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ENGINEERING & GINNING

Adaptive Signal Processing for Removal of Impulse Noise
from Yield Monitor Signals

Mathew G. Pelletier *

INTERPRETIVE SUMMARY

Variability in crop yield throughout a field is
well recognized. Yield monitoring is a new, rapidly
evolving technique that allows harvesting equipment
to measure yield instantaneously and to produce
spatial yield-variability maps with the information.
These yield maps make it possible to measure crop
yields at any point within a field, and they provide
information necessary to individually manage small
sections of a field. Information from yield monitoring
can form a basis for recommendations and help the
grower manage inputs more effectively - such as
fertilizers and other crop amendments - and optimize
profitability on selected sections of a given field.
 The yield monitor provides a direct means of
feedback to the researcher or farmer by reporting
exactly how well fields are faring in production. This
information also can be used to validate variable rate
applications of several inputs, such as fertilizers,
insecticides, and crop amendments. Yield monitors
have become commercially available for grain,
cotton, potato, tomato, grape, almond, etc. 

Yield monitors typically are accurate to within 5
to 10%. They output data at intervals of 20 to 100
m. Measuring mass flow in a vehicle that is moving
through the field necessitates a great deal of low-pass
filtering or smoothing to reduce the noise imparted
from the machine to the sensors and thereby improve
the yield signal. This filtering removes the short-
scale field variability that is often of interest to
researchers. This study examined a technique by
which to improve the accuracy of the yield signal by
the addition of an accelerometer, along with signal
processing, for the purpose of removing unwanted
impulse noise from the mass-weighing sensors used
in yield monitors.

This study involved examination of adaptive
digital signal processing techniques and their
application in the reduction or removal of the
impulse noise commonly added to yield signals when
the harvester encounters holes and ditches during the
harvest operation.  Removal of these artifacts will
improve the data obtained over a finer spatial
resolution. The system demonstrated the reduction in
impulse noise through the use of an accelerometer to
obtain the impulse noise response. This noise
response was utilized in an adaptive noise
cancellation signal processing technique to reduce
impulse noise in the yield signal.

ABSTRACT

The use of precision agriculture has driven the
need for yield monitors. Yield monitors used for
research require more rigorous standards of
measurement in order to provide spatial data at a
finer grid size than typically used in an on-farm
application. The objective of this study was to develop
a method for load-yield monitors to correct for
impulse noise that occurs whenever a harvester drives
over a hole, ditch, or large rocks. Removing such
artifacts of the instrument will improve the quality of
the data obtained over a shorter grid size, which is
more appropriate for research requirements than are
the typical large grid sizes of commercial yield
monitors currently in use. The system developed
demonstrated a reduction in impulse noise through
the use of an accelerometer to obtain the impulse
noise response, which was then used in an adaptive
noise-cancellation signal processing technique to
reduce impulse noise in the yield signal.

Variability in crop yield throughout a field is well
recognized. Yield monitoring is a new, rapidly

evolving technique that allows harvesting equipment
to measure crop yield instantaneously and produce
spatial yield variability maps with this information.
These yield maps make it possible to measure crop
yields at any point within a field. Yield maps provide
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information necessary to individually manage small
portions of the field. Information from yield
monitoring can form a basis for recommendations
and help the grower manage crop amendments more
effectively and optimize profitability on selected
sections of a given field.

The yield monitor provides direct feedback to the
researcher or farmer by reporting exactly how well
the fields are faring in production. This information
also can be used to validate variable rate
applications of several inputs, such as fertilizers,
insecticides, and other crop amendments. Yield
monitors have become commercially available for
grain, cotton, potato, tomato, grape, almond, etc.
Yield monitors have typical accuracies to within 5 to
10%, and they output data at intervals of 20 to 100
m.  Recently, information gathering and treatment
have been focusing on smaller areas - a typical level
of management for an intensive precision farming
application and data gathering operation is an area of
100 by 100 m.

