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ABSTRACT

Finding a robust threshold variable that determines the onset of breaking for deep water waves has been an
elusive problem for many decades. Recent numerical studies of the unforced evolution of two-dimensional
nonlinear wave trains have highlighted the complex evolution to recurrence or breaking, together with the
fundamental role played by nonlinear intrawave group dynamics. In Part I of this paper the scope of two-
dimensional nonlinear wave group calculations is extended by using a wave-group-following approach applied
to a wider class of initial wave group geometries, with the primary goal of identifying the differences between
evolution to recurrence and to breaking onset. Part II examines the additional influences of wind forcing and
background shear on these evolution processes.

The present investigation focuses on the long-term evolution of the maximum of the local energy density
along wave groups. It contributes a more complete picture, both long-term and short-term, of the approach
to breaking and identifies a dimensionless local average growth rate parameter that is associated with the
mean convergence of wave-coherent energy at the wave group maximum. This diagnostic growth rate appears
to have a common threshold for all routes to breaking in deep water that have been examined and provides
an earlier and more decisive indicator for the onset of breaking than previously proposed breaking thresholds.
The authors suggest that this growth rate may also provide an indicative measure of the strength of wave
breaking events.

1. Introduction

Wave group structure has been a conspicuous feature
of ocean wave height records ever since such measure-
ments have been available. Within these evolving wave
groups, very steep waves arise intermittently and can
represent a serious hazard to shipping and offshore
structures, especially if they break. Insightful obser-
vational contributions linking wave breaking and wave
group structure were made by Donelan et al. (1972) and
subsequently by Holthuijsen and Herbers (1986). While
the most popular description of wind-generated ocean
waves has been in terms of the wave height spectrum,
a significant literature also exists on the statistics of
wave groups, wave heights, and associated propagation
characteristics. The review articles by Donelan and Hui
(1990), Banner and Peregrine (1993), and Melville
(1996) provide complementary surveys of the recent
literature on the time-honored problem of wave breaking
in deep water.

Of particular relevance to the discussion of wind-
forced waves and the statistics and structure of extreme

Corresponding author address: Dr. Michael L. Banner, School of
Mathematics, The University of New South Wales, Sydney 2052,
New South Wales, Australia.
E-mail: m.banner@unsw.edu.au

waves in wave groups are the papers of Longuet-Hig-
gins (1984), Boccotti et al. (1993), Phillips et al.
(1993), and Osborne et al. (2000), among others. These
papers, however, do not address the underlying issue
of determining the onset of wave breaking. With the
availability of elegant analytic methods, there has been
a strong ongoing interest in studying nonlinear mod-
ulational processes in model equations such as the non-
linear Schrödinger equation and its higher order var-
iants (e.g., Dysthe 1979). Dias and Kharif (1999) pro-
vide a particularly insightful review of the impressive
mathematical progress with these equations. While
well suited to examining many aspects of this problem,
these model equations are not able to describe the onset
of wave breaking, which requires the exact Euler equa-
tion formulation with fully nonlinear free surface
boundary conditions. While it is recognized that wave
breaking is characteristically three-dimensional (3D),
modeling and measurements of two-dimensional (2D)
breaking are somewhat less demanding and such 2D
studies have provided valuable insight into the break-
ing process.

A number of authors have contributed recent 2D nu-
merical investigations on wave breaking onset, includ-
ing Dold and Peregrine (1986), Tulin and Li (1992),
Griffin et al. (1996), and Banner and Tian (1998), among
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FIG. 1. Surface profiles (left-hand panels) (axes show lengths in meters) and the corresponding local energy distributions (right-hand
panels) (in J m21) at selected times during the evolution of the three marginally stable initial wave group cases (I, II, and III) containing N
carrier waves, where N 5 5. For case I the initial steepness parameter s0 5 0.111 and the selected times from top to bottom are, respectively,
t/T 5 0, 60, 82.7, and 160.5, where T is the reference carrier wave period. For case II the initial steepness parameter s0 5 0.069 and the
selected times from top to bottom are, respectively, t/T 5 0, 30, 43.8, and 98.4. For case III the initial piston amplitude parameter Ap 5
0.035, the wavelength l 5 2, and the selected times from top to bottom are, respectively, t/T 5 7.5, 20, 25.6, and 47.5.

others. Typically, these studies are valid up to the point
of crest overturning. Complementary observational in-
vestigations have been reported on the unforced (zero
wind) case by a number of authors, including Melville
(1982, 1983), Rapp and Melville (1990), Kway et al.
(1998), and Tulin and Waseda (1999). Valuable obser-
vational insight has been provided for the extension to
3D breaking by Nepf et al. (1998). While each of these
studies has provided new insight into the complexity of
the breaking onset and its postbreaking transition, key
issues and questions still remain.

