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ABSTRACT

The hydrostatic equations of motion for ocean circulation, written in terms of pressure as the vertical coordinate,
and without making the Boussinesq approximation in the continuity equation, correspond very closely with the
hydrostatic Boussinesq equations written in terms of depth as the vertical coordinate. Two mathematical equiv-
alences between these non-Boussinesq and Boussinesq equation sets are demonstrated: first, for motions over
a level bottom; second, for general motions with a rigid lid. A third non-Boussinesq equation set, for general
motions with a free surface, is derived and is shown to possess a similar duality with the Boussinesq set after
making due allowance for exchange of the roles of bottom pressure and sea surface height in the boundary
conditions, a reversal of the direction of integration of the hydrostatic equation, and substitution of specific
volume for density in the hydrostatic equation. The crucial simplification in these equations of motion comes
from the hydrostatic approximation, not the Boussinesq approximation. A practical consequence is that numerical
ocean circulation models that are based on the Boussinesq equations can, with very minimal rearrangement and
reinterpretation, be made free of the strictures of the Boussinesq approximation, especially the ones that follow
from its neglect of density dilatation in the conservation of mass.

1. Introduction

In the theory of ocean circulation, it is commonplace
to make the Boussinesq approximation in which the full
variation of density is retained only in the buoyancy
force in the vertical momentum balance. Wherever else
it occurs, in the horizontal momentum balance, and in
the continuity equation, density is replaced by a constant
(in the simplest implementation). In particular, this
means that the three-dimensional velocity field is as-
sumed to be solenoidal.

Spiegel and Veronis (1960) are generally credited
with the justification of the accuracy of the Boussinesq
approximation, though their focus was on nonhydros-
tatic, convective motion. However, the quantitative ac-
curacy of the approximation for ocean circulation stud-
ies has been questioned. McDougall and Garrett (1992)
concluded that the neglect of the dilatation term in the
continuity equation may be consequential for conser-
vation of scalars like salinity. Boussinesq circulation
models, conserving volume rather than mass, may not
accurately predict long-term sea level change in re-
sponse to heating and cooling, whether by surface ex-
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change or advection (Kawabe 1994). Simple global cor-
rections have been proposed to remedy this deficiency
(Greatbatch 1994; Mellor and Ezer 1995). Dukowicz
(1997) considered the effects of taking the dilatation
term into account in ocean circulation models. Huang
et al. (2001) developed a non-Boussinesq ocean circu-
lation model based on normalized pressure coordinates.
Greatbatch et al. (2001) and McDougall et al. (2002)
suggested a reinterpretation of the Eulerian velocity to
accomplish a similar purpose. Lu (2001) proposed a
transformation of the vertical velocity that makes the
continuity equation mass- rather than volume-conserv-
ing.

We will reexamine the Boussinesq approximation
in this paper and show that it is inessential to the
simplified form of the equations of motion that it
seems to afford. Rather, the crucial simplification is
the hydrostatic assumption, and the further Boussi-
nesq approximation is unnecessary. The key to this
demonstration is the representation of the equations
of motion in terms of pressure as vertical coordinate
instead of depth. We will obtain a set of equations of
the same form as the Boussinesq equations, but with
the ‘‘free-surface’’ boundary condition imposed on
the bottom pressure (instead of sea surface height).
These equations conserve total ocean mass, not vol-
ume. By further transformation of these equations, the
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free-surface condition may be transposed to the ocean
surface. A non-Boussinesq set of equations, which
conserve mass, not volume, may be obtained with an
additional approximation in the horizontal momentum
balance only. This set is an exact dual of the Bous-
sinesq equations, in the sense that the roles of bottom
pressure and sea surface height are reversed.

2. Primitive equations in p coordinates

The equations of motion written in terms of pressure
as an independent variable are well-known, much used
in dynamical meteorology, and can be found, for ex-
ample, in Haltiner and Williams (1980):

Du
5 2= M 2 f k 3 u 1 F, (2.1)pDt

]M
215 2a 1 r , (2.2)0]p

]v
= · u 1 5 0. (2.3)p ]p

Du
5 Q, (2.4)

Dt

and, for the ocean,

DS
5 Q . (2.5)sDt

In these equations, u is the horizontal velocity, M 5
gz 1 p/r 0 is the Montgomery function, F is the fric-
tional force per unit mass, and =p is the gradient along
pressure surfaces; the substantial rate-of-change op-
erator is

D ] ]
5 1 u · = 1 vp1 2Dt ]t ]p

p

] ]
5 1 u · = 1 w , (2.6)z1 2]t ]z

z

where v is the pressure tendency, defined by

Dp
v 5 (2.7)

Dt

(see appendix A for details), w is vertical velocity, and
=z is the horizontal gradient at constant depth z. Specific
volume (reciprocal of density) is given by the equation
of state

21r 5 a 5 a(S, T, p) 5 ã(S, u, p), (2.8)

the second form of which is written in terms of potential
temperature u rather than in situ temperature T (Jackett
and McDougall 1995). The constant bias applied to21r 0

specific volume in (2.2) and used in defining M is quite
arbitrary but is conveniently chosen so that r0 is a mean
density. Temperature and salinity are controlled by the

heat and salt balances, (2.4) and (2.5), in which the
irreversible transfer processes are given by Q and Qs,
respectively. Because of (2.6), scalar conservation equa-
tions such as (2.4) and (2.5) have the same form in
pressure or depth coordinates.