With field management focused on a smaller
scale, the harvester noise recorded on load-
measuring devices that produce yield signals
becomes more dominant. Useful signals are
obtainable only when the scale is greater than 15 m.
In many cases it is desirable to gather observations
on a smaller scale. The overall purpose of this
research was to develop a method by which to
improve the short-scale accuracy of these yield
monitors in mapping short-scale yield variability.
The present study examined the reduction in impulse
noise through use of an accelerometer to obtain the
impulse noise response. This noise response then was
used in an adaptive noise-cancellation signal
processing technique to reduce impulse noise in the
yield signal. 

METHODS AND MATERIALS

This review of literature addresses the
developments made in the state of the art in yield
monitoring in general, and it emphasizes the
currently available techniques for measuring loads
on moving conveyors or belts.

Yield Measurement

Several methods have been tested over the years
for the measurement of mass flow for yield

monitoring. Vansichen (1993) developed a technique
for measuring corn silage yield using torque
transducers on the silage blower shaft and cutter-
head drive shaft, and the system performed well
when integrated over a 2500-kg (5512-lb) load of
silage. Auernhammer et al. (1995) developed a
radiometric yield-measurement system for a forage
harvester that used a radioactive source and detector
(not currently legal for use in the United States for
food). Wild et al. (1994) reported a hay yield
monitoring system for round balers with strain gages
on the tongue and axle of the vehicles, which
provided a measure of the weight of the baler and the
bale. They also added accelerometers to measure
vertical accelerations during operation and
determined stationary loads within 2% of actual
weight. Measurements under dynamic conditions are
still under investigation.

An optical sensor has been developed by
Wilkerson et al. (1994) for yield monitoring in cotton
(Gossypium hirsutum L.). Their system used an
array of lights and photo-detectors. Laboratory tests
provided an integrated measurement correlation over
an entire load with a coefficient of determination of
r2 = 0.93. Roades et al. (2000) reported on an
experimental load cell-based cotton yield monitor in
which the basket weight signal was integrated to
provide a site-specific yield measurement.
Commercial grain monitors produced by AgLeader
(Ames, IA), Deere & Co. (Moline, IL), and Micro-
Trak (Eagle Lake, MN) use impact plates for yield
monitoring that sense the force imparted from a
change in the momentum in a small quantity of grain
as it hits a pressure plate. 

Campbell et al. (1994) described a system for
potato (Solanum tuberosum L.) yield monitoring.
The system consisted of a single idler wheel (steel
hub and rubber tire) instrumented with a single load
cell. Each wheel is directly attached to a beam load
cell, one on each side of the conveyor chain. The
load cells measured the weight, and the integration
required the addition of a speed sensor to measure
the conveyor speed. The conveyor was set at a fixed
angle. A similar system for measuring sugarbeet
(Beta vulgaris L.) yield was described by Hofman et
al. (1995). Calibrations of the systems were
performed by correlating the output of the yield
monitor to the truck weights of 123,000 kg (25 US
ton). The weights from the yield monitor were
associated with a ground position based upon
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differentially corrected global satellite positioning
system measurements. A correction for the harvester
transport lag from digging to weighing was included
through the use of a simple time delay. 

Pelletier (1998) and Pelletier and Upadhyaya
(1999) developed a system for yield monitoring in
California tomato (Lycopersicon esculentum Mill.)
production. In the typical tomato harvester’s design,
the fruit is conveyed through the machine on a series
of belts and chains. The tomato harvester has only
one location where fruit is not removed by either
optical-mechanical color sorters or by hand. Because
the goal of that research was to provide the harvester
driver the total fruit weight transported to the truck,
it was imperative that the measurement occurred
after all fruit sorting (removal) had taken place.
Thus, the final loading conveyor (boom elevator) that
transports fruit into the gondolas, was the only
choice for the placement of the yield monitor. At this
location the boom elevator, hereafter elevator,
consists of a hydraulically powered chain drive. The
elevator consists of two sections: the lower section is
13 m (10 ft) in length and maintains an average
angle of 45( with respect to the horizontal plane.
The upper section of the elevator maintains an
average angle of 22( with respect to the horizontal
plane, but varies from -30( to +30(. Both elevators
are subject to varying angles throughout the harvest
operation. The design could account and correct for
the changing inclination of conveyors. 