Our present investigation focuses on (a) determinants
of breaking onset, (b) how far in advance wave breaking
events can be predicted, and (c) what determines their
strength. It refines and extends significantly the numer-
ical study of Banner and Tian (1998, henceforth referred
to as BT), who investigated the onset of wave breaking
for a particular class of unforced modulating wave
groups of nonlinear deep water surface gravity waves.
BT also provide a detailed overview of the background
literature of the unforced problem.

Briefly, BT used the fully nonlinear two-dimensional,
periodic domain inviscid model developed by Dold and
Peregrine (1986, henceforth referred to as DP). Dold
and Peregrine, and subsequently BT, discuss the two
diverse modes of evolution of the class of unforced two-
dimensional nonlinear modulating wave groups with a

central carrier wave of moderate initial steepness and
two small symmetric sidebands. The deforming wave
group evolves either with recurrence to the original
wave group structure or to breaking. For this class of
initial wave group structure (designated case I and de-
scribed in detail below), Dold and Peregrine reported
that an initial carrier wave steepness threshold deter-
mines which of these evolution modes occurs. In this
paper, we revisit case I and, in order to examine the
sensitivity to initial conditions for this highly nonlinear
problem, have also included a parallel study of the be-
havior of two other classes of initial wave group ge-
ometry. Case II consists of two equal, moderately steep
wave components with slightly different frequencies.
The inclusion study of a third class (designated case
III), known as a ‘‘chirped’’ wave packet, was motivated
by its widespread use as the preferred laboratory wave
tank method for the controlled generation of breaking
waves, for example, Rapp and Melville (1990, hence-
forth referred to as RM).

Using the numerical models described in section 2
below, typical evolution results for these three cases are
visualized in Figs. 1 and 2. Figure 1 shows the evolution
to recurrence for an initial wave group for an example
of each of the three cases just below the recurrence
threshold. Figure 2 shows the evolution to breaking just
above the recurrence threshold. At this point, a measure
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FIG. 2. As for Fig. 1 but for marginally breaking cases. For case I the initial steepness parameter s0 5 0.112 and the selected times from
top to bottom are, respectively, t/T 5 0, 60, and 80.8. For case II the initial steepness parameter s0 5 0.070 and the selected times from
top to bottom are, respectively, t/T 5 0, 30, and 40.2. For case III the initial piston amplitude parameter Ap 5 0.036, the wavelength l 5
2, and the selected times from top to bottom are, respectively, t/T 5 7.5, 15, and 18.9.

of initial steepness is used to differentiate the two dis-
tinct evolution behaviors. To emphasize the fundamental
role of nonlinear energy fluxes occurring within wave
groups in each of these evolutions, Figs. 1 and 2 also
show the corresponding behavior of the local depth-
integrated energy density (potential plus kinetic) asso-
ciated with the motion. One striking common feature is
immediately apparent: for either breaking or recurrence,
the evolution is accompanied by a systematic mean con-
vergence of the energy density toward the local maxi-
mum of the evolving wave group.

It is observed that individual waves break with vary-
ing strengths, ranging from ‘‘gently spilling’’ to
‘‘strongly plunging.’’ In a pioneering laboratory study
aimed at elucidating the issue of strength of breaking
events, RM introduced an effective relative energy loss
parameter as the change in wave packet energy density
(energy per unit width of the flow for 2D waves) nor-
malized by the energy density prior to breaking. They
explored systematically how this parameter varied as a
function of their initial wave steepness parameter akc

(defined in section 3a) for wave packets with different
properties such as relative bandwidth, center frequency,
wave packet propagation distance to breaking, etc. We
propose below that the trend of the energy loss behavior
observed by RM is linked to the systematic mean con-
vergence rate of the energy density toward the local
maximum of the evolving wave group.

2. Details of numerical approach

a. Nonlinear wave codes and their numerical
accuracy

We used the fully nonlinear, two-dimensional, peri-
odic domain inviscid model for free surface gravity wa-
ter waves described in detail in DP. In this model, the
following scalings were used: gravitational acceleration
g 5 1, water density rw 5 1, and a carrier wavelength
of 2p. The accuracy of the DP code has been checked
by several researchers. Among these, the recent study
by Skyner (1996) compared numerical predictions from
the DP code with subsurface velocity measurements
made during the breaking onset process using particle
image velocimetry techniques. After a small shift of the
numerical data to match the surface profiles, the pre-
dicted and measured kinematics were in close (within
2%) agreement. The predicted and measured surface
shapes were also in very close agreement. From such
studies, the essential features of two-dimensional wave
breaking appear to be captured by the DP code well
into the overturning regime and conclusions drawn from
studying the model behavior are likely to be relevant to
the actual fluid dynamics underlying the onset of wave
breaking in self-modulating wave groups. Most of the
computations reported in this paper are based on the DP
code.

