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Abstract. Consider the Jacobian of a hyperelliptic genus two curve de�ned
over a �nite �eld. Under certain restrictions on the endomorphism ring of
the Jacobian, we give an explicit description of all non-degenerate, bilinear,
anti-symmetric and Galois-invariant pairings on the Jacobian. From this de-
scription it follows that no such pairing can be computed more e�ciently than
the Weil pairing.

To establish this result, we need an explicit description of the representation
of the Frobenius endomorphism on the `-torsion subgroup of the Jacobian.
This description is given. In particular, we show that if the characteristic
polynomial of the Frobenius endomorphism splits into linear factors modulo `,
then the Frobenius is diagonalizable.

Finally, under the restriction that the Frobenius element is an element of a
certain subring of the endomorphism ring, we prove that if the characteristic
polynomial of the Frobenius endomorphism splits into linear factors modulo `,
then the embedding degree and the total embedding degree of the Jacobian
with respect to ` are the same number.

1. Introduction

In [12], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of groups, and possibly larger group
orders, Koblitz [13] then proposed using Jacobians of hyperelliptic curves. Since
Boney and Franklin [2] proposed an identity based cryptosystem by using the Weil
pairing on an elliptic curve, pairings have been of great interest to cryptography [8].
The next natural step then was to consider pairings on hyperelliptic curves. Gal-
braith et al [9] survey the recent research on pairings on hyperelliptic curves.

The pairing in question is usually the Weil or the Tate pairing; both pairings
can be computed with Miller's algorithm [16]. The Tate pairing is usually preferred
because it can be computed more e�ciently than the Weil pairing, cf. [7], and it is
non-degenerate over a possible smaller �eld extension than the Weil pairing, cf. [11]
and [23]. For elliptic curves, in most cases relevant to cryptography the question
of non-degeneracy is not an issue, cf. [1]. This result has been generalized to any
abelian variety de�ned over a �nite �eld by Rubin and Silverberg [20, Theorem 3.1].
The proof in [20] uses intrinsic properties of the Frobenius endomorphism on the
abelian variety. This indicates the importance of knowing the representation of
the Frobenius endomorphism on torsion subgroups of the abelian variety. This
representation has implicitly been given by Rück [21, proof of Lemma 4.2].
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Cryptographically, it is essential to know the number of points on the Jacobian.
Currently, the complex multiplication method [24, 10, 4] is the only e�cient method
to determine the number of points of the Jacobian of a genus two curve de�ned over
a large prime �eld [10]. The complex multiplication method constructs a Jacobian
with endomorphism ring isomorphic to the ring of integers OK in a quartic CM

�eld K, i.e. a totally imaginary, quadratic �eld extension of a quadratic number
�eld. In the present paper we consider the more general situation where OK is
embedded into the endomorphism ring.

1.1. Notation and assumptions. Consider a hyperelliptic curve C of genus two
de�ned over a �nite �eld Fq of characteristic p. We assume that the Jacobian JC

of C is irreducible. Identify the q-power Frobenius endomorphism ϕ on JC with a
root ω ∈ C of the characteristic polynomial P ∈ Z[X] of ϕ; cf. section 4. We then
assume that the ring of integers of Q(ω) is embedded into the endomorphism ring
End(JC). Let ` 6= p be a prime number dividing the order of JC(Fq). Assume that
` is unrami�ed in Q(ω), and that ` - q − 1.

1.2. Results. Under these assumptions, in section 5 we give an explicit description
of all non-degenerate, bilinear, anti-symmetric, Galois-invariant pairings on the
`-torsion subgroup of the Jacobian of a hyperelliptic curve of genus two, given by
the following theorem.

Theorem 5.1 (Anti-symmetric pairings). Let notation and assumptions be as

above. Choose a basis B of JC[`], such that ϕ is represented either by a diagonal

matrix or a matrix on the form given in theorem 4.2 with respect to B. If JC(Fq)[`]
is cyclic, then all non-degenerate, bilinear, anti-symmetric and Galois-invariant

pairings on JC[`] are given by the matrices

Ea,b =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a, b ∈ F×`

with respect to B.

This result implies that the Weil pairing is non-degenerate on the same �eld

extension as the Tate pairing, and that no non-degenerate, bilinear, anti-symmetric

and Galois-invariant pairing on JC[`] can be computed more e�ectively than the Weil

pairing. To end the description of pairings on JC, in section 6 we give an explicit
description of the Tate pairing.

The proof of Theorem 5.1 uses an explicit description of the representation of
the Frobenius endomorphism on the Jacobian of a hyperelliptic curve of genus two,
given by the following theorem.

Theorem 4.2 (Matrix representation). Let notation and assumptions be as above.