The solenoidal form of the continuity Eq. [(2.3)] for
the three-dimensional pseudovelocity (u, v) is a con-
sequence of the hydrostatic assumption (2.2); it does
not require the neglect of dilatation r21Dr/Dt. For when
the continuity equation,

Dr ]w
1 r = · u 1 5 0 (2.9)z1 2Dt ]z

is transformed to a general coordinate p (not necessarily
pressure) that replaces z, it becomes (appendix A)

D ]v
(rz ) 1 rz = · u 1 5 0 (2.10)p p p1 2Dt ]p

in which the Jacobian of the transformation ]z/]p mul-
tiplies the density (de Szoeke 2000). But if p is indeed
pressure, assumed hydrostatic, then rzp 5 21/g, which
is constant, so that (2.3) follows. Hence, (2.3) represents
full conservation, not of volume but of mass, including
compressibility, or dilatation, effects. The same hydro-
static assumption, whereby vertical inertia is neglected,
is responsible for a crucial simplification in the hori-
zontal momentum balance of (2.1). Otherwise, (2.1)
would contain an additional term on the left, (=pz) Dw/
Dt, representing the effect of vertical inertia along slant-
ing pressure surfaces.

Boundary conditions

At the free surface, z 5 h(x, y, t), we assume that
pressure is constant (taken to be zero), and that the
surface is material:

M 5 gh, v 5 0 at p 5 0 (2.11)

The ocean bottom at z 5 2H(x, y), where pressure is
pb(x, y, t), is likewise a material surface, so that

p ]pb bM 5 2 gH, v 5 1 u · =pbr ]t0

at p 5 p (2.12)b.

By integrating the continuity equation (2.3) from p 5
0 to p 5 pb, and using (2.11) and (2.12) for v, one
obtains

pb ]pb= · u dp 1 5 0, (2.13)E1 2 ]t0

which furnishes a prognostic equation for pb.
There are a number of useful results related to (2.11)–

(2.13), which provide simplification of these exact
boundary conditions. By integrating the hydrostatic re-
lation (2.2) from p 5 0 to p 5 pb, one obtains a relation
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between the free surface h, bottom topography H, and
bottom pressure pb:

pb

g(h 1 H ) 5 a dp. (2.14)E
0

By writing a 5 1 , where r0 is constant, so chosen21r d̂0

that K , one sees that, approximately,21d̂ r 0

p 5 r g(H 1 h 2 ĥ),b 0 (2.15a)

where

r gH0

21ĥ 5 g d̂ dp. (2.15b)E
0

Free surface variations h, and contributions to bottom
pressure due to internal density changes, expressed as
an equivalent surface height , are of order 1 m. Theĥ
replacement of pb by r0gH in the limit of integration
in (2.15b) incurs an error of millimeters or less in the
deep ocean. In appendix B, we shall consider a different
partition of a that produces a slightly more accurate
approximation than (2.15).

In appendix C, we show that conditions (2.12), im-
posed at time-varying pb, are equivalent to

pbM 5 2 gH,
r 0

]
v 5 r gu · =H 1 p 1 = · [u(p 2 r gH )]0 b b 0]t

at p 5 r gH, (2.16)0

correct to second order in (h 2 )/H. These conditionsĥ
are imposed at a time-fixed pressure. Such fixed con-
ditions are more tractable and convenient than ones at
a point varying in time. Integrating (2.3) from p 5 0
to p 5 r0gH and using (2.11) and (2.16), rather than
(2.12), we arrive at the same equation as (2.13). The
neglect of the third term for v in (2.16) is seen to be
equivalent to approximating by pb 5 r0gH the upper
limit of integration in the mass flux integral of (2.13).

Equation (2.13) is a prognostic equation for pb. Once
pb is advanced in time, it may be used as the bottom
boundary condition for M [first of conditions (2.16)].
The hydrostatic equation [(2.2)] may then be integrated
from the bottom to the surface (p 5 0), where it fur-
nishes the sea surface elevation h [first of (2.11)].

In summary, the set (2.1)–(2.5), with equation of state
(2.8), boundary conditions (2.11) and (2.16)—the latter
with variable bottom topography, H(x, y)—and the de-
rived prognostic equation (2.13) for pb, is a practical
set of non-Boussinesq equations for hydrostatic ocean
circulation. For example, this very set, further trans-
formed into isopycnal coordinates, is the basis of the
ocean circulation model developed by Bleck and Smith
(1990).