For the chirped wave packet (case III) calculations,
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in which the leading waves have a higher frequency
than trailing waves, we used a fully nonlinear numerical
model developed by Y. Agnon and N. Drimer (1998,
personal communication) with refinements by A. Segre
(1998, personal communication). This code (henceforth
referred to as the DAS code) solves the fully nonlinear,
irrotational free surface boundary value problem using
the boundary element method within a numerical wave
channel, featuring a piston wave maker at one end of
the domain and an energy absorbing ‘‘beach’’ at the
other end. This code is capable of representing wave
surfaces past the point of overturning, that is, beyond
a vertical forward face configuration, without numerical
smoothing. Drimer and Agnon (1998, personal com-
munication) document a number of error validation
tests. Their computed surface profiles were in close
agreement with previous results of Jansen (1986) and
New et al. (1985) for steep sinusoidal waves. The wave
height versus water depth curve obtained by Drimer and
Agnon agrees well with the experimental results of Han-
sen and Svendsen (1979) for wave shoaling up to break-
ing. We also checked the accuracy of their model in our
present computations by verifying global conservation
of water volume and total energy after the piston motion
ceases. In all cases that we checked, errors both in wave
energy and volume remained smaller than 2% during
the subsequent wave propagation.

b. Model runs

A series of runs using the DP code was performed
in this study. To eliminate the effects of numerical in-
stabilities and obtain a stable solution in our calcula-
tions, following BT, we chose in the DP model a small
precision control parameter « 5 0.001, fifth-order back-
ward differencing, the number of points per wave NP
5 16 with no numerical smoothing. We took the still
water depth h 5 50 and used a time step of 0.1T, where
T 5 2p for all calculations with the DP code. Two
classes of initial wave group structures, cases I and II
defined below, were used in our DP code runs.

A number of maximally recurrent and breaking wave
realizations for case III wave packets were also studied
using the DAS code. These runs all started from a still
water initial state. A time step of 0.05T was used for
all calculations with the DAS code, where T is the ref-
erence input period of the piston movement. The number
of points along the boundary was chosen to provide the
desired channel geometry and resolution of the over-
turning wave profile. We tested various values of NP
on the boundary, especially on the free surface, and
found that taking NP 5 20 was sufficiently large to
ensure a stable result. Zero artificial damping coefficient
was used for all the DAS computations. The piston was
stopped after the wave group had built up, allowing a
chirped wave packet to propagate in the positive x di-
rection.

c. Initial wave group structures

Three classes of initial wave group structures were
investigated in this study. The first class (henceforth
referred to as case I) had a fundamental carrier wave
with two small symmetric sidebands, using as param-
eters the initial carrier wave amplitude a0 (or steepness
s0 5 a0k0, where k0 5 1) and the number of waves in
one modulation length, N. The initial wave group had
the structure of a uniform, steady, finite amplitude deep
water wave train whose linear approximation is h 5 a0

cos(k0x), where k0 5 1. On this primary wave are su-
perimposed perturbations having the initial form

N 1 1
«a cos k x 2 u0 01 2N

N 2 1
1 «a cos k x 2 u0 01 2N

with « 5 0.1 and k 5 1. (1)0

Here, N is the integer number of waves in the group,
where 3 # N # 10. This is the range used by DP and
provides sideband perturbation wavenumbers in the
range [0.667, 1.333]. Also, following DP, the phase an-
gle u was taken as p/4 as it provides the most rapid
initial growth of the sideband modes.

The second class of wave groups (henceforth referred
to as case II) had an initial bimodal spectrum of the
form

h 5 a cos(k x)0 0

N 1 1 p
1 «a cos k x 20 01 2N 18

with « 5 1 and k 5 1, (2)0

where a0 and N are as defined as above. The small phase
shift, retained from BT, is inconsequential.