Correcting for the harvester dynamics is a
current research topic. Nolan et al. (1996) used a
simple technique for correcting the time delay of the
yield signal caused by the transport of the crop
through the harvester. This harvester lag was
corrected by using both a simple time-delay model
and performing nearest-neighbor filtering on yield
maps. Boydell (1999) reported much better results
for correcting harvester lag of the yield data by
deconvoluting the dynamics of the peanut harvester.

Yield Mapping

The coupling of a differentially corrected global
satellite positioning system to a load monitor
provides the information necessary to produce a yield
map, depicting spatial location vs. crop yield for a
field. Production of a useful and accurate yield map
includes data-acquisition, recording, filtering,
correction of harvester dynamics, and aggregation of

the final data. The components for producing a yield
map include a mass or volume flow sensor, a
measurement of the swath width, a sensor to
determine the distance traveled, and a sensor to
determine the position within the field to which the
yield measurements can be attributed. 

The measure of crop yield is found by measuring
the area traversed that corresponds to the weight of
the crop harvested for that area. The harvester does
not simply transport the material across the conveyor
into the trucks. There is a time delay, or lag, from
the point of fruit harvesting to the location of the
weighing sensor. Pierce et al. (1995) reported that a
simple delay model with smoothing has provided
better yield maps than the more complicated maps
that model the harvester dynamics as a first-order
system and then perform a de-convolution of the
harvester. 

In the tomato harvester, there are only two very
short (12 s) first-order sections. The first occurs at
the initial point of entry into the harvester where
plant stems are cut. This point is similar to a trash
compactor. There is no movement of plants up the
conveyor until enough plants build up behind and
push them up the conveyor. The initial loading of
this section takes approximately 2 s. The next
section occurs directly in front of the singulation belt
that presents a uniform single layer of fruit to the
color sorter. This section is a 30( ramp on which
fruit does not travel upward until there is enough
harvested fruit behind to help push it up the ramp.
The loading of this section also takes 2 s. The rest of
the delay is simply accounted for by transport across
the belt. The simple time-delay model followed by
low-pass filtering should also apply to the tomato
yield monitor, because under standard harvest
operations, the belts and both first-order sections are
full or almost so.

Any load sensor mounted on a moving harvester
is subjected to strong harmonic vibrations from the
mechanical shaker used to remove the fruit, along
with additional vibration from the conveyor, engine,
hydraulic motors, and random impulse inputs from
the uneven surface of the field. The yield monitor
should remove the effects of these noises from its
signal to achieve an accurate representation of the
crop mass flow as sensed by the sensor. 

Three distinct cases should be considered when
dealing with this noise in the signal. The first - and
by far the easiest to accomplish - is removal of noise
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that falls outside the frequency spectrum of interest
through analog and/or digital filtering (Porat, 1997;
Pelletier, 1998; and Pelletier and Upadhyaya, 1999).
In the second case, the noise occurs in the frequency
region of interest. Simple filtering will remove the
signal of interest, so it becomes necessary to perform
noise cancellation by using a sensor that has a high
correlation to the noise and low correlation to the
desired signal. If a suitable noise transducer with
these characteristics can be developed - such as an
accelerometer - then the noise can be effectively
removed from the desired signal. To implement this
technique, the channel through which the noise is
coupling becomes crucial. If the noise channel
through which the signal is transmitted remains
relatively consistent through time (i.e., the transfer
function doesn't vary significantly), then the noise
can be removed by a matched Weiner filter (Porat,
1997). But, if the noise channel has a varying
transfer function, then the noise signal can be
removed only through an adaptive noise-cancellation
filter (Widrow and Stearns, 1985). This research
seeks to determine the suitability of either of these
techniques for removal of impulse noise from the
yield monitoring signal. 