Then either ϕ is diagonalizable on JC[`], or ϕ is represented on JC[`] by a matrix

on the form

M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


with c 6≡ q + 1 (mod `) with respect to an appropriate basis of JC[`].
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Perhaps even more interestingly, we prove that if the characteristic polynomial of
the Frobenius endomorphism splits into linear factors modulo `, then the Frobenius
is diagonalizable.

Theorem 4.7 (Diagonal representation). Let notation and assumptions be as

above. Then ϕ is diagonalizable on JC[`] if and only if the characteristic polynomial

of ϕ splits into linear factors modulo `.

The proofs are given in section 4. Theorem 4.2 and 4.7 also hold if ` | q − 1 and
` is uneven. The proofs are similar in this case, but due to the mov-attack [15]
and the attack by Frey-Rück [6], the case ` | q − 1 is not of cryptographic interest.
Therefore, this case is omitted.

Finally, in section 7 we assume that the endomorphism ring of the Jacobian
is isomorphic to the ring of integers in a quartic CM �eld K. Assuming that
the Frobenius endomorphism under this isomorphism is given by an η-integer and
that the characteristic polynomial of the Frobenius endomorphism splits into linear
factors over F`, we prove that if the discriminant of the real sub�eld of K is not
a quadratic residue modulo `, then all `-torsion points are Fqk -rational. Here, k is
the multiplicative order of q modulo `.

2. Hyperelliptic curves

A hyperelliptic curve is a smooth, projective curve C ⊆ Pn of genus at least two
with a separable, degree two morphism φ : C → P1. Throughout this paper, let C

be a hyperelliptic curve of genus two de�ned over a �nite �eld Fq of characteristic p.
By the Riemann-Roch Theorem there exists a birational map ψ : C→ P2, mapping
C to a curve given by an equation of the form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are polynomials of degree at most six [3, chapter 1].
The set of principal divisors P(C) on C constitutes a subgroup of the degree zero

divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).

The Jacobian is de�ned over Fq, and the points on JC de�ned over the extension
Fqd is denoted JC(Fqd).

Let ` 6= p be a prime number. The `n-torsion subgroup JC[`n] < JC of elements
of order dividing `n is then isomorphic to (Z/`nZ)4, i.e. JC[`n] is a Z/`nZ-module
of rank four; cf. [14, Theorem 6, p. 109].

The multiplicative order of q modulo ` plays an important role in cryptography.

De�nition (Embedding degree). Consider a prime number ` 6= p dividing the order
of JC(Fq). The embedding degree of JC(Fq) with respect to ` is the multiplicative
order of q modulo `, i.e. the least number k, such that qk ≡ 1 (mod `).

Throughout this paper we consider a prime number ` 6= p dividing the order
of JC(Fq), and assume that JC(Fq) is of embedding degree k > 1 with respect to `.
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[`] // JC[`n+1]
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JC[`n]
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[`] // JC[`n+1]

[`] // JC[`n]
[`] // . . .

Figure 1. Representation of an endomorphism ψ ∈ End(JC)
on the Tate module T`(JC). The horizontal maps [`] are the
multiplication-by-` map.

Closely related to the embedding degree, we have the total embedding degree.

De�nition (Total embedding degree). Consider a prime number ` 6= p dividing
the order of JC(Fq). The total embedding degree of JC(Fq) with respect to ` is the
least number κ, such that JC[`] ⊆ JC(Fqκ).

Remark 2.1. If JC[`] ⊆ JC(Fqκ), then ` | qκ−1; cf. [5, corollary 5.77, p. 111]. Hence,
the total embedding degree is a multiple of the embedding degree.

3. The tame Tate pairing

Let F be an algebraic extension of Fq. Let x ∈ JC(F)[`] and y =
∑
i aiPi ∈ JC(F)

be divisors with disjoint support, and let ȳ ∈ JC(F)/`JC(F) denote the divisor class
containing the divisor y. Furthermore, let fx ∈ F(C) be a rational function on C

with divisor div(fx) = `x. Set fx(y) =
∏
i f(Pi)ai . Then

e`(x, ȳ) = fx(y)

is a well-de�ned pairing JC(F)[`] × JC(F)/`JC(F) −→ F×/(F×)`, the Tate pairing ;
cf. [8].

Theorem 3.1. If the �eld F is �nite and contains the `th roots of unity, then the

Tate pairing e` is bilinear and non-degenerate.

Proof. Hess [11] gives a short and elementary proof of this result. �

Now let F = Fqk . Raising to the power qk−1
` gives a well-de�ned element in the

subgroup µ` < F×
qk

of the `th roots of unity. This pairing

ê` : JC(Fqk)[`]× JC(Fqk)/`JC(Fqk) −→ µ`

is called the tame Tate pairing.

Corollary. The tame Tate pairing ê` is bilinear and non-degenerate.