In the next section we will write down the hydrostatic
Boussinesq equations and exhibit the first of the prom-
ised correspondences with the set above.

3. Boussinesq equations in z coordinates

A commonly used version of the Boussinesq approx-
imation in z coordinates gives the following equations:

Du 1
5 2 = P 2 f k 3 u 1 F, (3.1)zDt r 0

1 ]P
5 2g(r 2 r )/r , (3.2)0 0r ]z0

]w
= · u 1 5 0, (3.3)z ]z

Du
5 Q, (3.4)

Dt
DS

5 Q , and (3.5)sDt

D ] ]
5 1 u · = 1 w , (3.6)z1 2Dt ]t ]z

z

with boundary conditions

Dh
P 5 r gh, w 5 at z 5 h, (3.7)0 Dt

P 5 p 2 r gH, w 5 2u · =H at z 5 2H, (3.8)b 0

where P 5 p 1 r0gz is the excess pressure over standard
hydrostatic pressure 2r0gz (r0 is a suitably chosen ref-
erence density; see above).

Integrating (3.3) from z 5 2H to z 5 h, and using
(3.7), (3.8), one obtains

h ]h
= · u dz 1 5 0 (3.9)E1 2 ]t

2H

[cf. (2.13)]. By means similar to those described in ap-
pendix B, one may show that the conditions (3.7) are
approximately equivalent to

]h
P 5 r gh, w 5 1 = · (uh) at z 5 0. (3.10)0 z]t

The neglect of the =z · (uh) term in (3.10) is equivalent
to approximating h in the limit of integration in the
volume flux integral in (3.9) by zero.

Comparing (3.1)–(3.6) with (2.1)–(2.6), we note an
exact parallel between the two sets, upon making the
following identification of variables:

p 5 2r gz 0

v 5 2r gw0 (3.11)
M 5 P /r 0 

21r (a 2 r ) 5 2(r 2 r )/r .0 0 0 0

These are purely mathematical substitutions, certainly
not exact physical identities, made to bring out the du-
ality between the two sets of equations. Their meaning
is that if one merely reinterprets z and w, for example,
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from the putative Boussinesq model (3.1)–(3.6) as pres-
sure p and pressure tendency v (due care being taken
of rescaling and sign reversals), then one sees that no
Boussinesq approximation was ever necessary. The last
of (3.11) is perhaps prone to confusion: it does not
contradict the elementary physical identity a 5 r21.
What it means is that in the Boussinesq model, one must
replace scaled density anomaly, [r(S, u, p) 2 r0],21r 0

by the negative of scaled specific volume anomaly,
2r0[a(S, u, p) 2 ], to replicate the non-Boussinesq21r 0

model. A useful bonus of this replacement is that it
automatically overcomes a difficulty noted by Dewar et
al. (1998) in the integration of the Boussinesq hydro-
static equation (3.2), where p 5 2r0gz 1 P occurs on
the right side through the equation of state r(S, u, p),
necessitating some iteration to solve accurately for P.
However, with (2.2), it is merely the independent var-
iable p that occurs conveniently in the specific volume
a(S, u, p) on the right side.

The boundary conditions do not preserve the exact
parallels of the differential equations. Still, the contrasts
and similarities are interesting. On substituting (3.11),
the boundary condition (2.11) becomes

P 5 r gh, w 5 0 at z 5 0, (3.12)0

while (2.16) becomes

P 5 p 2 r gH,b 0

]pb21w 5 2u · =H 2 (r g) 1 = · [u(p 2 r gH )]0 b 05 6]t
at z 5 2H. (3.13)

The contrasts with (3.10) and (3.8) are curious: the free-
surface condition involving the unknown time-depen-
dent variable h at z 5 0 in (3.10) has shifted to one
involving the unknown time-dependent bottom pressure
pb at z 5 2H. An exact parallel between the boundary
conditions can be established if mean depth is constant,
H 5 const. For then the substitutions

z9 5 2(z 1 H )

w9 5 2w 
2(r 2 r )/r 5 r d̂ (3.14)0 0 0

h9 1 H 5 p /r gb 0 
p9 /r g 5 h 1 H b 0

show that (3.12) and (3.13) become

P 5 p9 2 r gH, w9 5 0 at z9 5 2H,b 0

(3.15)
]h9

P 5 r gh9, w9 5 1 = · (uh9) at z9 5 0,0 ]t
(3.16)

while the differential equations retain the form (3.1)–
(3.6). Conditions (3.15), (3.16) are similar to (3.8),
(3.10), respectively.

