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ABSTRACT

The Rossby normal modes of a two-layer fluid in a meridional channel of width L
*

are altered by the presence
of a meridional flow with a small vertical shear. The stability of the modes in the presence of the weak shear
is considered. It is found that the joint presence of the Rossby modes and the vertical shear leads to baroclinic
instability even for arbitrarily small values of the shear.

The results are used to explain previous numerical calculations of the persistent instability of meridional flows
when the ratio /V . 1, where V is the magnitude of the shear, b is the planetary vorticity gradient, and LD

2bLD

is the deformation radius. If the flow were zonal it would be stable for such weak shears.
The growth rates are weak when /V k 1 and each unstable mode exists in a narrow range of meridional2bLD

wavenumber. The asymptotic results qualitatively agree with the earlier numerical results at moderate values of
the same parameter.

1. Introduction

In a recent paper, Walker and Pedlosky (2002, here-
after WP) examined the instability, within the two-layer
model, of a meridional flow on the beta plane in a me-
ridional channel of width L*. If the channel were un-
bounded and the meridional flow were of infinite lateral
extent, earlier results (Pedlosky 1987) show that the flow
would always be unstable to a wavelike perturbation
independent of the zonal direction (x). Such a pertur-
bation would thus be insensitive to the stabilizing pres-
ence of b. The finite width of the channel forces an x
variation in the perturbation streamfunction field and
thus a meridional velocity that senses the planetary vor-
ticity. Nevertheless, WP found that the meridional shear
flow was unstable for all values of b examined, even
for those values of /V . 1 (symbols have conven-2bLD

tional meanings and are defined below) for which the
flow would be stable if it were zonal instead of merid-
ional. In addition, the instability extended to wave-
lengths shorter than the classical short-wave cutoff the
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two-layer model. Walker and Pedlosky speculated that
the extended range of instability in shear and wave-
number was due to the destabilization by the presence
of weak shear of the Rossby normal modes present in
the channel. (Note that for a plane wave in an unbounded
region a stability threshold does exist if the wave vector
is not purely meridional.) However, the difficulty of the
numerical analysis when the shear is weak and the
growth rates are small precluded a satisfying verification
of this hypothesis.

In this paper I present an asymptotic perturbation
analysis valid for very weak shear to demonstrate the
persistence of at least weak instabilities for small values
of the shear.

In addition to its explanatory quality with regard to
the earlier results in WP, it is suggestive that the po-
tential energy present in the weak shear can be tapped
by the Rossby mode. Although the basic flow considered
is considerably simpler than the circulation in a com-
plete subtropical gyre, it is possible that the instability
outlined here can provide a mechanism to maintain
Rossby modes in such gyres against the inevitable ef-
fects of dissipation, whose presence has often been cited
as a reason for the unlikelihood for the existence of
Rossby normal modes.

In section 2, I formulate the basic problem and exhibit
the perturbation analysis. Section 3 is a presentation of
results, and section 4 is a brief discussion of the results
and their significance.
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FIG. 1. The meridional channel containing the flow. The upper
layer basic-state velocity is V and the channel width is L.

2. Formulation

Consider a two-layer quasigeostrophic model on the
beta plane (Pedlosky 1987). For simplicity we will take
each of the layers to have the same basic thickness, H,
in the absence of motion. Imagine a channel of width
L*, oriented north–south, as shown in Fig. 1. There is
a uniform northward flow, V, in only the upper layer of
the two layers. In order for such a flow to be a consistent
solution of the potential vorticity equation there must
be a vorticity source on the beta plane to maintain the
flow. One can imagine a uniform wind stress curl being
responsible for maintaining V. Small perturbations that
are wavelike in y disturb the basic flow and the qua-
sigeostrophic potential vorticity equation is linearized
in order to describe the initial evolution of the pertur-
bation field. In dimensionless units the perturbation
equations are

1
2(y 2 s)[f 2 l f 1 (f 2 f )] 1 f1xx 1 2 1 1xil

1 yf 5 0 (2.1a)1

1
2(2s)[f 2 l f 1 (f 2 f )] 1 f2xx 2 1 2 2xil

2 yf 5 0. (2.1b)2

In (2.1) the cross channel coordinate x has been scaled
with the deformation radius, (g9H)1/2/ f o, where the re-
duced gravity and Coriolis parameter are in standard
notation. Subscripts x denotes derivatives with respect
to x. The along channel wavenumber l is similarly scaled
with the inverse deformation radius. Both the meridional
basic-state velocity and the complex phase speed of the
wave perturbations, s, are scaled with the characteristic
Rossby long-wave speed . For details of the deri-2bLD

vation the reader is referred to WP. If the basic state
shear is weak so that y 5 V/ K 1 an expansion in2bLD

an asymptotic series in y is suggested.
First, however, there is a suggestion from the nu-

merical results of WP that the unstable modes, if they
exist, will have scales that can be short compared to a
deformation radius and wavelengths in the y direction
that are also short. This suggests that the following
transformations for x, l, and c are useful:

1/2j 5 x/y (2.2a)
1/2a 5 ly (2.2b)

s 5 y(s 1 ys 1 · · · ), (2.2c)o 1

where we have expanded the phase speed in a series in
the small parameter y.

The perturbation equations are now
2(1 2 s 2 ys 1 · · · )[f 2 a f 1 y(f 2 f )]o 1 1jj 1 2 1

i
2 f 1 yf 5 0 (2.3a)1j 1a

2(2s 2 ys 1 · · · )[f 2 a f 1 y(f 2 f )]o 1 2jj 2 1 2

i
2 f 2 yf 5 0. (2.3b)2j 2a

Note that in these stretched coordinates the bound-
aries of the channel are at j 5 0 and j 5 L*/(LDy1/2)
[ L.

We also note that to lowest order in the shear, y, the
two layers are decoupled. This is consistent with the
results of WP, which showed that unstable modes exist
for /V . 1, with strikingly different cross-channel2bLD

scales in the x direction. The perturbation streamfunc-
tion is also expanded in a series in y, as is a, thus,

(o) (1)f 5 f 1 yf 1 · · · , n 5 1, 2n n n

a 5 a (1 1 ya 1 · · · ). (2.4)o

At lowest order this yields the problem

2d i
(o) 2 (o)(1 2 s ) f 2 a f 2 f 5 0, (2.5a)o 1 o 1 1j2[ ]dj ao

2d i
(o) 2 (o)(2 s ) f 2 a f 2 f 5 0, (2.5b)o 2 o 2 2j2[ ]dj ao

whose solutions, subject to the boundary conditions of
vanishing streamfunction at the channel walls are

(o) ij /[2a (12s )]o of 5 A e sinmj, (2.6a)1 1

(o) 2ij /[2a s ]o of 5 A e sinnj, (2.6b)2 2

where

m [ Mp/L, M 5 1, 2, 3, . . . (2.7a)

n 5 Np/L, N 5 1, 2, 3, . . . . (2.7b)

Since L is the channel width scaled inversely with
y 1/2 , it follows that for consistency M and N, each an
integer, must be large, O(y 21/2 ) so that m and n are
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O(1) in accordance with the assumptions of the asymp-
totics. We note that the solutions (2.6) are each the
Rossby normal modes of the upper and lower layers,
respectively, in which a carrier wave is modulated by
a solution of the Helmholtz equation (Pedlosky 1987).
The normal mode structure in the upper layer is altered
only by the Doppler shift of the meridional flow in the
upper layer. The solutions (2.7) reflect the fact that the
horizontal structure of the mode may be quite different
from one layer to the other if M and N are different.
The condition that both (2.6 a,b) are solutions corre-
sponding to the same frequency or phase speed is simply
that the two solutions for so,

1
s 5 (2.8)o 2 2 1/22a (a 1 n )o o

from (2.6b) and

1
s 5 1 2 (2.9)o 2 2 1/22a (a 1 m )o o

from (2.6a), must yield identical results.
The condition that so be the same in (2.8) and (2.9);

that is, that we are dealing with a single composite
mode, yields the condition

1 1
2a 5 1 . (2.10)o 2 2 1/2 2 2 1/2(a 1 m ) (a 1 n )o o

For any pair (m, n) there is a single solution for the
(scaled) y wavenumber ao. Figure 2 shows a map in the
M, N plane of ao for the case y 5 0.02, L* 5 10.
Although M and N are integers, the figure treats the
variables as continuous for graphical clarity. It is im-
portant to note that to this order the phase speed is
strictly real so that instability will be apparent only at
the next order in the expansion in y.