4. Tate representation of the Frobenius endomorphism

Let Z` denote the ring of `-adic integers. An endomorphism ψ : JC → JC induces
a Z`-linear map

ψ` : T`(JC)→ T`(JC)
on the `-adic Tate-module T`(JC) of JC; cf. [14, chapter VII, �1]. The map ψ` is
given by ψ as described in �gure 1. Hence, ψ is represented on JC[`] by a matrix
M ∈ Mat4(F`).
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De�nition (Diagonal representation). An endomorphism ψ ∈ End(JC) is diago-
nalizable or has a diagonal representation on JC[`], if ψ can be represented on JC[`]
by a diagonal matrix M ∈ Mat4(F`) with respect to an appropriate basis of JC[`].

Let f ∈ Z[X] be the characteristic polynomial of ψ, cf. [14, pp. 109�110], and
let f̄(X) ∈ F`[X] be the characteristic polynomial of the restriction of ψ to JC[`].
Then f is a monic polynomial of degree four, and by [14, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `).

Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jacobian JC.
Let P be the characteristic polynomial of ϕ. Consider an algebraic integer ω ∈ C
with P (ω) = 0 in C. By the homomorphism Z[ω] → End(JC) given by ω 7→ ϕ we
will identify ϕ with ω.

Since End(JC) is a �nitely generated, torsion free Z-module [17, Theorem 1], we
may de�ne EndQ(JC) = End(JC)⊗Q. Notice that Q(ω) ⊆ EndQ(JC). Throughout
this paper we assume that ` is unrami�ed in Q(ω).

Remark 4.1. It is well-known that ` is unrami�ed in Q(ω) if and only if ` divides
the discriminant of the �eld extension Q(ω)/Q; see e.g. [19, Theorem 2.6, p. 199].
Hence, almost any prime number ` is unrami�ed in Q(ω). In particular, if ` is large,
then ` is unrami�ed in Q(ω).

We prove the following theorem.

Theorem 4.2 (Matrix representation). Let C be a hyperelliptic curve of genus two

de�ned over a �nite �eld Fq of characteristic p with irreducible Jacobian. Identify

the q-power Frobenius endomorphism ϕ on JC with a root ω ∈ C of the characteristic

polynomial P ∈ Z[X] of ϕ. Assume that the ring of integers of Q(ω) under this

identi�cation is embedded in End(JC). Consider a prime number ` 6= p dividing the
order of JC(Fq). Assume that ` is unrami�ed in Q(ω), and that ` - q − 1. If ϕ is

not diagonalizable on JC[`], then ϕ is represented on JC[`] by a matrix on the form

(1) M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c


with c 6≡ q + 1 (mod `) with respect to an appropriate basis of JC[`].

The proof of theorem 4.2 uses a number of lemmas. At �rst we notice that if
a power of an endomorphism is trivial on the `-torsion subgroup of JC, then so is
also the endomorphism.

Lemma 4.3. Let notation and assumptions be as in theorem 4.2. Consider an

endomorphism α ∈ Q(ω). If ker[`] ⊆ ker(αn) for some number n ∈ N, then ker[`] ⊆
ker(α).

Proof. Since ker[`] ⊆ ker(αn), it follows that αn = `β for some endomorphism

β ∈ End(JC); see e.g. [18, Remark 7.12, p. 37]. Notice that β = αn

` ∈ Q(ω). Let
f ∈ Z[X] be the characteristic polynomial of β. Since f(β) = 0 and f is monic, β
is an algebraic integer. So β ∈ OQ(ω), whence α

n ∈ `OQ(ω). Since ` is unrami�ed
in Q(ω) by assumption, it follows that α ∈ `OQ(ω), i.e. ker[`] ⊆ ker(α). �
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We will examine the representation of ϕ on JC[`]. A �rst, basic observation is
given by the following lemma.

Lemma 4.4. Let notation and assumptions be as in theorem 4.2. Then either

JC(Fqk)[`] is of dimension two as a F`-vectorspace, or all `-torsion points of JC are

Fqk -rational.

Proof. By the non-degeneracy of the Tate pairing on JC(Fqk)[`], the dimension
over F` is at least two. If JC(Fqk)[`] is of dimension at least three over F`, then the

restriction of the qk-power Frobenius endomorphism ϕk to JC(Fqk)[`] is represented
by a matrix on the form

M =


1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4

 .
Notice that m4 = detM ≡ deg(ϕk) = q2k ≡ 1 (mod `). Thus, the characteristic
polynomial of ϕk satis�es P (X) ≡ (X − 1)4 (mod `), i.e. ker[`] ⊆ ker(ϕk − 1)4. By
Lemma 4.3 it follows that ker[`] ⊆ ker(ϕk − 1). But then JC[`] ⊆ JC(Fqk), i.e. all
`-torsion points of JC are Fqk -rational. �

By [20, proof of Theorem 3.1] we know that JC[`] as a vector space over F` is
isomorphic to a direct sum of ϕ-invariant subspaces. From this we get a partial
description of the representation of ϕ on JC[`].