This means that a Boussinesq model such as (3.1)–
(3.6), (3.8), (3.10) may be reinterpreted as a non-Bous-
sinesq model merely by making the substitutions (3.11)
and (3.14), at least for the case of a level bottom. The
substitutions (3.14) show that the roles of free-surface
elevation and bottom pressure variation are inter-
changed between the Boussinesq and non-Boussinesq
models. In the non-Boussinesq model bottom pressure
is a prognostic variable, predicted by (2.13), while sea
surface elevation is diagnostically determined from the
Montgomery function at p 5 0; for a Boussinesq model
the roles of the variables are reversed. Too much should
not be made of this symmetry. Boundary conditions
(3.12) at the sea surface, z 5 0, represent only the ki-
nematic and normal-stress dynamical conditions. In ad-
dition there will be a tangential-stress condition involv-
ing the wind stress, and analogous conditions involving
heat flux and salt flux. [The kinematic conditions w 5
0 of (3.12) can readily be modified to take into account
evaporation and precipitation: w 5 E 2 P.] In the
primed set of equations given by making the substitution
(3.14), these conditions are imposed at z9 5 2H. So it
appears as though the wind stress, surface heat flux,
etc., are imposed on the ocean bottom in the primed
system! A forced ocean circulation solution obtained
from a Boussinesq model corresponds to an upside-
down, forced from the bottom, non-Boussinesq solution.
Nonetheless, the underlying mathematical framework is
identical, and, when the non-Boussinesq view is taken,
it is not subject to the usual strictures of the Boussinesq
approximations; namely, the neglect of volume dilata-
tion terms in the continuity equation, and density anom-
alies in the horizontal momentum balance.

When bottom topography is not level, the analog of the
free-surface condition still appears at the bottom in the
non-Boussinesq model, but is complicated by the addition
of the topographic effect. An exact parallel to the Bous-
sinesq equations can only be drawn if the conventional
Boussinesq boundary conditions are modified slightly. The
advantages of this approach, which is outlined below, are
that mass (rather than volume) remains conserved, and
that small density variations in the horizontal momentum
balance are not neglected, all without any essential math-
ematical complication. This last point is important, for the
express calculation of volume dilatation, for example, in
the Boussinesq continuity equation requires extra effort
and approximation, and does not even guarantee conser-
vation of mass (Dukowicz 1997).

4. Rigid lid

Before proceeding to the modified mass-conserving
equations in section 5, we show that an exact parallel
exists in the presence of variable bottom topography if
the rigid-lid approximation is made, that is, if boundary
conditions (3.7) are replaced by

P 5 r gh, w 5 0 at z 5 0 (4.1)0
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Boundary condition (4.1) resembles condition (2.11)
from the pressure-coordinate set of equations (2.1)–(2.8),
(2.11), (2.12). Bottom boundary condition (2.12) can be
made to resemble (3.8) by insisting that pb be independent
of time (analogous to clamping the surface):

M 5 p /r 2 gH, v 5 u · =pb 0 b

at p 5 p (x, y). (4.2)b

The first of these relations prescribes H as a function
of time! The variable part of this can be interpreted
as equivalent bottom pressure variation, due to free-
surface and steric height variations, given by (2.15).
This is analogous to the interpretation of surface pres-
sure P in the rigid-lid z-coordinate equations as sur-
face height h.

The pressure-coordinate model, (2.1)–(2.6) with
boundary conditions (2.11) and (4.2), is an exact math-
ematical analogue of the rigid-lid z-coordinate Bous-
sinesq model, (3.1)–(3.6) with boundary conditions
(4.1) and (3.8). In the former, no Boussinesq approxi-
mation is invoked. Although both models share the lim-
itations of the rigid-lid approximation as a representa-
tion of the ocean, this analysis illustrates that the re-
interpretation of rigid-lid, Boussinesq, depth-coordi-
nate, ocean circulation models as fixed bottom-pressure,
non-Boussinesq, pressure-coordinate models is straight-
forward. This suggests that the concerns raised by Mc-
Dougall and Garrett (1992) regarding non-Boussinesq
effects on tracer mixing may be at least partially ad-
dressed by an a posteriori change of variables and thus
that these effects evidently lead only to a mild distortion
of the non-Boussinesq solution rather than to funda-
mental changes in it.

5. A mass-conserving form of the equations

We return now to the general case of a compliant free-
surface and variable-depth ocean, and we consider a mod-
ification of the equations of motion (2.1)–(2.6), and the
boundary conditions (2.11), (2.12), that will arrive at an
approximate set of equations that conserve mass rather
than volume, but nonetheless display a duality with the
Boussinesq equations. We transform from p as indepen-
dent coordinate to modified pressure, defined by

p9 5 p 2 r g[h(x, y, t) 2 ĥ(x, y, t)],0 (5.1)

where h is the free-surface displacement and is givenĥ
by (2.15b). This entails a corresponding shift in v,

D(h 2 ĥ)
v9 5 v 2 r g . (5.2)0 Dt

Hence boundary conditions (2.11), (2.12) become

D(h 2 ĥ)
M 5 gh v9 5 2r g0 Dt

at p9 5 2r g(h 2 ĥ), (5.3)0

M 5 g(h 2 ĥ), v9 5 r gu · =H0

at p9 5 r gH (5.4)0

where, as before, M 5 gz 1 p/r0 5 gz 1 p9/r0 1 g(h
2 ). The boundary condition (5.3) may be approxi-ĥ
mated by

M 5 gh 2 r d̂g(h 2 ĥ),0

](h 2 ĥ)
v9 5 2r g 1 = · [(h 2 ĥ)u]0 p95 6]t

at p9 5 0, (5.5)

following a procedure similar to the approximation of
the free-surface condition (3.7) by (3.10).