At next order the perturbation equations are

i
(1) 2 (1) (1) (o) (o) (o) 2 (o) (o)(1 2 s )[f 2 a f ] 2 f 5 2(1 2 s )[f 2 f ] 1 s [f 2 a f ] 2 fo 1jj o 1 1 o 2 1 1 1jj o 1 1jao

i
2 (o) (o)1 2(1 2 s )[aa f ] 2 af (2.11a)o o 1 1jao

i
(1) 2 (1) (1) (o) (o) (o) (o) 2 (o) 2 (o)2s [f 2 a f ] 2 f 5 s (f 2 f ) 1 f 1 s [f 2 a f ] 2 2s a afo 2 o 2 2 o 1 2 2 1 2 o 2 o o 2jj j jjao

i
(o)2 af . (2.11b)2jao

It is only at this order that the coupling between the
two layers enters the perturbation equations and the po-
tential vorticity gradient associated with the vertical
shear is explicitly included in the analysis. If baroclinic
instability is to occur, these must be essential ingredi-
ents. The instability properties will be contained be-
havior of s1, whose imaginary part will yield the growth
rate for the perturbation (after multiplication by the y
wavenumber).

To find s1 it is only necessary to remove resonant
terms from the right-hand sides of (2.11 a,b).

This is easily done by multiplying (2.11a) by the
function

2ij/(2a [12s ])o of 5 e sinmj,1

which has the form of the complex conjugate of the normal
mode of the upper layer, and multiplying (2.11b) by

ij/(2a s )o of 5 e sinnj2

and integrating over the width of the channel.
After some algebra this leads to two equations relating

the amplitudes of the normal modes of the two layers,
namely,

s s 1o 1 2 22 2 1 (1 2 s )a(4a 1 2m ) Lo o2 2[ ]2 4a (1 2 s ) 2o o
A 5 A (2.12a)2 1 g (e 2 s )12 o

s (1 2 s ) s a1 o o 2 22 1 (4a 1 2n ) Lo2 2[ ]4a s 2 2o o
A 5 A , (2.12b)1 2 g*s12 o

where the coupling constant g12 is given by
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2i(k 1k )L M1Nm nmn(k 1 k )[e (21) 2 1]m ng 5 2i , (2.13)12 2 2 2 2[(m 2 n) 2 (k 1 k ) ][(m 1 n) 2 (k 1 k ) ]m n m n

where
2 2 1/2 2 2 1/2k 5 (m 1 a ) k 5 (n 1 a ) .m o n o

Note that the asterisk in (2.12b) denotes the complex conjugate of the coupling coefficient g12.
Eliminating A1 and A2 between (2.12a) and (2.12b) leads to a quadratic equation for s1:
2s 1 s B 1 C 5 0, (2.14a)1 1

1 1 2s 2(1 2 s )o o2 2 2 2 2 2 2B 5 2a s (1 2 s ) 2 1 a(2a 1 n ) 2 a(2a 1 m ) (2.14b)o o o o o2 25 6s (1 2 s ) (1 2 s ) so o o o

2 3 3 2 4 2 2 2 2C 5 |g | 16s (1 2 s ) /L 2 4a s (1 2 s ) [(1 2 s ) 2 2s a(2a 1 n )]12 o o o o o o o o

2 23 [s 2 2(1 2 s )a(2a 1 m )], (2.14c)o o o

FIG. 2. Contours of the critical wave number ao in the M, N plane
for y 5 0.02, L 5 10.

FIG. 3. Growth rate vs wavenumber for y 5 0.02, M 5 50, N 5
20, L 5 5. Note the narrow window in l for which sI . 0.

whose solution determines the stability of the mode
whose structure to first order is given by (2.6 a,b).

3. Results

In terms of our original nondimensional variables the
growth rate of an unstable mode is given by lci, where
ci is the imaginary part of the wave’s phase speed. We
have already noted that to lowest order in our expansion
in powers of y the phase speed is real and an imaginary
part, if it exists, will depend on the imaginary part of
s1. It then follows that the growth rate s will be

3/2s 5 lc 5 ay Im(s ),i 1 (3.1)

where the scaled wavenumber a is, itself, given by the
expansion (2.4) so that the growth rate is a function of
a. In the following figures the growth rate is given in
terms of its original variables, that is, l and in terms of
y or its inverse 5 1/y.b̃

Figure 3 shows the growth rate as a function of l for
y 5 0.02( 5 50) for the mode corresponding to M 5b̃
50 and N 5 20 for a channel of width 5LD. There is a
narrow range of wavenumbers in which the growth rate
is positive and the magnitude of the growth rate is quite
small, for these values of the order of 1024 (in units
bLD), There is a symmetry in M, N so that the mode
with M and N reversed has the same growth rate. Any
combination (M, N) will have some range over which
its growth rate will be nonzero so that a plot of growth
rate versus l for small y would show a bewildering
superposition of intervals of unstable wavenumbers.
This is precisely what WP found numerically but the
smallness of the growth rates precluded a clear picture
for y less than 0.5. For example, the growth rate curve
for M 5 25, N 5 25 is shown in Fig. 4. The maximum
growth rate is slightly larger than in the previous ex-
ample. Indeed, as shown below the maximum corre-
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FIG. 4. As in Fig. 3 except for M 5 25, N 5 25. Note the change
in the l interval of instability.