Lemma 4.5. Let notation and assumptions be as in theorem 4.2. We may choose a

basis (x1, x2, x3, x4) of JC[`], where ϕ(x1) = x1, ϕ(x2) = qx2 and ϕ(x3) ∈ 〈x3, x4〉.
If ϕ(x3) /∈ 〈x3〉, then ϕ can be represented on JC[`] by a matrix on the form

M =


1 0 0 0
0 q 0 0
0 0 0 −q
0 0 1 c

 .
If c ≡ q + 1 (mod `), then ϕ is diagonalizable.

Proof. Let P̄ ∈ F`[X] be the characteristic polynomial of the restriction of ϕ
to JC[`]. Since ` | |JC(Fq)|, 1 is a root of P̄ . Assume that 1 is an root of P̄
with multiplicity d. Since the roots of P̄ occur in pairs (α, q/α), also q is a root of
P̄ with multiplicity d. Hence, we may write

P̄ (X) = (X − 1)d(X − q)dQ̄(X),

where Q̄ ∈ F`[X] is a polynomial of degree 4 − 2d, and Q̄(1) · Q̄(q) 6≡ 0 (mod `).
Let U = ker(ϕ− 1)d, V = ker(ϕ− q)d and W = ker(Q̄(ϕ)). Then U , V and W are
ϕ-invariant subspaces of the F`-vectorspace JC[`], dimF`(U) = dimF`(V ) = d, and
JC[`] ' U ⊕ V ⊕W .

If d = 1, then choose xi ∈ JC[`], such that U = 〈x1〉, V = 〈x2〉 andW = 〈x3, x4〉.
Then (x1, x2, x3, x4) establishes the �rst part of the lemma. Hence, we may assume
that d = 2. Now choose x1 ∈ U , such that ϕ(x1) = x1, and expand this to a
basis (x1, x2) of U . Similarly, choose a basis (x3, x4) of V with ϕ(x3) = qx3. With
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respect to the basis (x1, x2, x3, x4), ϕ is then represented by a matrix on the form

M =


1 α 0 0
0 1 0 0
0 0 q β
0 0 0 q

 .
Notice that

Mk =


1 kα 0 0
0 1 0 0
0 0 1 kqk−1β
0 0 0 1

 .
Hence, the restriction of ϕk to JC[`] has the characteristic polynomial (X− 1)4, i.e.
JC[`] ⊆ JC(Fqk). But then Mk = I, whence α ≡ β ≡ 0 (mod `). So if d = 2, then
the �rst part of the lemma is established by (x1, x3, x2, x4). Thus, the �rst part of
the lemma is proved.

Now choose a basis (x1, x2, x3, x4) of JC[`] according to the �rst part of the
lemma. Assume that ϕ(x3) /∈ 〈x3〉. Then the set (x1, x2, x3, ϕ(x3)) is a basis
of JC[`]. With respect to this basis, ϕ is represented by a matrix on the given form.
If c ≡ q + 1 (mod `), then ϕ is diagonalizable. �

Remark 4.6. Notice that if P̄ (X) = (X − 1)2(X − q)2, then ϕ is represented by
the diagonal matrix diag(1, 1, q, q) with respect to an appropriate basis of JC[`],
JC(Fq)[`] is bi-cyclic and JC[`] ⊆ JC(Fqk).

With lemma 4.5 we can �nally prove theorem 4.2.

Proof of theorem 4.2. If ϕ(x3) ∈ 〈x3〉, then ϕ is represented by a matrix on the
form

M =


1 0 0 0
0 q 0 0
0 0 α β
0 0 0 qα−1


with respect to (x1, x2, x3, x4). If α2 6≡ q (mod `), then M is diagonalizable, i.e. ϕ
can be represented by a diagonal matrix on JC[`]. So assume that α2 ≡ q (mod `).
Then

M2k =


1 0 0 0
0 1 0 0
0 0 1 2kα−1β
0 0 0 1

 ,
i.e. the restriction of ϕ2k to JC[`] has the characteristic polynomial (X − 1)4. But
then JC[`] ⊆ JC(Fq2k) by Lemma 4.3, i.e. M2k = I. So β ≡ 0 (mod `), and ϕ is
diagonalizable.

Thus, if ϕ is not diagonalizable on JC[`], then ϕ(x3) /∈ 〈x3〉, whence ϕ is repre-
sented on JC[`] by a matrix on the form (1) with respect to an appropriate basis of
JC[`]. �

Since the roots of the characteristic polynomial P of the Frobenius ϕ are all of
absolute value

√
q, we can determine whether the Frobenius is diagonalizable on

JC[`] directly from the roots of P modulo `. From this it follows that if P splits
into linear factors modulo `, then the Frobenius is diagonalizable.
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Theorem 4.7 (Diagonal representation). Let notation and assumptions be as in

theorem 4.2. Then ϕ is diagonalizable on JC[`] if and only if the characteristic

polynomial of ϕ splits into linear factors modulo `.