Equations (2.1)–(2.6) become

Du
5 2= M 2 gr d̂= (h 2 ĥ)p9 0 p9Dt

2 f k 3 u 1 F, (5.6)

]M
215 2a 1 r , (5.7)0]p9

]v9
= · u 1 5 0, (5.8)p9 ]p9

Du
5 Q, (5.9)

Dt

DS
5 Q , (5.10)sDt

D ] ]
5 1 u · = 1 v9 . (5.11)p91 2Dt ]t ]p9

p9

The integrated continuity equation (2.13) becomes

r gH0 ]
= · u dp9 1 r g (h 2 ĥ) 5 0. (5.12)E 01 2 ]t

2r g(h2ĥ)0

By making the formal substitutions

p9 5 2r gz, 0

v9 5 2r gw,0 (5.13)
M 5 P /r ,0 

21r (a 2 r ) 5 2(r 2 r )/r ,0 0 0 0

into (5.6)–(5.11), we see that they are identical to (3.1)–
(3.6), upon neglect of O(r0 ) ; 1023 terms in (5.6).d̂
The boundary conditions (5.3) [or (5.5)] and (5.4) be-
come [neglecting an O(r0 ) term in (5.5)]d̂
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D
P 5 r gh, w 5 (h 2 ĥ) at z 5 h 2 ĥ (5.14)0 Dt

]
or: P 5 r gh, w 5 (h 2 ĥ) 1 = · [(h 2 ĥ)u] at z 5 0 , (5.14)90 z[ ]]t

P 5 r g(h 2 ĥ), w 5 2u · =H at z 5 2H. (5.15)0

The integrated continuity equation (5.12) becomes

h2ĥ ]
= · u dz 1 (h 2 ĥ) 5 0. (5.16)E1 2 ]t

2H

Comparison with (3.7) [or (3.10)] and (3.8) reveals the
replacement in the w condition (5.14) [or (5.14)9] of h
by h 2 (5pb/r0g 2 H). Similarly, (5.16) [cf. (3.9)]ĥ
contains h 2 rather than h. Thus the prognostic in-ĥ
tegration of (5.16) yields the time-variable part of bot-
tom pressure r0g(h 2 ), rather than the sea surfaceĥ
elevation h. This forms the boundary condition at the
bottom [first of (5.15)] for the vertical integration of
(3.2). On the right of (3.2) one must use 2r0 5 2r0(ad̂
2 ) [see the last equation of (5.13)] in place of (r21r 0

2 r0)/r0. This quantity is calculated from the equation
of state as [u, S, 2r0g(z 2 h 1 )], where u, S haved̂ ĥ
been obtained prognostically from (3.4), (3.5). The
r0g(h 2 ) ; 1 dbar bias in the pressure is negligibleĥ
for this purpose. From the surface pressure, so calcu-
lated, one diagnostically obtains the sea surface height
h 5 P(0)/gr0, from the first of (5.14).

This demonstrates again that, but for the exchange of
the roles of bottom pressure and sea surface height, and
the reversed direction of integration of the hydrostatic
equation (3.2) (bottom to top), the mass-conserving,
non-Boussinesq set (5.6)–(5.11) with (5.4), (5.5), is
mathematically equivalent to the standard Boussinesq
set. The neglect of O(r0 ) terms in (5.6) and (5.5) isd̂
no worse than the neglect of terms of similar order in
the horizontal momentum equations (3.1). [Indeed, it
would be quite easy to restore these terms in (5.6) and
(5.5).] Most important, however, it is not necessary to
compromise the dilatation terms in the continuity equa-
tion to obtain (5.8), and hence, after the formal substi-
tution (5.13), to obtain (3.3).

There are circumstances in which the neglected di-
latation term in the conventional equation (3.3), r21Dr/
Dt, may be consequential. For example, McDougall and
Garrett (1992) argue that this neglect can lead to an
error in the Reynolds-averaged forms of (3.4) and (3.5)
that is an appreciable fraction of the turbulent diffusion
terms, while Dukowicz (1997) finds measurable effects
on modeled sea level. The present result shows that if
(i) the vertical coordinate in a ‘‘Boussinesq’’ circulation
model is reinterpreted as modified pressure; (ii) the roles
of bottom pressure and sea surface height are reversed,
along with the direction of the integration of the hy-
drostatic relation; and (iii) density anomaly is replaced

by specific volume anomaly [last of (5.13)], the neglect
of the dilatation term is thereby entirely evaded.