A third class of wave group structures (henceforth
referred to as case III) had a more rapidly deforming
geometry and was characterized as a ‘‘chirped’’ wave
packet. This structure, commonly implemented in wave
tank experiments (e.g., RM), comprises carrier waves
that coalesce rapidly due to their different phase veloc-
ities. These wave packets were produced in the DAS
code by driving the piston wave maker with the motion

4v tpx 5 20.25A tanh 1 1p p1 2Np

24(v t 2 2Np) 0.018tp
3 1 2 tanh sin v t 2 ,p1 2[ ] [ ]Np 2

(3)

where t is time and N is a integer that controls the
number of waves produced by the piston, Ap is pro-
portional to the piston amplitude and



SEPTEMBER 2002 2545S O N G A N D B A N N E R

2p 2p
v 5 g tanh hp 1 2! l l

is its angular frequency, l is the wavelength, and h is the
still water depth. To simulate deep water, we took the still
water depth near the piston as h 5 4 with l 5 2.

3. Properties of nonlinear wave group evolution

a. Evolution to recurrence or breaking

The transition between evolution with recurrence or
evolution to breaking occupies a position of central im-
portance in the discussion of breaking criteria. In this
context, both model studies and laboratory investiga-
tions have typically investigated initial value problems
and have adopted a measure based on the initial carrier
wave steepness to parameterize their results. This choice
of initial steepness parameter warrants discussion, es-
pecially as various investigators have reported appre-
ciably different initial steepness thresholds that separate
recurrence from breaking cases.

In their study of weak sideband modulating case I
wave groups, DP used the initial amplitude a and wave-
number k of the center Fourier mode to characterize the
initial steepness (ak)0 of their wave groups and found
that this initial steepness threshold for breaking onset
depends on the number of carrier waves N in the group,
ranging from (ak)0 5 0.150 for N 5 3 to (ak)0 5 0.088
for N 5 10.

The DP definition of initial steepness requires mod-
ification in the context of a full wave modulation (our
case II) that results from the superposition of two modes
of equal, moderate steepness with a prescribed wave-
number separation. There are two straightforward op-
tions for specifying a characteristic initial steepness
measure. The first uses the root mean square (rms) steep-
ness

1/2N0

rms 2(ak) 5 (a k ) (4)O0 i i[ ]i51

for a free surface specified by the Fourier series h(x, t)
5 ai cos(kix 2 v i t 2 f i). In (4), ai, ki, vi, and f i

N0Si51

are, respectively, the amplitude, the wavenumber, the
frequency, and the phase of the ith component, and N0

is the number of wave components.
The second initial steepness measure, introduced by

RM in their laboratory study of chirped wave packets,
defines a spectrally based initial wave steepness akc as

N Nc c1
2ak 5 a k 5 a (Ïk 1 Ïk ) , (5)O Oc n c n 1 Nc1 2 1 24n51 n51

where an and kn are the Fourier amplitudes (1 # n #
Nc) of their initially uniform spectral amplitude wave
packet, assuming a linear dispersion relation between
temporal and spatial variations. Rapp and Melville

showed that the energy loss associated with breaking
events was well correlated with this parameter.

For cases I and II, the differences in using these two
definitions are shown in Fig. 3a. The chirped wave (case
III) data from RM shows a threshold level of akc ;
0.25, yet the rms steepness threshold is typically only
0.055. Thus the critical value of akc for breaking not
only depends on the number of carrier waves, N, in the
group but also on the initial group structure, suggesting
its unsuitability as a threshold parameter for character-
izing the onset of wave breaking. We conclude that nei-
ther of these initial steepness measures provides a con-
sistent, robust indicator for breaking onset.

Finally, we point out that the perturbations imposed
on the initial wave group geometry were all in the ini-
tially unstable regime. It is of interest to note how the
recurrence/breaking margin for different N relate to the
theoretical loci of the most unstable initial sideband
perturbations (e.g., see Tulin and Waseda 1999, Fig. 1).
This comparison is shown on a plot of initial center
steepness versus relative bandwidth for case I wave
groups in Fig. 3b. This suggests a nonsimple relation-
ship between the initial sideband instability growth rate
and the ultimate onset of recurrence or breaking.

