Overlap-free Karatsuba-Ofman Polynomial

Multiplication Algorithm

Haining Fan, Jiaguang Sun, Ming Gu and Kwok-Yan Lam

Abstract

We describe how a recently proposed way to split input oplyatiows for fast VLSI implemen-
tations of GF'(2)[x] Karatsuba-Ofman multipliers. The XOR gate delay of the psga multiplier is
better than that of previous Karatsuba-Ofman multipli€s. example, it is reduced by about 33% and

25% forn = 2" andn = 3° (i > 1), respectively.

Index Terms

Karatsuba algorithm, Karatsuba-Ofman algorithm, polyr@dmultiplication, subquadratic space

complexity multiplier, finite field.

. INTRODUCTION

Published in 1962 [1], Karatsuba-Ofman algorithm (KOA) whas first integer multiplication
method broke the quadratic complexity barrier in positlonember systems. Due to its simplicity,
its polynomial version is widely adopted to design VLEF'(2") parallel multipliers inG F'(2")-
based cryptosystems [9]-[27]. Two parameters are ofted tseneasure the performance of a
GF(2™) parallel multiplier, namely, the space and time complesitiThe space complexity
is often represented in terms of the total number of 2-inpGRXand AND gates used. The
corresponding time complexity is given in terms of the maximdelay faced by a signal due
to these XOR and AND gates. Symbols,” and “T'y” are often used to represent the delay of

one 2-input AND and XOR gates, respectively.

E-mails: fanhaining@yahoo.com{sunjg, guming, lamky@tsinghua.edu.cn

The existing bit parallelGF'(2") multipliers may be simply classified into the following
three categories according to the asymptotic space complaixthe multiplication algorithm :
subquadratic, quadratic and hybrid multipliers. KOA hasrbesed in many subquadratic and
hybrid multipliers. These multipliers first perform a KOA&ded multiplication of two input
binary polynomialsd = 37" ¢,z and B = "7 b;z?, and then a modulo reduction operation
using the field generating irreducible polynomial. To explie general idea of KOA easily, we
will assume thats = 2m = 2' (¢ > 1) in the following.

First, previous KOA implementations split polynomialsand B into the “most significant

half” and the “least significant half” as follows:

n—1 m—1 m—1

A= a;x’t =™ g i T+ g a;xt =" Ay + Ar,
i=0 i=0 i=0
n—1 m—1 m—1

B = bt =™ E bz + E bix* = x™By + By,
i=0 i=0 i=0

where Ay = 7" agyiat, Ap = S0 aat, By and By, are defined similarly.

Then the productd B is computed recursively using

AB = AHBHCL’zm + {[(AH + AL)(BH + BL)] - [AHBH + ALBL]}SL’m + A; By (1)

Please note that=" is the same as “+” inGF(2)[z]. For the VLSI implementation of (1), terms
in square brackets are calculated concurrently, and threrdfvo XOR gate delays, i.e21',
are required to compute the expression in curly bracketglégeshe cost to compute the three
half sized products.

Finally, the three polynomialsly Bya®™, [(Ag + AL)(By + Br) — Ay By — AL Br]z™ and
Ap By, in (1) are XORed in an overlap module by adding coefficientsamhmon exponents of
x together [26]. In order to explain overlaps of common exps®f x clearly, we present the
following table, which shows ranges ofs exponents in these three polynomials, and make two

remarks about overlaps.

TABLE |

RANGES OFz’'S EXPONENTS IN THREE POLYNOMIALS O 1)

‘4m—2‘ ‘2m‘ ‘2m—2‘ ‘o‘

+1T'x : overlaps : overlaps

Y p—]

Remark 1. Overlaps occur only when > 4 (or m > 2), and there is no overlap when
n = 2 (or m = 1). Because of these overlaps, one XOR gate dé&lays required in the overlap
module. Therefore, a total of 3 XOR gate delays, i3dx, are required in (1) besides the cost
of the recursive computation of three half sized products.

Remark 2: Letn = kd (k > 1 andd > 0), previous generalizations of KOA split the
two input operands int& successive block each with coefficients. Since the product of two
degree-{ — 1) polynomials is a polynomial of degreed — 2), overlaps always exist if > 1.

We now compute exact complexities of the above binary potyab KOA (1). First, we
introduce some symbols of [5]. Lef and D stand for “Space” and “Delay”, respectively.
We useS®(n), S%(n), D®(n) and D®(n) to denote the number of multiplication (AND) and
addition (XOR) operations, the time delays introduced bytiplication and addition operations,
respectively. Then the following recurrence relationsjohdescribe the complexities of KOA,

can be established.