This seems a neater and less problematic way of deal-
ing with the dilatation than calculating it by brute force
and inserting it into the continuity equation (Dukowicz
1997). It answers comprehensively criticisms of sea lev-
el changes calculated from Boussinesq models (Great-
batch 1994; Mellor and Ezer 1995), and improves on
those authors’ suggested ex post facto corrections for
erroneous global volumes. Lu (2001) recently proposed
a redefined vertical velocity variable that appears to
swallow up the dilatation term. But the resulting vertical
velocity anomaly (the difference between redefined and
true vertical velocity) must still be calculated from the
dilatation (so that this rather resembles Dukowicz’s
1997 measures) and acts as an additional advective term
in the momentum and any scalar equations. No such
extra terms appear in the rearrangement proposed here.
Greatbatch et al. (2001) and McDougall et al. (2002)
proposed redefining the mean Eulerian velocity by
weighting with density to obtain a solenoidal continuity
equation, although this holds strictly only in the steady
case. No such restriction applies to the present measures.
The order-r0 terms neglected in the momentum balanced̂
and surface dynamical boundary condition in order to
establish the correspondence with the Boussinesq equa-
tions (which have neglected terms of similar order)
could be readily restored, with no effect on the mass
conservation.

6. Summary

It has long been known that, when the hydrostatic
equations of motion are written in terms of pressure as
independent variable, the mass conservation equation
takes a solenoidal form without neglecting volume di-
latation (Haltiner and Williams 1980). This suggests a
simple way of reorienting analytical theories or nu-
merical models to make them immune to the usual stric-
tures inherent in the Boussinesq equations that are con-
sequent to their neglect of dilatation. That is, in essence,
to reread such theories or models with level z (in meters)
substituted by pressure p (in decibars) as independent
variable. However, a complicating factor is raised by
the consideration of the boundary conditions on normal
stress (pressure) and normal velocity at the sea surface
and bottom. The boundary conditions are not perfectly
symmetric between the non-Boussinesq-pressure equa-
tions and the Boussinesq-depth equations. Yet there is
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a clear duality between the two sets of conditions. This
can be best stated as follows. A solution from a Bous-
sinesq-depth theory or model can be reinterpreted as a
non-Boussinesq-pressure solution where the sea surface
elevation in the Boussinesq theory is reinterpreted as
(equivalent) bottom pressure variation in the non-Bous-
sinesq theory. Just as bottom pressure is calculated in
the Boussinesq theory by integrating the hydrostatic
equation from the surface down to the bottom, so sea
surface height in the non-Boussinesq theory is calcu-
lated by integrating the hydrostatic equation up from
the bottom. Where scaled density anomaly, (r 2 r0)/
r0, appears in the Boussinesq-depth hydrostatic equa-
tion, negative of scaled specific volume anomaly, 2(a
2 )r0,—almost the same thing—appears in the non-21r 0

Boussinesq-pressure equation.
A further complication is posed by variable bottom

topography, which affects one boundary and not the
other. However, for a level bottom, the duality is perfect:
a Boussinesq solution as a function of depth can be
regarded as a non-Boussinesq solution as a function of
pressure, with the sea surface height in the Boussinesq
solution reinterpreted as bottom pressure in the non-
Boussinesq solution. In a rigid-lid solution the duality
is also perfect, even with variable bottom topography.
The non-Boussinesq dual solution so obtained has ne-
glected neither volume dilatation in the mass conser-
vation equation, nor the small variations in density in
the horizontal momentum balance.

In the case of variable bottom topography, we con-
sidered a slightly different independent variable, mod-
ified pressure, which is in situ pressure corrected by the
variable part of bottom pressure. We established a near-
perfect duality between Boussinesq-depth solutions and
non-Boussinesq-modified pressure solutions. The sole
imperfection in the duality is the neglect of terms of
the order of density variations in the non-Boussinesq
horizontal momentum balance. However, volume dila-
tion is not neglected in the mass conservation. Again,
the roles of sea surface height and bottom pressure var-
iation, and of density anomaly and specific volume
anomaly, are exchanged between the Boussinesq and
non-Boussinesq solutions.

One important practical consequence of this duality
is that a numerical Boussinesq model may be readily
converted into a non-Boussinesq model by minimal or
even no changes. (None are required for converting a
rigid-lid model.) To convert a Boussinesq free-surface
depth-coordinate model with variable bottom topogra-
phy to become a non-Boussinesq modified-pressure
model requires as the only substantive changes that 1)
‘‘pressure’’ at each ‘‘level,’’ as already obtained in such
a model from the hydrostatic relation, be calculated by
integrating upward from the bottom, with bottom pres-
sure as boundary condition, rather than down from the
top; and that 2) where density occurs, calculated from
the equation of state, its reciprocal, specific volume, be
substituted. [The first change merely requires the re-

versing of a do-loop in the computer code. This is so
even if the model is implemented with sigma coordi-
nates (height normalized by bottom depth) or density
coordinates, and if the barotropic time integration is split
from the baroclinic (Higdon and de Szoeke 1997).] Al-
ternatively, the hydrostatic pressure, as presently cal-
culated by integrating from the top down, may be cor-
rected by the difference between bottom pressure and
sea surface height (which is the steric height). The rest
consists of considering horizontal velocity, temperature,
salinity, etc. as functions of modified pressure rather
than depth, and reinterpreting vertical velocity as mod-
ified pressure tendency. (The pressure-like dependent
variable is Montgomery function gz 1 p/r0.) The di-
latation term in the continuity equation, r21(Dr/Dt), is
not neglected but transformed into invisibility.