Proof. The �only if� part is trivial. We prove the �if� part.
Let P̄ ∈ F`[X] be the characteristic polynomial of the restriction of ϕ to JC[`].

Assume at �rst that JC(Fq)[`] is cyclic. If P̄ (X) = (X − 1)2(X − q)2, then JC[`]
is bi-cyclic by Remark 4.6. So P̄ (X) 6= (X − 1)2(X − q)2. If P̄ has only simple
roots, then ϕ is diagonalizable. Hence, we may assume that P̄ has a double root
ᾱ ∈ F`. The roots of P̄ occur in pairs (ᾱ, q/ᾱ). Thus, if ᾱ ∈ {1, q}, then P̄ (X) =
(X − 1)2(X − q)2. So ᾱ /∈ {1, q}, and it follows that ϕ can be represented on JC[`]
by a matrix on the form

M =


1 0 0 0
0 q 0 0
0 0 α β
0 0 0 α

 ,
where α ≡ ᾱ (mod `). Let ακ ≡ 1 (mod `). Then

Mκ =


1 0 0 0
0 1 0 0
0 0 1 κακ−1β
0 0 0 1

 ,
i.e. the restriction of ϕκ to JC[`] has the characteristic polynomial (X − 1)4. But
then JC[`] ⊆ JC(Fqκ) by Lemma 4.3, i.e. Mκ = I. So β ≡ 0 (mod `), and ϕ is
diagonalizable.

Then assume that JC(Fq)[`] is bi-cyclic. Then JC[`] ⊆ JC(Fq) by Lemma 4.4,
and it follows that ϕ can be represented on JC[`] by a matrix on the form

M =


1 0 0 0
0 1 0 0
0 0 q α
0 0 0 q

 .
As above, it follows that α ≡ 0 (mod `), whence ϕ is diagonalizable. �

Remark 4.8. Assume that P splits into linear factors modulo `. If JC(Fq)[`] is
cyclic, then ϕ is diagonalizable on JC[`], and the the total embedding degree κ of
JC(Fq) with respect to ` is given by the multiplicative order of a root α ∈ F` of P̄ .
If JC[`] is not cyclic, then JC[`] ⊆ JC(Fqk) by Lemma 4.4, i.e. κ = k. Hence, κ is
easy to determine.

5. Anti-symmetric pairings on the Jacobian

On JC[`], a non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing

ε : JC[`]× JC[`]→ µ` < F×
qk

exists, e.g. the Weil pairing. Since ε is bilinear, it is given by

ε(x, y) = xTEy

for some matrix E ∈ Mat4(F`) with respect to a basis (x1, x2, x3, x4) of JC[`]. Since
ε is Galois�invariant,

∀x, y ∈ JC[`] : ε(x, y)q = ε(ϕ(x), ϕ(y)).
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This is equivalent to

∀x, y ∈ JC[`] : q(xTEy) = (Mx)TE(My),

where M is the representation of ϕ on JC[`] with respect to (x1, x2, x3, x4). Since
(Mx)TE(My) = xTMTEMy, from the Galois-invariance of ε it follows that

∀x, y ∈ JC[`] : xT qEy = xTMTEMy,

or equivalently, that qE = MTEM .
Now let ζ be a primitive `th root of unity. Let

ε(x1, x2) = ζa1 , ε(x1, x3) = ζa2 , ε(x2, x3) = ζa4 and ε(x3, x4) = ζa6 .

Assume at �rst that ϕ is not diagonalizable on JC[`]. By Galois-invariance and
anti-symmetry we then see that

E =


0 a1 a2 qa2

−a1 0 a4 a4

−a2 −a4 0 a6

−qa2 −a4 −a6 0

 .
Since MTEM = qE, it follows that

a2q(c− (1 + q)) ≡ a4q(c− (1 + q)) ≡ 0 (mod `).

Thus, a2 ≡ a4 ≡ 0 (mod `), cf. Theorem 4.2. So

(2) E =


0 a1 0 0
−a1 0 0 0

0 0 0 a6

0 0 −a6 0

 .
Since ε is non-degenerate, a2

1a
2
6 = det E 6≡ 0 (mod `).

Now assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with
respect to an appropriate basis (x1, x2, x3, x4) of JC[`]. Let ε(x1, x4) = ζa3 and
ε(x1, x4) = ζa5 . Then it follows from MTEM = qE that

a2(α− q) ≡ a3(α− 1) ≡ a4(α− 1) ≡ a5(α− q) ≡ 0 (mod `).

If α ≡ 1, q (mod `), then JC(Fq) is bi-cyclic. Hence the following theorem holds.