RESULTS

Adaptive Noise Cancellation

Input Signal and Adaptive
Finite Impulse Response Filtering

In yield monitoring it is necessary to consider
starting with only a single input signal from a sensor
measuring the instantaneous load that is applied to
the sensor. This load is subjected not only to the
Earth’s gravitational acceleration, but also to the
accelerations present on the harvester. Assume for
this theoretical case that the system is a single input
system that has been digitally sampled on time
interval T for n samples. This is then denoted in
vector notation as detailed in Eq. 1; all vectors and
matrices denoted in bold type.

S(t) = [s1, s2, s3,..., sn]
T [1]

Similarly, the weighting vector of the finite-
impulse-response filter used to remove the unwanted
noise can be designated by Eq. 2.

W(t) = [w1, w2, w3,..., wn]
T [2]

The scale or harvester dynamics also can be
modeled by a finite-impulse-response vector
(Pelletier, 1998; Pelletier Upadhyaya, 1999)
designated by Eq. 3.

H(t) = [h1, h2, h3,..., hn]
T [3]

And finally, the true desired signal presented to
the scale can be represented by a discrete time
sampled signal, as designated by Eq. 4.

X(t) = [x1, x2, x3,..., xn]
T [4]

Theory of Adaptive Noise Cancellation

Taking for the moment a simple input and
filtering operation, the output signal can be
expressed in vector notation, as in Eq. 5.

y = XTW [5]

Next, consider the error signal as the difference
between the desired response, d, and the actual
response, y, as noted in Eq. 6.

e = d - y = d - XTW = d - WTX [6]

Using the criterion function to minimize as the
instantaneous mean square of the error translates
into Eq. 7.

E{e2} = E{d2}-WTE{X XT}W - 2E{d XT}W [7]

Where E{} is the expected value.

Next, define the input correlation matrix R and
the desired cross correlation matrix P, as in Eqs. 8
and 9.

R = E{X XT} [8]

P = E{d XT} [9]

Substituting in Eqs. 8 and 9 into Eq. 7 provides
the mean-square error (MSE), as shown in Eq. 10.

MSE = à = E{e2} = E{d2} - WTRW - 2PW       [10]
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Fig. 1. An adaptive noise cancellation configuration in
which, when the error is minimized, the noise has
been removed from the signal.

Fig 2. An adaptive system identification configuration.
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Equation 10 is a quadratic function of the vector
W. 

The criterion [or objective or cost] function is
minimized in the usual way: by taking the derivative
of the criterion function with respect to the weights
sought and setting it equal to zero, then noting that
the expected value of the desired response is a
constant, which leads to Eq. 11.

Solving Eq. 11 for W results in a solution for the
weights that will minimize the criterion function. The
optimal solution weighting vector is denoted as W*
(Eq. 12).

Equation 12 - known as the Wiener-Hopf
equation - provides the solution to the optimal
matched filter for the noise channel as well as the
foundation for adaptive noise-cancellation algorithms
used to remove noise from time-varying noise
channels.

Adaptive Interference Canceling
of Impulse Noise

The basic noise canceling configuration is
illustrated in Fig. 1 (Widrow and Stearns, 1985).
However, this particular problem calls for
modification of this concept in which the sensed
noise passes directly into the sensor. Note, however,
that the noise coupled into the signal has been
subjected to an unknown filtering process or plant.
The filtering process that the noise signal is
subjected to is assumed to be a time-invariant linear
system. In this case, an unknown finite-impulse-
response filter, W*(n), can be used to correct the raw
sensor signal to match noise coupled into the signal
of interest. Through the use of adaptive system
identification, an approximation finite-impulse-
response filter, W(n), can be found for use in a
stationary finite-impulse-response digital filter for 

noise removal. The analysis configuration for
adaptive system identification is depicted in Fig. 2
(Widrow and Stearns, 1985). 

Again, it should be noted that an adaptive
approach is necessary only if this unknown filter is
not wide-sense stationary. Formal criteria for wide-
sense stationary are that two properties be satisfied:
(i) the mean is the same at all time points (in this
case, the gain of the filter); (ii) the covariance
depends only on the time difference between time t1

and time t2 (as applied in this case, it denotes time-
invariance and a constant frequency response of the
filter).