b. Evolution characteristics

The complex evolution characteristics for the wave
elevation and local energy density shown in Figs. 1–3
and related issues such as breaking onset, timing, and
strength are among many fascinating aspects of this
problem that motivated our present investigation into
whether these processes might be determined by an in-
trinsic ‘‘universal’’ threshold parameter. In an earlier
paper by the second author, BT, it was found that, if the
local mean wave energy density or wave action density
is used to characterize the evolution of these nonlinear
wave groups, the implicit averaging over even a single
carrier wavelength loses the spatial localization of the
energy maximum. To address this basic issue, BT adopt-
ed wave energy and momentum densities averaged lo-
cally over one-half of the carrier wavelength as the pri-
mary variables, as these variables and their rates of
change appeared to have reasonably well-localized max-
ima. A fundamental result reported by BT was that the
envelope maxima of these densities fluctuate on a ‘‘fast’’
timescale, about twice the carrier wave period. This is
linked to the well-known crest–trough asymmetry of
steep gravity waves and a close analog of this behavior
is shown in Fig. 5 below in the context of a more detailed
discussion on its origin. Banner and Tian also reported
that the corresponding relative growth rates following
their envelope maxima have a substantial dynamic
range. For a range of case I wave groups containing
different numbers of waves, they reported finding a
common threshold behavior for the maximum value of
either of these local relative growth rates that deter-
mined whether breaking subsequently occurred.
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FIG. 3. (a) The dependence on the number of waves N in the group
of the initial wave steepness at the margin between recurrence and
breaking for case I and II wave groups. (left) Based on the rms
steepness; (right) uses the initial steepness measure akc based on the
Fourier modes (see section 3a). The symbols are in the legend. (b)
Locus of maximally recurrent initial perturbations (solid-star curve)
plotted in the initial perturbation steepness-relative bandwidth plane,
in relation to the most unstable initial perturbation characteristics
(solid line) for case I wave groups. The dashed line is the classical
Benjamin–Feir stability boundary. Here the initial carrier wave steep-
ness (ak )0 5 a0k0, a0 is the initial carrier wave amplitude, k0 5 1, v0

5 , v6 5 , and 3 # N # 10.Ïgk Ï[(N 11)/N]gk0 0

c. BT revisited

The breaking onset criterion proposed by BT was
based on the behavior on the fast timescale described
above. This led to the conclusion that breaking onset
could be detected only within less than one-half of the
mean carrier wave period. We decided to revisit this
important issue, as well as related concerns such as pos-
sible sensitivity of the results to other initial wave group
geometries, to certain numerical approximations that
were made and to the temporal resolution of the BT
analysis. To address these goals, we developed an in-
trinsically more accurate numerical methodology based
on a ‘‘wave group following’’ (henceforth WGF) com-
putational approach that allowed us to calculate, with
minimal filtering and numerical approximation, the en-
tire ‘‘slow’’ evolution of the energetics of the wave
group, as well as the ‘‘fast’’ evolution.

This method underpinned our efforts to understand
at what point during the evolution the wave group is
destined to proceed irreversibly to break and its con-
nection with the mean energy convergence rate toward
the envelope maximum highlighted in Figs. 1 and 2. It
also allowed a detailed assessment of the BT method-
ology and conclusions, which is reported in appendix
A. From this assessment, we concluded that

1) while the half-wavelength average adopted by BT
had good localization properties for the envelope
maximum and its rate of change, our WGF analysis
revealed that this averaging masked the difference
between breaking and recurrent cases through a sub-
tle smearing of the behavior of the envelope maxi-
mum;

2) the envelope maximum migrates between the steep-
est crest to the steepest trough in a complex fashion,
implying that the BT assumption of a constant value
of the velocity cE of the energy envelope maximum
is not justified. Making this assumption can lead to
significant errors in calculating energy growth rates
following the envelope maximum using the Eulerian
expression ]/]t 1 cE]/]x. These difficulties are
avoided using our WGF approach.

These results convinced us that the complex details
are smoothed to such an extent even with half-wave-
length averaging that only a local quantity is able to
provide a clear resolution of the differences between
breaking and recurrence cases. Therefore in the present
paper, we focused on the behavior of the depth-inte-
grated local energy density at its maximum along the
wave group, as defined in the following section. Rather
than working in terms of the dimensional wave energy,
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we investigated the behavior of a dimensionless measure
of the mean maximum local energy density and its di-
mensionless growth rate, as defined in the following
section. This growth rate was then calculated system-
atically using a WGF technique that allowed us to in-
vestigate the entire growth cycle with no additional ap-
proximations and negligible filtering.

Aside from the intrinsically improved accuracy, the
present calculations extend significantly the scope of
those described by BT to the wider class of initial wave
group geometries, as described above. In addition, Ban-
ner and Song (2002, hereafter Part II) reports the results
of our investigation of the influence of wind forcing and
a typical background vertical shear current on the evo-
lution to breaking for many typical cases.