Theorem 5.1 (Anti-symmetric pairings). Let C be a hyperelliptic curve of genus

two de�ned over a �nite �eld Fq of characteristic p with irreducible Jacobian. Iden-

tify the q-power Frobenius endomorphism ϕ on JC with a root ω ∈ C of the charac-

teristic polynomial P ∈ Z[X] of ϕ. Assume that the ring of integers of Q(ω) under
this identi�cation is embedded in End(JC). Choose a basis B of JC[`], such that ϕ is

represented either by a diagonal matrix or a matrix on the form given in theorem 4.2

with respect to B. Consider a prime number ` 6= p dividing the order of JC(Fq).
Assume that ` is unrami�ed in Q(ω), and that ` - q − 1. If JC(Fq)[`] is cyclic, then
all non-degenerate, bilinear, anti-symmetric and Galois-invariant pairings on JC[`]
are given by the matrices

Ea,b =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , a, b ∈ F×`

with respect to B.
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Corollary. Under the assumptions of theorem 5.1,

(1) the Weil-pairing is non-degenerate on JC(Fqk)[`], and
(2) no non-degenerate, bilinear, anti-symmetric and Galois-invariant pairing

on JC[`] × JC[`] can be computed more than eight times as e�ective as the

Weil-pairing.

Proof. By a precomputation, a basis (x1, x2, x3, x4) of JC[`] can be found, such that
the Weil-pairing is given by the matrix E1,1; cf. the notation of theorem 5.1. To
compute the Weil-pairing of A,B ∈ JC[`], we only need to �nd the coordinates of A
and B in this basis. Now assume that a non-degenerate, bilinear, anti-symmetric
and Galois-invariant pairing ε on JC[`]× JC[`] exists, such that ε can be computed
more than eight times as e�ectively as the Weil-pairing. By a precomputation we
can �nd the matrix representation Ea,b of ε. Write A =

∑
i αixi. Then

α1 = −a−1ε(x2, A), α2 = a−1ε(x1, A),

α3 = −b−1ε(x4, A), α4 = b−1ε(x3, A).

Similarly we �nd the coordinates of B. Hence, the Weil-pairing of A and B can be
computed by at most eight pairing computations with ε, a contradiction. �

6. Matrix representation of the tame Tate pairing

The tame Tate pairing induces a pairing τ` : JC[`]× JC[`]→ µ` by

τ`(x, y) = ê`(x, ȳ).

In this section we will examine the matrix representation of this pairing.
Let x, y ∈ JC[`] = JC(Fqκ)[`] be divisors with disjoint support, and choose func-

tions fx, fy ∈ Fqκ(C) with div(fx) = `x and div(fy) = `y. The Weil pairing
e` : JC[`]× JC[`]→ µ` is then de�ned by

e`(x, y) =
fx(y)
fy(x)

Notice that

(3) e`(x, y) =
τ`(x, y)
τ`(y, x)

Now choose an appropriate basis (x1, x2, x3, x4) of JC[`], such that the Weil pairing
is represented by the matrix

W =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


with respect to this basis. Notice that x1 ∈ JC(Fq), so τ`(x1, x1) = 1.

By (3) it follows that τ` is represented by a matrix on the form

T =


0 a1 a2 a3

a1 − 1 d2 a4 a5

a2 a4 d3 a6

a3 a5 a6 − 1 d4


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with respect to the basis (x1, x2, x3, x4). Since τ` is Galois-invariant, it follows
that MTTM = qT, where M is the representation of ϕ on JC[`] with respect to
(x1, x2, x3, x4).

Assume at �rst that the Frobenius ϕ is not diagonalizable on JC[`]. Then ϕ is
represented by a matrix M on the form given in theorem 4.2, and it follows from
MTTM = qT, that

T =


0 a1 0 0

a1 − 1 0 0 0
0 0 d3 a6

0 0 a6 − 1 qd3

 ,
where 2a6 ≡ d3c+ 1 (mod `).

Now assume that ϕ is represented by a diagonal matrix diag(1, q, α, q/α) with
respect to an appropriate basis (x1, x2, x3, x4) of JC[`]. It then follows that

ai(α− q) ≡ aj(α− 1) ≡ d2(q − 1) ≡ dj(α2 − q) ≡ 0 (mod `)

for i ∈ {2, 5} and j ∈ {3, 4}. Hence the following theorem is established.

Theorem 6.1. Let C be a hyperelliptic curve of genus two de�ned over a �nite

�eld Fq of characteristic p with irreducible Jacobian. Identify the q-power Frobenius
endomorphism ϕ on JC with a root ω ∈ C of the characteristic polynomial P ∈ Z[X]
of ϕ. Assume that the ring of integers of Q(ω) under this identi�cation is embedded

in End(JC). Consider a prime number ` 6= p dividing the order of JC(Fq). Assume

that ` is unrami�ed in Q(ω), and that JC(Fq) is of embedding degree k > 1 with

respect to `. If JC(Fq)[`] is cyclic, then the tame Tate pairing is represented on

JC[`]× JC[`] by a matrix on the form

T =


0 a1 0 0

a1 − 1 0 0 0
0 0 d3 a6

0 0 a6 − 1 d4


with respect to an appropriate basis of JC[`]. Furthermore, the following holds.