52(2) =3, DE(2) = 1,

§(n) = 35°(n/2); D(n) = D*(n/2),
S§9(2) =4, and D9(2) = 2,

S§%(n) = 38%(n/2) + 4n — 4, D%(n) =D%(n/2) + 3.

After solving the above recurrence relations using forrautkerived in [5], we have the

following complexity results for the binary polynomial KO®], [26].

)
® log, 3
S®(n) = n'o82?

\

Besides KOA, a Toeplitz matrix-vector product approach waesented recently to construct
subquadratia= F'(2") multipliers [5]. It takes advantage of a shifted polynonmbalsis [6] and
applies the coordinate transformation technique of [7] BjdBoth the space and time com-
plexities of the resulting multiplier are better than thadethe best KOA-based subquadratic
multipliers. For example, witm = 2° (i > 0), the space complexity is about 8% better, while
the time complexity is about 33% better, respectively.

Since these Toeplitz matrix-vector product formulae aréaioled by transposing [3, Th6,
p.17] corresponding polynomial KOA-like formulae, thelémVing question arises naturally: is
it possible to reduce the time or space complexity of KOAHar? We answer this question
positively in the next section. We will propose a fast VLSIplementations of the polynomial
Karatsuba-Ofman algorithm. It applies a recently proposesthod to split input operands
[2]. The XOR gate delay of the proposé&dF'(2)[x] multiplier is better than that of previous
Karatsuba-Ofman multipliers. For example, it is reducedabgut 33% and 25% fat = 2¢ and

n = 3" (1 > 1), respectively.

II. FAST PoLyNOMIAL KOA IMPLEMENTATION

We first introduce the splitting method in [2], where it is dg® compute the short product
of two power series. Instead of splitting input operands thie “most significant half” and the
“least significant half”, the method split operands acaogdio the parity ofr’s exponent. That

is to say, we may rewritel and B as follows

m—1 m—1

n—1 m—1 m—1

3 21 21+1 21 21

A=Y 0" = ayr® +) aga®™ =Y apr® + 1Y ania”,
1=0 =0 i=0

=0 i=0

m—1 m—1

i 2 2i+1 § : 2 § : 27

B = bﬂ)l = bgil’ ! + b2i+1l’ +l bgil’ ' +z b2i+1$ L
i i =0 1=0

Now lety = 22, A.(y) = 370" agiy’ andA,(y) = 327" asii1y’. B.(y) andB,(y) are defined
similarly. OperandsA and B can be rewritten asl = A.(y) +2A,(y) and B = B.(y) +zB,(y).
Please note that term&.(y), A,(y), Be(y) and B,(y) are polynomials iny of degrees less than
m. Therefore multiplication operations between them mayp &ks computed recursively. Using

the above splitting method o and B, we have the following KOA-like formula

AB = (Ac(y) +2A.(y))(Be(y) + xB,(y))
= {Ac(y)B.(y) + 2 As(y) Bo(y) } + 2{Ac(y) Bo(y) + Ao(y) Be(y))}
= {Ac(y)Be(y) + yAo(y)Bo(y) } +

{[(Ac(y) + Ao(y))(Be(y) + Bo(y))] + [Ac(y) Be(y) + Ao(y) Bo(y)]}- (2

For the VLSI implementation of (2), multiplying a polynorhiay = or y = 2% is equivalent
to shifting its coefficients, and no gate is required. It isyed@0 see that the expansion of
{A.(y)B.(y) +yAo(y)B,(y)} in (2) contains only terms with even exponentseadincey = 2,
and the expansion af{ [(A.(y) +Ao(y)) (Be(y) + Bo(y))] +[Ae(v) Be(y) + Ao (y) Bo(y)]} contains
only terms with odd exponents af. Thus, there is no overlap exists when computing their
summation, and no gate is required either. Moreover, temsgjuare brackets can be computed
concurrently, and the addition operation requires 1 XOFR glalayT'y. Therefore, we know that
computingAB via (2) needsnly a total of 27’y besides the cost of the recursive computation
of three half sized products. Please recall that the cooretipg XOR gate delay i87x in (1).

Consequently, the following recurrence relations, whiebatibe the algorithm complexities, can

be established.

S®(2) =3, D?(2) =1,
{ 5%(n) = 35%(n/2); { D%(n) = D(n/2);
S§9(2) =4, D¥(2) = 2,
{ S@En)) =358%(n/2) + 4n — 4; and { D@En)) =D%(n/2) + 2
Their solutions are as follows:
([g® (n) = nlog23,
S®(n) = 6nloe2® — 8n + 2,
D®(n) =1,
D®(n) = 2logyn

\

Compared to previous implementations of polynomial KOAg XOR gate delay of (2), i.e.,
D%®(n), is about 33% better fon = 2° (i > 0).