FIG. 5. Contours of growth rate in the M–N plane for y 5 0.02, L
5 5. Note that the maximum occurs along the line M 5 N.

sponds to the diagonal solution M 5 N but the differ-
ences are not great enough to truly privilege that mode.
Note too that the interval of wavenumber is different
than the previous example. As WP found, these modes
are unstable for values of l, which exceed the classical
short-wave cutoff of 21/4.

An alternative representation represents the maximum
growth rate for each M, N in the M, N plane. One can
identify the corresponding y wavenumber l with the aid
of Fig. 2. Figure 5 shows such a contour plot. The
maximum occurs very close to the values chosen for
Fig. 4 and the maximum value is about 1.2 3 1024 and
occurs on the M, N diagonal. Note that on the diagonal
so 5 0.5, a result that could be anticipated from sym-
metry, so that for such diagonal modes the structure of
the eigenfunctions is, to lowest order, the same in each
layer. There will be a departure at higher order and the
off-diagonal unstable modes, whose growth rates are
commensurate with the diagonal modes will have very
different structures in two layers.

4. Discussion

The examination of the instability of meridional bar-
oclinic shear flows produces some novel instability char-
acteristics when compared with the classical problem of
the instability of zonal flows. Perhaps none is more
surprising than the absence of a critical threshold for
instability for the shear even in those cases, as studied
in this paper, where the geometry of the flow forces the
disturbance to sense the effect of b. In spite of consid-
erable effort, a necessary condition for instability has
not been proven for the system (2.1) and, although a
negative is not a proof, it was thought to suggest that
all meridional flows would be unstable. That interesting
hypothesis is put on firmer ground by the asymptotic
result of this paper, which shows that very weak me-

ridional shears can destabilize otherwise neutral Rossby
normal modes for the channel. The preexisting mode
has its structure slightly altered by the shear, allowing
the release of the available potential energy in the shear
flow. Since the shears, that we have considered are
weak, the corresponding energy source is rather feeble
and the resulting growth rates are small. One could
stretch the asymptotics to values of y, which are not
very small, to obtain larger growth rates, but that range
is already covered by the detailed numerical analysis of
WP, which qualitatively agrees with the present results.
From the point of view of oceanic applications that may
be unnecessary. Although the geometry of the channel
is simple compared to the geometry of the subtropical
gyre, it is still true that instabilities of the flow in the
eastern regions of the gyre can be interpreted in terms
of the instability of meridional flow (see for example
Spall 2000) and emphasizes the important role of zonal
boundaries (here taken as simple meridians) in affecting
the variability of the midbasin flow. This leads to the
interesting possibility that instabilities of the type de-
scribed in this paper can extract sufficient energy from
the gyre circulation to maintain Rossby normal modes
against dissipation as long as the weak growth rates
pertinent to such modes exceed the dissipation rates for
such modes. Cessi and Primeau (2001) and LaCasce
(2000) have already pointed out the existence of such
special Rossby normal modes with exceedingly long
dissipative times under the influence of scale selective
dissipation. The coupled instability of Rossby normal
modes and the baroclinic shear could provide a mech-
anism for the generation and maintenance of the normal
modes rather that relying on the persistent ‘‘ringing’’ of
the system by repeated external forcing.

Acknowledgments. This research was supported in
part by a grant from the National Science Foundation,
OCE 9901654.



AUGUST 2002 2423N O T E S A N D C O R R E S P O N D E N C E

REFERENCES

Cessi, P., and F. Primeau, 2001: Dissipative selection of low-frequency
modes in a reduced gravity basin. J. Phys. Oceanogr., 31, 127–137.

LaCasce, J. H., 2000: Baroclinic Rossby waves in a square basin. J.
Phys. Oceanogr., 30, 3161–3178.

Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer-Verlag,
710 pp.

Spall, M., 2000: Generation of strong mesoscale eddies by weak
ocean gyres. J. Mar. Res., 58, 97–116.

Walker, A., and J. Pedlosky, 2002: Instability of meridional baroclinic
currents. J. Phys. Oceanogr., 32, 1075–1093.