(1) If the q-power Frobenius endomorphism is not diagonalizable on JC[`], then
d4 ≡ qd3 (mod `) and 2a6 ≡ d3c+ 1 (mod `).

(2) If the q-power Frobenius endomorphism is diagonalizable on JC[`], and

JC[`] 6⊆ JC(Fq2k), then d3 ≡ d4 ≡ 0 (mod `).
(3) Assume JC(Fqk)[`] is bi-cyclic.

(a) If `3 - |JC(Fqk)|, then a1 6≡ 0, 1 (mod `).
(b) If `3 | |JC(Fqk)| and `2 - |JC(Fq)|, then a1 ≡ 0 (mod `).

Proof. Write JC(Fqk)[`] = 〈x1〉 ⊕ 〈x2〉, where JC(Fq)[`] = 〈x1〉. If `2 - |JC(Fq)| and
`3 - |JC(Fqk)|, then JC(Fqk)/`JC(Fqk) ' JC(Fqk)[`]. By Theorem 3.1 it then follows

that a1 6≡ 0, 1 (mod `). On the other hand, if `3 | |JC(Fqk)|, then x2 ∈ `JC(Fqk),
i.e. a1 ≡ 0 (mod `). �

Corollary. Assume `3 - |JC(Fqk)|. If the Frobenius is not diagonalizable on JC[`],
then either

(1) a point x ∈ JC[`] with τ`(x, x) 6= 1 exists, or

(2) τ` is non-degenerate on JC[`].
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Proof. Choose an appropriate basis (x1, x2, x3, x4) of JC[`], such that the Frobenius
is represented by a matrixM on the form given in theorem 4.2, and τ` is represented
by a matrix T on the form given in Theorem 6.1 with respect to this basis. Since
MTTM = qT, it follows that d3c ≡ 2a6 − 1 (mod `). Hence, if 2a6 6≡ 1 (mod `),
then d3 6≡ 0 (mod `), and τ is a self-pairing on JC[`]. If 2a6 ≡ 1 (mod `) and d3 ≡ 0
(mod `), then τ` is non-degenerate on JC[`]. �

7. Complex multiplication curves

In this section we assume that the endomorphism ring of the Jacobian is iso-
morphic to the ring of integers in a quartic CM �eld K, i.e. a totally imaginary,
quadratic �eld extension of a quadratic number �eld. Assuming that the Frobe-
nius endomorphism under this isomorphism is given by an η-integer and that the
characteristic polynomial of the Frobenius endomorphism splits into linear factors
over F`, we prove that if the discriminant of the real sub�eld of K is not a quadratic
residue modulo `, then all `-torsion points are Fqk -rational.

7.1. Complex multiplication. An elliptic curve E with Z 6= End(E) is said to
have complex multiplication. Let K be an imaginary, quadratic number �eld with
ring of integers OK . K is a CM �eld, and if End(E) ' OK , then E is said to have
CM by OK . More generally a CM �eld is de�ned as follows.

De�nition (CM �eld). A number �eld K is a CM �eld, if K is a totally imaginary,
quadratic extension of a totally real number �eld K0.

We only consider quartic CM �eld, i.e. CM �elds of degree [K : Q] = 4.

Remark 7.1. Consider a quartic CM �eld K. Let K0 = K ∩ R be the real sub�eld
of K. Then K0 is a real, quadratic number �eld, K0 = Q(

√
D). By a basic result

on quadratic number �elds, the ring of integers of K0 is given by OK0 = Z + ξZ,
where

ξ =

{√
D, if D 6≡ 1 (mod 4),

1+
√
D

2 , if D ≡ 1 (mod 4).

Since K is a totally imaginary, quadratic extension of K0, a number η ∈ K exists,
such that K = K0(η), η2 ∈ K0. The number η is totally imaginary, and we may
assume that η = iη0, η0 ∈ R. Furthermore we may assume that −η2 ∈ OK0 ; so
η = i

√
a+ bξ, where a, b ∈ Z.

Let C be a hyperelliptic curve of genus two. Then C is said to have CM by OK ,
if End(JC) ' OK . The structure of K determines whether JC is irreducible. More
precisely, the following theorem holds.

Theorem 7.2. Let C be a hyperelliptic curve of genus two with End(JC) ' OK ,

where K is a quartic CM �eld. Then JC is reducible if and only if K/Q is Galois

with bi-cyclic Galois group.

Proof. [22, proposition 26, p. 61]. �

Theorem 7.2 motivates the following de�nition.