Similar to the generalizations of KOA, we may also derive soKOA-like formulae for
polynomials of higher degrees. As an example, we show thauta forn = 3k = 3° (i > 1).

Let y = 2® and splitA as follows

n—1 k—1 k—1 k—1

; 31 31 2 31

A = E a;x" = E agz-:c“rxg Az + E aiq22”"
=0 =0 =0 =0

= Ao(y) + zAi(y) + 2% As(y),

where Ao(y) = S0 asiy’, Ai(y) = Soh—y @iy’ and As(y) = S5 asiroy’.

Then we have
AB = {AoBy +y[(A1 + A2)(B1 + By) + A1 By + Ay By} +
z{[(Ao + A1)(By + By) + AoBo + A1 B1] + yAs B } +
2?{ (Ao + A2)(Bo + Bs) + AgBo + Ay By + Ay By},

where {y)”s in expressions4;(y) and B;(y) are omitted.

The following recurrence relations describe the compiesiof this formula.

S%(3) = 6,
§%(n) = 65%(n/3);
S%(3) = 12

S8%(n) = 68%(n/3) + £n — 10;

and

. COMPARISONS

DE(3) = 1,
D¥(n) = D®(n/3);
D (3) = 3,

D%(n) =D%(n/3) + 3.

Table Il compares asymptotic complexities of proposed tdam with the previous KOA and

Toeplitz matrix-vector product (TMVP) formulae over theognd field GF(2), where #AND

and#XOR denote the total number of AND and XOR gates, respegtividie size of operands

is assumed to be = 2! or 3' (¢t > 0). We list complexities of the TMVP in the table because

both KOA and TMVP can be used to desigtF'(2") parallel multipliers, which is an important

application field of these two algorithms. But we must empteathat these two algorithms are

distinct, and each of them have their own application fields [4].

TABLE I

COMPARISONS OF ASYMPTOTIC COMPLEXITIES FOR, = b’

b | Algorithm | #AND #XOR Gate delay
KOA [26] | n'°®23 | 6n'°#23 —8n 42 (Blogom — 1)T'x +Ta

2 | Proposed | n'°523 | 6nlo823 — 8n 42 (2logon)Tx +Ta
TMVP [5] | n'°823 | 5509823 — 60+ 0.5 | (2log, n)Tx + Ta
KOA [26] | nloes® %nlogﬁ 6 _ %n +2 (4logsn —1)Tx +Ta

3 | Proposed | n'oss® %nlogﬁ b—Zp42 (3logsn)Tx +Ta
TMVP [5] [n'o#s® | 22plossb _5p 4 1 (3logy n)Tx + Ta

IV. CONCLUSIONS

We have proposed a fast VLS| implementation of the polynbKi@A in the ring GF(2)][z]. It
eliminates overlaps in previous designs of KOA multiplieiee XOR gate delay of the proposed
GF(2)[z] multiplier is better than that of previous Karatsuba-Ofnmaaltipliers. For example,

it is reduced by about 33% and 25% for= 2° andn = 3° (i > 1), respectively.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

A. Karatsuba and Y. Ofman, “Multiplication of MultidigiNumbers on Automata,Soviet Physics-Doklady (English
translation) vol. 7, no. 7, pp. 595-596, 1963.

G. Hanrot, P. Zimmermann “A long note on Mulders’ shorbguct” Journal of Symbolic Computatiorol.37 , pp.391-401,
2004

S. Winograd, “Arithmetic Complexity of Computations3IAM, 1980.

J. von zur Gathen and J. Gerhard, “Modern Computer Alggi8econd ed., Cambridge Univ. Press, 2003.

H. Fan and M. A. Hasan, “A New Approach to Subquadratic c@p@omplexity Parallel Multipliers for Extended Binary
Fields,” IEEE Transactions on Computergol. 56, no. 2, pp. 224-233, Feb. 2007.

H. Fan and Y. Dai, “ Fast bit parallefF'(2™) Multiplier for All Trinomials,” IEEE Transactions on Computersol. 54,
no. 4, pp. 485-490, Apr. 2005.

M. A. Hasan and V. K. Bhargava, “Division and Bit-serialuMiplication over GF'(¢™),” IEE Proceedings-Evol. 139,
no. 3, pp. 230-236, May 1992.

M. A. Hasan and V. K. Bhargava, “Architecture for Low Colepity Rate-Adaptive Reed-Solomon EncodelfZEE
Transactions on Computersol. 44, no. 7, pp. 938-942, July 1995.