The crucial simplification that permits the develop-
ment of the set of equations (2.1)–(2.6), or (5.6)–(5.11),
is the hydrostatic approximation. While it is often said
that the Boussinesq approximation eliminates or filters
acoustic waves, the hydrostatic approximation has al-
most the same effect. [There is one notable exception,
the Lamb mode (Gill 1982). In the atmosphere, where
scale height (based on compressibility) is smaller than
total height, the Lamb mode exists as a vertically ev-
anescent hydrostatic–acoustic wave trapped on the low-
er boundary. Thus, a pressure-coordinate model of the
atmosphere will support the Lamb mode. In the ocean,
however, the scale height is far larger than total depth
(200 vs 5 km), and the Lamb mode is subsumed into
the external gravity mode.] For nonhydrostatic motions,
the Boussinesq approximation is critical for mathemat-
ical tractability (Lighthill 1978). Yet once the hydro-
static approximation is made, the Boussinesq approxi-
mation offers no essential further mathematical simpli-
fication to the equations for ocean circulation.
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APPENDIX A

Coordinate Transformation

Consider replacing the depth coordinate z by a general
coordinate p(x, y, z, t). Then partial derivatives become,
in terms of the new variable,

] ]p ] ] ] ]p ]
5 , 5 1 , (A1)1 2 1 2 1 2]z ]z ]p ]x ]x ]x ]pi i iz p z

where xi stands for x, y, or t. Applying these to z itself,
one obtains
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]p ]z ]z ]p ]z
1 5 , 0 5 1 , (A2)1 2 1 2]z ]p ]x ]x ]pi ip z

whence (A1) become

] 1 ] ] ] 1 ]z ]
5 , 5 2 , (A3)1 2 1 2 1 2]z z ]p ]x ]x z ]x ]pp i i p iz p p

provided zp [ ]z/]p ± 0.
Using (A1),

D ] ]
[ 1 u · = 1 wz1 2Dt ]t ]z

z

] ]p ]p ]
5 1 u · = 1 1 u · = p 1 wp z1 2 1 2[ ]]t ]t ]z ]p

p z

(A4)

so that, if one defines

Dp
v 5 , (A5)

Dt

it follows that

D ] ]
5 1 u · = 1 v . (A6)p1 2Dt ]t ]p

p

An alternative way of writing (A5) is

2z 2 u · = z 1 wt pv 5 . (A7)
zp

Transforming the continuity equation

]r ]
1 = · (ru) 1 (rw) 5 0 (A8)z1 2]t ]z

z

leads to

] ]
(rz ) 1 = · (rz u) 1 (2rz 2 ru · = z 1 rw)p p p t p1 2]t ]p

p

5 0, (A9)

in which one recognizes the last term as being ](rzpv)/
]p. This equation may be rewritten as

D ]v
(rz ) 1 rz = · u 1 5 0. (A10)p p p1 2Dt ]p

Nothing specific to pressure has yet been used in this
derivation. If one takes p to be pressure, however, then
the hydrostatic relation becomes

21rz 5 2g , or gz 5 2ap p (A11)

so that the solenoidal form [(2.3)] of the continuity equa-
tion follows. The horizontal pressure gradient in the
equations of motion may be written

1 1
= p 5 2 = z 5 g= z, (A12)z p pr rzp

upon using (A3) and (A11). The momentum equation
(2.1) results from the substitution of (A6) and (A12) in
the conventional forms. If the hydrostatic balance (A11)
does not hold, (A12) must contain another term,

1 Dw
2 p 2 g = z 5 = z, (A13)z p p1 2r Dt

which is the component of vertical inertia along sloping
pressure surfaces.

a. Geographical spheroidal coordinates

Since the centrifugo-gravitational potential is not uni-
form over the globe, g is not strictly constant (Stacey
1977). In that case, for the implicitly Cartesian coor-
dinates x, y, z above, one might substitute the curvilinear
orthogonal coordinates l, u, f [respectively longitude,
spheroidal latitude (different from spherical latitude in
that normals to spheroidal cones, u 5 constant, lie in
geopotential surfaces), and geopotential]. Then all of
the above goes through, with appropriate curvilinear
elaborations of the gradient operator (Batchelor 1967).
In particular, in the equations through (A10), z is re-
placed by geopotential f. The hydrostatic balance (A11)
is replaced by

rf 5 21, or f 5 2a,p p (A14)

and the solenoidal form of (2.3) still follows. In the
horizontal momentum equations