In yield monitoring, the harvester frequently is
subjected to impulse inputs that arise from the
harvester’s driving over irrigation ditches and holes.
These impulses are filtered by the vehicle frame’s
chassis which functions as a spring-mass damping
system. An accelerometer attached to this frame can
measure this impulse input. On many yield monitors,
the impulse acceleration that the accelerometer
senses is altered from the impulse signal that
impinges on the frame (as seen by the load sensor)
due to a physical displacement or acceleration
coupling between the accelerometer and the load
sensor.
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[13]

Fig. 3. Filtered impulse vs. transducer-sensed raw impulse.
The sharp impulse noise (as seen by accelerometer) is
used to cancel machine-filtered impulse noise (as
measured by the load cell).

 In the case under study, the load cell is separated
from the isolated bulk container by a rubber bushing,
which helped dampen the vibrations upon the load
cell. The accelerometer can be coupled directly
alongside the load cell, but due to the rubber
bushing, the load cell has a modified load response.
The bushing effectively lowers the bandwidth of the
load cell and creates a lag between the accelerometer
signal and the load signal as modified by an impulse
input. This case also applies for belt weighing
systems, because the belt effectively decouples the
load from the load cell.

In both the case of the bushing and that of the
belt scales, the transfer function is time-varying, as
the mass in the spring mass system is the yield load.
The spring in the belt weigher is the belt itself. The
stiffness of the spring constant of the belt is
determined by the bulk modulus of the belt and by
the tension that typically varies according to the fruit
loading on the belt. The spring in the bulk weigher is
the rubber bushing. Regardless of the changing
spring stiffness, both cases display a continuously
changing mass, usually varying by a factor of 100%.
From this effect alone, the resonant frequency or
bandwidth of the transfer function is expected to
change by the square root of 1/ ( M +û m), as shown
in Eq. 13, thereby changing the amount of energy
that is coupled into the signal due to the impulse. 

where

Fn = natual frequency of the spring mass
system comprising the scale

k = the spring constant
m = the load, made up of the crop yield
M = the mass of the supporting structure

(basket, belt, etc.)

In the simplifying case where M = m (which is a
fair assumption for this case), a change in the natural
frequency by 0.707 is observed. The modeling will
seek to determine whether a stationary Weiner filter,
as quantified through adaptive system identification,
would outperform an adaptive filter, given a change
in the frequency response of the noise channel by a

factor of 0.707. This approach could establish the
framework for use of either adaptive signal
processing or matched Weiner filtering in the yield
monitor to remove any impulse loading.

Adaptive Noise Canceling Simulation

The model for the spring-mass simulation scale
was a maximally flat second-order Butterworth
(critically damped) system with a stop band
frequency of 0.01 � and was implemented as a 100-
point finite-impulse-response filter. This digital
transfer function (filter) model of the coupling
between the load cell and the accelerometer signal
(used to obtain the noise signal) was used to filter the
narrow-band (10-ms pulse width) impulses. The
filtered impulse noise was used to model the noise as
coupled into the load cell, while the unfiltered noise
was used to model the noise that contains the high-
frequency components, as measured by the
accelerometer (Fig. 3). In all cases a small amount of
Gaussian white noise was added to the model for
completeness.

In Fig. 4, both the desired signal of interest and
the filtered impulses are shown. The filtered impulses
are the model for the impulse as measured by the
load cell. This is the signal that will need to be
removed from the load cell's output signal,
containing both the desired signal and the filtered
impulse noise (Fig. 5).



230JOURNAL OF COTTON SCIENCE, Volume 5, Issue 4, 2001

Fig. 4. The filtered impulse noise that is sensed by the load
cell (cyan) vs. the true signal of interest (blue).

Fig. 5. The true signal of interest (blue) vs. the true signal
with coupled in filtered impulse noise (cyan).