C. Paar, “ A New Architecture for a Parallel Finite Fielduliplier with Low Complexity Based on Composite Fields,”
IEEE Transactions on Computergol. 45, no. 7, pp. 856-861, July 1996.

C. Paar, P. Fleischmann, and P. Roelse, “ Efficient Mliéti schemes for Galois FieldSF'(2*"), ” IEEE Transactions
on Computersvol. 47, no. 2, pp. 162-170, Feb. 1998.

M. Elia, M. Leone, and C. Visentin, “Low complexity bitarallel multipliers forGF(2™) with generator polynomial
z™ + z* + 1,” IEE Electronics Lettersvol. 35, no.7, pp.551-552, 1999.

M. Jung, F. Madlener, M. Ernst, and S. Huss, “A Reconfifple Coprocessor for Finite Field Multiplication GF(2"),
Proc. IEEE Workshop Heterogeneous reconfigurable SystenGhip, 2002.

M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blumel,RAconfigurable System on Chip Implementation for Elliptic
Curve Cryptography ove€ZF'(2™),” Proc. Cryptographic Hardware and Embedded Systems (CHER)20ONCS 2523,
pp. 381-399, 2003.

C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich and & xar Gathen, “ FPGA Designs of parallel hign performance
GF(2%3) Multipliers,” Proc. Int'l Symposium on Circuits and Systems (ISCAS 20@8) Il, pp. 268-271, 2003.

A. Weimerskirch and C. Paar, “Generalizations of therdsuba Algorithm for Efficient Implementations,” 2003,
hitp : / Jwww.crypto.ruhr — uni — bochum.de/imperia/md/content /texte /kaweb.pdf.

F. Rodriguez-Henrigquez and C. K. Kog, “On fully pel Karatsuba multipliers fo&F(2™),” Proc. Int'| Conf. Computer
Science and Technology (CST 2Q03). 405-410, 2003.

S. S. Erdem and C. K. Kog, “A Less Recursive Variant a@frtsuba-Ofman Algorithm for Multiplying Operands of Size
a Power of Two,”Proc. 16th IEEE Symposium on Computer Arithmetic (Arith2083) pp. 28-35, 2003.

A. E. Cohen and K. K. Parhi, “Implementation of scalabléptic curve cryptosystem crypto-accelerators 8f'(2™),”
Proc. 13th Asilomar Conf. on Signals, Systems and Computelsl, pp. 471 - 477, Nov. 2004.

B. Sunar, “ A Generalized Method for Constructing Sufdpatic ComplexityGF'(2*) Multipliers,” IEEE Transactions
on Computersvol. 53, no. 9, pp. 1097-1105, Sept. 2004.

P. L. Montgomery, “ Five, Six, and Seven-Term Karatslifilee Formulae,”IEEE Transactions on Computergol. 54, no.
3, pp. 362-369, Mar. 2005.

[21]

[22]

(23]

[24]

[25]

[26]

[27]

10

H. Fan and M. A. Hasan, “Comments on “five, Six, and SeVerm Karatsuba-Like Formulae”/EEE Transactions on
Computersvol. 56, no. 5, pp. 716-717, May 2007.

N. S. Chang, C. H. Kim, Y. H. Park, and J. Lim, “A Non-Rediamt and Efficient Architecture for Karatsuba-Ofman
Algorithm,” Proc. 8th International Conf. on Information Security (I005) LNCS 3650, pp. 288-299, 2005.

Z. Dyka and P. Langendoerfer, “Area efficient hardwamgplementation of elliptic curve cryptography by iterative
applying karatsuba’s methodProc. Conf. on Design, Automation and Test in Europe 2Q@@6 70-75, 2005.

K. Y. Chang, D. Hong, and H. S. Cho, “Low Complexity Bitfllel Multiplier for GF'(2™) Defined by All-One
Polynomials Using Redundant Representati iEE Transactions on Computersol. 54, no. 12, pp. 1628-1630, Dec.
2005.

L. S. Cheng, A. Miri and T. H. Yeap, “Improved FPGA Implentations of Parallel Karatsuba Multiplication ov&F'(2"),”
Proc. 23rd Biennial Symposium on Communicatja2@06.

J. von zur Gathen and J. Shokrollahi, “ Efficient FPG/Aséxh Karatsuba Multipliers for Polynomials ovEs,” Proc. 12th
Workshop on Selected Areas in Cryptography (SAC 200STS 3897 pp.359-369, 2006.

S. Peter and P. Langendorfer, “An Efficient Polynomialltplier in GF'(2™) and its Application to ECC Designsi?roc.
Conf. on Design, Automation and Test in Europe 2Q87. 1253-1258, 2007.