1 1
= p 5 2 = f 5 = f, (A15)f p pr rfp

instead of (A12). Indeed, throughout the main text, re-
placement of gz by f accomplishes the extension of the
equations to nonconstant g.

b. Modified pressure

In (5.1), we proposed a further variable shift to mod-
ified pressure p9(x, y, p, t). This is of the same form as
the coordinate transformation considered above, if the
following substitutions are made:

: :z 5 p w 5 v
. (A16)6: :p 5 p9 v 5 v9

By observing that

]p ]p r g](h 2 ĥ)05 1, 5 , (A17)1 2]p9 ]x ]xi ip9

from (5.1), we see that the counterparts of (A3), (A5),
(A6) become
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] ] ] ] ] ]
5 , 5 2 r g (h 2 ĥ) ,01 2 1 2]p ]p9 ]x ]x ]x ]p9i i ip p9

(A18)

Dp9 D
v9 5 5 v 2 r g (h 2 ĥ), and (A19)0Dt Dt

D ] ]
5 1 u · = 1 v9 . (A20)p91 2Dt ]t ]p9

p9

Hence we may verify that (5.6)–(5.11) result from trans-
forming (2.1)–(2.6). In particular, we may confirm as
an identity that

]v ]v9
= · u 1 5 = · u 1 , (A21)p p9]p ]p9

so that if the hydrostatic relation (A11) holds, it follows
from (A10) that both sides of (A21) vanish. The trans-
formation of the boundary conditions (2.11), (2.12) is
discussed in the main text.

APPENDIX B

A More Accurate Bottom Pressure

A more accurate approximation than (2.15) will be
obtained linking bottom pressure pb and depth H. Write
the equation of state (2.8) as

a 5 a (p) 1 d(S, T, p),0 (B1)

where a0(p) 5 a(35 psu, 08C, p), is standard specific
volume, and d is the thermosteric anomaly. If one sub-
stitutes the salinity and temperature profiles S(x, y, p),
T(x, y, p) at position (x, y) into (2.14), one obtains

h 1 H 5 H(p ) 1 h ,b s (B2a)

where
pb

21H(p ) 5 g a (p) dp, (B2b)b E 0

0

pb

21h 5 g d dp, (B2c)s E
0

the latter being the steric height. The function H(pb) is
increasing and can be inverted. Calling this inverse func-
tion Pb( · ), we have, from (B2a),

p 5 P (H 1 h 2 h ) ù P (H ) 1 (h 2 h )gr (H ),b b s b s b

(B3)

where the second equality represents the first two terms
in a Taylor series with (H) 5 1/H9[Pb(H)] 5P9b
g{a0[Pb(H)]}21 [ grb(H). An accurate approximation
of (B2) is then

h 1 P (H)/gr 5 p /gr 1 ĥ ,b b b b s (B4a)

where

P (H )b

21ĥ ù g d dp. (B4b)s E
0

In the latter, Pb(H) has been used to approximate pb in
the limit of integration for steric height, (B2c), incurring
an error of millimeters or less.

APPENDIX C

Boundary Conditions

The first of conditions (2.12) is

M[x, y, p (x, y, t), t] 5 p /r 2 gH,b b 0 (C1)

where one may take (2.15a) for pb:

p 5 r g(H 1 h 2 ĥ).b 0 (C2)

Expanding M in a Taylor series around r0gH, retaining
only the first two terms, one obtains

M(p ) ù M(r gH ) 1 r g(h 2 ĥ)M (r gH )b 0 0 p 0

ù M(r gH ) 2 g(h 2 ĥ)r d̂, (C3)0 0

on using (2.2), and suppressing the appearance of the
dependence on x, y, t. Combining (C1) and (C3), and
neglecting the order-r0 term in (C3),d̂

M(r gH) ù g(h 2 ĥ).0 (C4)

In the second of conditions (2.12),

]pbv 5 1 u · =p at p 5 p (x, y, t), (C5)b b]t

one first expands v(pb) in a Taylor series around p 5
r0gH:

]v
v(p ) ù v(r gH ) 1 r g(h 2 ĥ)b 0 0 )]p r gH0

ù v(r gH ) 1 r g(h 2 ĥ)(= · u)| . (C6)0 0 p r gH0

Similarly,

. . .u | · =p ù u | · =p 1 ,pb b p gH b0
(C7)

where the terms denoted by ellipses may be neglected
as being of third order. Combining (C5)–(C7),

]
v ù r gu · =H 1 p 1 = · [u(p 2 r gH )] (C8)0 b b 0]t

at p 5 r0gH. The neglect of the last term in (C8) is
equivalent to approximating pb in the limit of integration
in the bulk continuity equation (2.13) by r0gH.
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