As described below, the behavior of our proposed
dimensionless growth rate parameter reveals a robust
common threshold for all routes to breaking for all the
deep water wave cases we have examined, providing an
earlier and more decisive indicator for the onset of
breaking than previous criteria. It also appears to reflect
the relative strength of breaking events.

d. Diagnostic growth rate parameter

Based on the preceding discussion on the WGF tech-
nique, we chose a local, nonhorizontally averaged mea-
sure of the wave energy at its maximum along the wave
group as the basis of a diagnostic parameter that could
distinguish between breaking and recurrence evolution.
We used the depth-integrated local wave energy density
E(x; t), given by the sum of kinetic and potential energy
contributions of the fluid particles along the vertical line
at x at time t:

h 1 1
2 2 2E(x; t) 5 r (u 1 y ) dy 1 r gh , (6)E w w2 2

2h

where u and y are the x and y velocity components, g
is gravitational acceleration, rw is the density of water,
h is the still water depth, and y 5 h(x, t) is the free
surface elevation.

Following BT, for these irrotational flows the interior
velocity field (u, y) was calculated from the boundary
values using Green’s theorem and then used to calculate
the local energy E(x; t) in (6) for cases I and II. For
case III, E could be obtained directly from the code
output. The behavior of E at specific times during the
evolution for each case was shown in Figs. 1 and 2.

In order to provide ‘‘global’’ criteria, we needed to
introduce suitable nondimensional parameters for E and
its growth rate following the energy maximum of the
wave group. We explored the possibility of using the
dimensionless relative local energy growth rate

1 DE
,

vE Dt

but found that this parameter did not provide a robust

indicator for resolving the onset of breaking or recur-
rence for the ensemble of cases we studied.

We investigated two other nondimensional parame-
ters based on E. One was E normalized by the mean
energy ^ET& of the wave group. For cases I and II, ^ET&
is conserved for unforced calculations or is easily cal-
culated at different stages of evolution when wind input
is added. The chirped wave packet (case III) presents
the only complication for this approach. While the total
packet energy is conserved during unforced evolution,
the spatial spreading is unbounded. This presents con-
ceptual difficulties in relation to providing a mean en-
ergy level for comparison with oceanic cases. Excluding
this case, ^ET& can provide a useful normalization.

Other suitable diagnostic parameters based only on
local wave train properties were the parameters s 5

k or s2 5 [E/(rwg)]k2. For these, the localÏE/(r g)w

wavenumber k was calculated systematically from the
x derivative of the unfolded phase function computed
from the Hilbert transform of the free-surface profile.
Following BT (section 2.3.4 and Fig. 6), suitable low-
pass filtering was applied using a bidirectional Butter-
worth filter determined by the requirement for a smooth
distribution of the local wavenumber along the wave
profile. Extensive testing indicated that even for extreme
waves just prior to breaking, the calculated wavenumber
after filtering was within 5% of the mean of the physical
wavenumbers determined from the wave profile by di-
rect measurement of successive crests, troughs, and
zero-crossings.

The diagnostic parameters s and s2 provide measures
of local wave steepness without the complication of
dealing with issues such as waveform asymmetry. At
the instantaneous location xmax of the maximum of s2

along the wave group, the corresponding value re-2smax

flects the square of the maximum local steepness of the
carrier waves. The choice of rather than smax cir-2smax

cumvented the need to investigate locally large values
of D smax/Dt, which occurred even for modest values of
smax due to intrinsic local unsteadiness in the evolution
of the extrema of smax and are clearly not related to the
onset of breaking or recurrence, for which the values
of smax need to be large as well. Use a diagnostic growth
rate based on D /Dt weights D smax/Dt by the mag-2smax

nitude of smax, thereby linking maxima of D smax/Dt with
the larger values of smax appropriate to breaking or re-
currence. Accordingly, we adopted m 5 as our pre-2smax

ferred diagnostic parameter and investigated its evolu-
tion. From this, we calculated the evolution of its local
average value ^m& and the corresponding dimensionless
growth rate

1 D
d 5 ^m&,

v Dtc

for the various cases, where vc is the initial mean carrier
wave frequency. The detailed methodology for com-
puting ^m& and d is described in appendix B.
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FIG. 4. Long-term evolution (a) of the parameter m(t) and its local
average ^m(t)& (heavy continuous line) for the marginal recurrence
case I with N 5 5 and s0 5 0.111. The lower panel shows the
corresponding nondimensional growth rate d(t). (b) As for (a) but for
the marginal breaking case I with N 5 5 and s0 5 0.112.