Fig. 7. The scale -filtered impulse noise (cyan) vs. the
cancellation correction signal as estimated by Weiner
filter from the nonfiltered machine impulse noise.

Fig. 6. The true signal of interest (blue) vs. the true signal
with coupled in filtered impulse noise with reduction
of the impulse noise through adaptive noise
cancellation (cyan).

In the application of the adaptive noise
cancellation algorithm, the nonfiltered impulse noise,
along with the error signal, provides the feed back
(Fig. 1) used to adaptively tune the weights of the
filter via a real-time least-mean-square algorithm
(Widrow and Stearns, 1985). The purpose of the
filter is to remove the filtered impulse noise from the
filtered-noise contaminated signal. The results of the
adaptive filtering operation are illustrated in Fig. 6:
The adaptive noise cancellation routine reduced the
effect of the filtered impulses but could not converge
to a point at which the entire noise signal could be
removed.

The next phase examined the use of a priori
knowledge of the impulse noise to design a stationary
filter to remove the impulse noise. The technique
used to design the filter involved adaptive system
identification (Fig. 2). One noise pulse was used as
a model in which to build a noise canceling filter.
Again, the nonfiltered impulse was used as an input
to the system in which to cancel the filtered impulse
output at convergence. 

Once the finite-impulse-response noise reduction
filter had been designed, the system was checked for
robustness by changing the process or plant filter by
0.707. The corner frequency was changed by this
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Fig. 9. A comparison of the true signal (blue) vs. the use of
simple low-pass filtering technique to remove the
machine-filtered impulse noise (cyan). Notice the large
errors on the third set of peaks when the impulse
occurs out of phase with the signal. These errors
completely mask the higher frequency component of
the desired signal of interest.

Fig. 8. The true signal (blue) vs. the estimated true signal
after removal of the filtered machine noise through
adaptively estimated optimal Weiner filtering that
was based on the nonfiltered impulse noise (cyan).

Fig. 10. The true frequency response of the model's
unknown filter.

Fig. 11. The adaptive system identification estimate of the
model's unknown filter.

amount in the design of the digital low-pass filter
used to model the unknown plant. The new filter then
as used as the filter for the impulse to create the load
cell's noise component. Figure 7 shows the
comparison between this new filter acting on the
noise and the noise correction signal from the
estimated Weiner finite-impulse-response noise
removal filter. The final output, which compares the

desired signal to the output signal after filtering with
the noise filter, is shown in Fig. 8. Figure 9 shows
the effect of performing a simple low-pass filtering
operation as an attempt to remove the filtered
impulse noise from the signal.

For completeness and reference, the frequency
response plots are provided: In Fig. 10, the unknown
filter (plant) is given; in Fig. 11, the adaptive system
identification finite-impulse-response approximation
is given. Figure 12 represents the frequency response
of the unfiltered impulse as would be seen by the
accelerometer, and Fig. 13 shows the frequency
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Fig. 12. The frequency response of the nonfiltered impulse
noise (as measured by the accelerometer) for use in
removing the filtered noise.

Fig. 13. The frequency response of the impulse noise as
filtered by the model's unknown machine transfer
function. This is the frequency response of the
undesired impulse noise signal that is coupled into the
load cell's yield-signal measurement.

response of the noise impulse after being filtered by
the unknown plant.

SUMMARY

This research model demonstrated that a time-
varying noise channel that couples impulse loading
to the yield monitor's sensor can be effectively

removed by both adaptive interference canceling and
optimal stationary matched Weiner filtering,
provided that the bandwidth of the channel stays
within 0.707 times the sampled design frequency.
This study also found that it was possible to obtain
the optimal finite-impulse-response Weiner filter for
this use by means of adaptive system identification.

The model showed that the matched filter is a
better choice because it removed the impulse noise
from the yield signal across the noise channel
bandwidth range. The results are encouraging, and
further work is under way to implement this
technique as an improvement upon current signal
processing removal of noise (harvester and field
artifacts) from the true agronomic yield, as
determined by yield monitoring.
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