr, G, GT , ê) along with the
elements gp, gq, gr, h, gs

p, hsQ1, gγ
pQ2, ê(gp, h)γ , and an element T which is either equal to

ê(gp, h)γs or is uniformly distributed in GT . Note that the simulator is now able to sample uniformly
from Gq and Gr using gq and gr, respectively. In particular, the simulator can sample uniformly
from Gqr = Gq ×Gr. The simulator interacts with A as we now describe.

Public parameters. The simulator begins by giving N to A, who outputs vectors ~x, ~y. The sim-
ulator chooses random {w1,i, w2,i} ∈ ZN and random {R1,i, R2,i}, R0 ∈ Gr, includes (N, G, GT , ê)
in the public parameters, and sets the remainder of the parameters as follows:

PK =
(
gp, gr, Q = gqR0, P = ê(gp, h)γ ,

{
H1,i = hxig

w1,i
p R1,i, H2,i = hxig

w2,i
p R2,i

}n

i=1

)
.

The simulator is implicitly setting h1,i = hxig
w1,i
p and h2,i = hxig

w2,i
p . Note that PK has the

appropriate distribution.

Key derivation. The adversary A may request secret keys corresponding to different vectors ~v, as
long as 〈~v, ~x〉 6= 0 (we do not use the fact that 〈~v, ~y〉 6= 0 here). We now describe how the simulator
prepares the secret key corresponding to any such vector.

26

Say the adversary requests the secret key for vector ~v, and let k = 1/2 · 〈~x,~v〉 mod N . (If
gcd(〈~x,~v〉 , N) 6= 1) then the adversary has factored N ; this occurs with negligible probability.)
The simulator first chooses random f ′

1, f
′
2, {r′1,i, r

′
2,i} ∈ ZN . Next, for all i it computes:

K1,i =
(
gγ
pQ2

)−kvi · gf ′
1vi

q · g
r′1,i
p

= g
−kviγ+r′1,i
p · g(f ′

1−kc)·vi
q

(where we set c = loggq
Q2), and

K2,i =
(
gγ
pQ2

)−kvi · gf ′
2vi

q · g
r′2,i
p

= g
−kviγ+r′2,i
p · g(f ′

2−kc)·vi
q .

The simulator then chooses random QR ∈ Gqr and computes:

K = QR ·
n∏

i=1

((
g

w1,i
p hxi

)−r′1,i ·
(
gγ
pQ2

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′2,i ·
(
gγ
pQ2

)kviw2,i
)

.

Finally, the simulator hands the adversary SK~v = (K, {K1,i,K2,i}ni=1) as the key.
To see that this key has the correct distribution, note that by construction of the {K1,i,K2,i}

the simulator is implicitly setting f1 = f ′
1 − kc and, for all i, r1,i = −kγvi + r′1,i (and analogously

for f2 and the {r2,i}). These values are all uniformly and independently distributed in ZN . Next,
note that

n∏
i=1

(
g

w1,i
p hxi

)−r′1,i ·
(
gγ
p

)kviw1,i =
n∏

i=1

g
−w1,ir

′
1,i+kγviw1,i

p · h−xir
′
1,i

=
n∏

i=1

g
−w1,i·(r1,i+kγvi)+kγviw1,i
p · h−xi·(r1,i+kγvi)

=
n∏

i=1

(
hxig

w1,i
p

)−r1,i · h−γkvixi = h−γ/2 ·
n∏

i=1

h
−r1,i

1,i ,

using the fact that 〈~v, ~x〉 = 1/2k mod N . Thus, looking at Kp (the projection of K in Gp) we see
that

Kp =
n∏

i=1

((
g

w1,i
p hxi

)−r′1,i ·
(
gγ
p

)kviw1,i
)
·
((

g
w2,i
p hxi

)−r′2,i ·
(
gγ
p

)kviw2,i
)

= h−γ ·
n∏

i=1

h
−r1,i

1,i · h−r2,i

2,i ,

and so Kp (and hence K) is distributed appropriately.

The challenge ciphertext. The challenge ciphertext is generated as follows. The simulator
chooses random {R7,i, R8,i} ∈ Gr and Q′

1 ∈ Gq, sets C ′ = M0 · T , sets C1 = gs
p, and computes:

C1,i =
(
gs
p

)w1,i · (hsQ1)
xi ·R7,i

=
(
hxig

w1,i
p

)s ·Qxi
1 ·R7,i

C2,i =
(
gs
p

)w2,i · (hsQ1)
xi · (Q′

1)
xi ·R8,i

=
(
hxig

w2,i
p

)s · (Q1Q
′
1)

xi ·R8,i .

27

Analysis. By examining the projections of the components of the challenge ciphertext in the
groups Gp, Gq, and Gr, it can be verified that when T = ê(gp, h)γs the challenge ciphertext is
distributed exactly as in Game0, whereas if T is chosen uniformly from GT the challenge ciphertext
is distributed exactly as in Game1. We conclude that, under Assumption 2, these two games are
indistinguishable.

28