As was already seen in Figs. 1 and 2, nonlinear deep
water wave group modulation has an associated mean
convergence of energy toward the energy maximum.
These figures indicate that most of the change in m is
associated with wave energy density changes, with a
much smaller contribution arising from changes in k2.
On this basis, ^m& and d could be regarded as surrogate
parameters reflecting the resultant of this complex en-
ergy flux process. The results of this approach are de-
scribed in detail in the following section. We conclude
by noting that, for periodic boundary condition cases,
the alternative nondimensional parameter based on en-
ergy E/^ET& suggested above showed very similar prop-
erties for forecasting breaking onset and might be more
straightforward to measure in open ocean applications.

4. Scope of the present WGF calculations

a. Growth rate computations

We investigated the behavior of m(t), ^m(t)&, and d(t)
at each time step as the wave group evolved. For any
given time t during the evolution, from the local energy
E(x; t) and wavenumber k(x; t), we calculated m 5
s2(xmax; t) at the location xmax of the maximum of s2 and
hence determined its local average (see section 4b be-
low) and nondimensional local average growth rate d(t).
Further, we verified that, if we chose instead to track
this quantity either at the maximum of the wave en-
velope (calculated from the Hilbert transform of the free
surface) or at the maximum surface displacement
| h | max, the results for d(t) were virtually identical.

Typical evolution curves of m(t), ^m(t)&, and d(t) are
shown in Fig. 4 for case I wave groups just below and
above their recurrence threshold. It is seen that the re-
currence cases attain their greatest value of d(t) well
before m(t) reaches its recurrence maximum, where d(t)
5 0.

Also, in the evolution of m(t), a fast oscillation with
period 2T is seen to be superimposed on the longer term
evolution growth toward the recurrence maximum or
breaking onset. This is due to the strong crest/trough
asymmetry of steep nonlinear gravity waveforms shown
in the fast evolution sequence of Fig. 5. This figure
shows the strong contrast in E for the two times sepa-
rated by T when the crest and trough occupy the en-
velope maximum of m(x; t).

b. The mean growth rate

Based on the clear indication of mean convergence
of wave-coherent energy at the energy maximum of the
group seen in Figs. 1, 2, and 4, we propose that

1) it is the average growth rate d(t) that represents the
mean convergence rate of wave energy at the energy
maximum within the group;

2) this growth rate is a fundamental determinant of re-
currence or breaking;

3) the fast O(2T) oscillatory component of m(t) asso-
ciated with the kinematics of the asymmetric wave
profile is not the primary determinant of recurrence/
breaking.

To filter out the rapid fluctuations superimposed on
the longer-term trend, we used a method based on
smoothed spline fitting that was superior to conventional
filtering techniques in regard to managing the end ef-
fects at the onset of breaking. Details describing the
technique and its accuracy are given in appendix B, but
we note that the same ‘‘tolerance’’ parameter in the
smoothed spline fitting was used to calculate d(t) for all
wave group cases (I, II, and III) and that the results were
insensitive to the choice of this parameter ranging over
two orders of magnitude.
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FIG. 5. (a) The short-term evolution of the surface elevation profile for case I with N 5 5 and s0 5 0.112 for the interval t/T from 79.0
to 80.8 in increments of 0.2, with time increasing vertically downward in each panel. (left panels) Starting from t/T 5 79.0 and (right panels)
starting from t/T 5 80.0. (b) Corresponding spatial distributions of the diagnostic local wave steepness parameter s2 defined in section 3d
for the surface profiles and evolution times in Fig. 5a.

For completeness, examples of case II and case III
evolution are shown in Figs. 6 and 7. The greater initial
modulation depth of case II is seen to provide a more
rapid evolution to recurrence or breaking near the re-
currence threshold than the comparable case I results
shown in Fig. 4. This appears to be associated with its
stronger initial local energy distribution contrast within
the wave group. The case III evolution is seen to be
faster than cases I or II, underlying its popularity in
laboratory experiments (e.g., RM).

Systematic computations of m(t), ^m(t)&, and d(t) were
carried out for a range of N and initial steepness levels
for each of the three cases I, II, and III. Our aim was
to investigate

1) whether recurrence and breaking could be robustly
linked to a threshold behavior of d(t) and, if so, at
what stage of the evolution was the onset of breaking
determined;

2) whether the strength of breaking events could be
related to the magnitude of d(t) just preceding break-
ing onset. This inference was based on the concep-
tual link between d(t) and the mean convergence rate
(or accumulation rate) of energy at the energy max-

imum, and hence to the rate at which the breaking
crest needed to dissipate the accumulated energy in
excess of the maximum accumulation rate corre-
sponding to the recurrence limit.

5. Results

a. Existence of a common threshold for breaking

Figs. 4, 6, and 7 show typical long-term evolution
curves of m(t), ^m(t)&, and d(t) for each of the three
different initial group cases. They reveal distinctly dif-
ferent generic evolution curve behavior for the recur-
rence cases and similarly for the breaking cases.