De�nition (Primitive, quartic CM �eld). A quartic CM �eld K is called primitive
if either K/Q is not Galois, or K/Q is Galois with cyclic Galois group.
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7.2. Jacobians with complex multiplication. The CMmethod for constructing
curves of genus two with prescribed endomorphism ring is described in detail by
Weng [24], Gaudry et al [10] and Eisenträger and Lauter [4]. In short, the CM
method is based on the construction of the class polynomials of a primitive, quartic
CM �eld K with real sub�eld K0 of class number h(K0) = 1. The prime power q
has to be chosen such that q = xx̄ for a number x ∈ OK . By [24] we will restrict
ourselves to the case x ∈ OK0 + ηOK0 .

Now assume that JC has CM by a primitive, quartic CM �eld K = Q(η), where
η = i

√
a+ bξ and

(4) ξ =

{√
D if D 6≡ 1 (mod 4)

1+
√
D

2 if D ≡ 1 (mod 4)

Here, D is a square-free integer, and K0 = Q(
√
D).

De�nition (η-integer). An integer α ∈ OK is an η-integer, if α ∈ OK0 + ηOK0 .

If the q-power Frobenius endomorphism ϕ under the isomorphism End(JC) ' OK

is given by an η-integer ω, then we can express the characteristic polynomial P of
ϕ in terms ω. Together with Remark 4.6 it follows from this that if P splits into
linear factors over F` and D is not a quadratic residue modulo `, then all `-torsion
points are Fqk -rational. This result is given by the following theorem.

Theorem 7.3. Let C be a hyperelliptic curve of genus two de�ned over a �nite

�eld Fq of characteristic p and with End(JC) ' OK , where K is a primitive, quar-

tic CM �eld with real sub�eld Q(
√
D). Assume that the q-power Frobenius endo-

morphism ϕ under this isomorphism is given by an η-integer ω. Consider a prime

number ` 6= p dividing |JC(Fq)|. Assume that ` is unrami�ed in Q(ω), and that the

characteristic polynomial P̄ of the restriction of ϕ to JC[`] splits into linear factors

over F`. Let k be the multiplicative order of q modulo `. If D is not a quadratic

residue modulo `, then all the `-torsion points of JC are Fqk -rational.

Proof. Write

ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.
Since D is not a quadratic residue modulo `, it follows by lemma 7.4 that c2 ≡ 0
(mod `) and P̄ (X) = (X − 1)2(X − q)2. By theorem 4.7 it then follows that if
q 6≡ 1 (mod `), then the q-power Frobenius endomorphism is represented by the
diagonal matrix diag(1, 1, q, q) on JC[`] with respect to an appropriate basis, whence
JC[`] ⊆ JC(Fqk). On the other hand, if q ≡ 1 (mod `), then P̄ (X) = (X − 1)4, i.e.
also in this case JC[`] ⊆ JC(Fqk). �

Lemma 7.4. Let notation and assumptions be as in theorem 7.3. Write

ω = c1 + c2ξ + (c3 + c4ξ)η, ci ∈ Z.

(1) If c2 6≡ 0 (mod `), then D is a quadratic residue modulo `.
(2) If c2 ≡ 0 (mod `), then P̄ (X) = (X − 1)2(X − q)2.

Proof. At �rst, assume that D 6≡ 1 (mod 4). Since the conjugates of ω are given
by ω1 = ω, ω2 = ω̄1, ω3 and ω4 = ω̄3, where

ω3 = c1 − c2
√
D + i(c3 − c4

√
D)
√
a− b

√
D,
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it follows that the characteristic polynomial of ϕ is given by

P (X) =
4∏
i=1

(X − ωi) = X4 − 4c1X3 + (2q + 4(c21 − c22D))X2 − 4c1qX + q2.

Dividing P (X) by (X − 1)(X − q) it then follows that αX + β ≡ 0 (mod `), where

β ≡ q(−q2 + (4c1 − 2)q + (−1 + 4c22D − 4c21 + 4c1)) (mod `)

Since β ≡ 0 (mod `), it follows that 4c22D ≡ (2c1 − q − 1)2 (mod `). So if c2 ≡ 0
(mod `), then 2c1 ≡ q + 1 (mod `), and it follows that P̄ (X) = (X − 1)2(X − q)2.

If D ≡ 1 (mod 4), then

ω3 = c1 + c2
1−
√
D

2
+ i

(
c3 + c4

1−
√
D

2

)√
a+ b

1−
√
D

2
,

and it follows that the characteristic polynomial of ϕ is given by

P (X) = X4 − 2cX3 + (2q + c2 − c22d)X2 − 2qcX + q2,

where c = 2c1+c2. Dividing P (X) by (X−1)(X−q) it then follows that αX+β ≡ 0
(mod `), where

β ≡ −q(q2 + (2− 2c)q + (1− 2c+ c2 − c22D)) (mod `).

Since β ≡ 0 (mod `), it follows that c22D ≡ (c− q− 1)2 (mod `). As before it then
follows that if c2 ≡ 0 (mod `), then P̄ (X) = (X − 1)2(X − q)2. �
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