For breaking cases, the diagnostic growth rate d(t)
increases continually until breaking occurs, while for
recurrence cases, d(t) initially increases, then ceases
growing at the peak of m(t), and then begins decreasing.
Our results show that this behavior does not depend
sensitively on the number of waves N in the group. Table
1 summarizes the key results of our long-term evolution
calculations for different wave group lengths N for the
three cases I, II, and III. These results include the time
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FIG. 6. As in Fig. 4 but for (a) the marginal recurrence case II for
N 5 5 and s0 5 0.069 and (b) the marginal breaking case II for N
5 5 and s0 5 0.070.

FIG. 7. As in Fig. 4 but for (a) the marginal recurrence case III
with piston amplitude parameter Ap 5 0.035 and (b) for the marginal
breaking case III with piston amplitude parameter Ap 5 0.036.

tth when d(t) attains the upper bound of the breaking
onset threshold range dth, as discussed in detail below;
the time of breaking onset tbr and the corresponding
growth rate d(tbr), or the time of the recurrence peak
(tmax) and the corresponding maximum growth rate
d(tgr,max).

It is interesting to note that the evolution time to
breaking differs markedly, both within each of the cases
I, II, and III for different N and between the various
cases for the same N. The evolution time correlates with
the initial degree of departure of the wave group struc-
ture from spatial uniformity and on the number of waves
in the group. Also, the growth rate evolution curves for
d(t) show varying degrees of smoothness, with case II
evolution curves typically showing more intrinsic var-
iability.

On the fundamental question of predicting the onset
of breaking or recurrence, reference to Table 1 shows

that the maximum growth rate dmax can clearly distin-
guish breaking from recurrence for any particular case.
For example, dmax 5 0.83 3 1023 for the maximally
recurrent case I wave group with N 5 5 and initial
steepness (ak)0 5 0.111 while for the comparable mar-
ginal breaking case with initial steepness (ak)0 5 0.112,
dmax 5 1.93 3 1023. However, from this table it is also
seen that dmax shows considerable variation among each
of the different cases investigated and hence does not
provide a unique breaking threshold. Despite consid-
erable effort, we were unable to find an alternative pa-
rameter that could provide a unique threshold.

Nevertheless, our results in Table 1 show that the
maximum value dmax of the growth rate d(t) can be used
as the basis of a common threshold parameter that clear-
ly distinguishes recurrence cases from breaking cases
and does not depend on the group structure or number
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TABLE 1. Summary of the maximum growth rates and key time scales from the numerical experiments for the three cases I, II, and III
with zero forcing: dmax is the maximum growth rate; tbr is the time of breaking onset; tth is the time when the growth rate d(t) reaches the
upper bound of the breaking threshold band dth 5 1.50 3 1023; tmax and tgr,max are the times of the recurrence peak and the corresponding
maximum growth rate; tlead 5 tbr 2 tth is the lead time between d(t) exceeding the breaking threshold dth and the time of breaking onset; s0

is the initial carrier wave steepness; Ap is proportional to the piston amplitude; N is the number of waves in the group; T is the carrier wave
period, R stands for recurrence, and B denotes breaking.

Cases N s0 Ap tth (or tgr,max) tor (or tmax) tlead dmax 3 103

I (R)
I (B)
I (R)
I (B)
I (R)

3
3
5
5
7

0.150
0.151
0.111
0.112
0.099

—
—
—
—
—

54.9T
54.2T
66.8T
80.3T
89.4T

57.5T
55.5T
82.7T
80.8T
96.7T

—
1.3T
—

0.5T
—

0.69
3.30
0.83
1.93
0.75

I (B)
I (R)
I (B)
I (R)
I (B)

7
8
8

10
10

0.100
0.095
0.096
0.088
0.089

—
—
—
—
—

94.3T
102.8T
101.2T
113T
126T

95T
105.8T
102T
126T
126.4T

0.7T
—

0.8T
—

0.4T

2.12
0.92
2.22
0.84
1.62

II (R)
II (B)
II (R)
II (B)
II (R)

3
3
5
5
8

0.079
0.080
0.069
0.070
0.058

—
—
—
—
—

21.4T
21.2T
30.9T
37.7T
62.9T

23.4T
23.5T
43.8T
40.2T
67.3T

—
2.3T
—

2.5T
—

1.23
1.60
0.99
2.81
0.96

II (B)
II (R)
II (B)

8
10
10

0.059
0.054
0.055

—
—
—

64.8T
83.1T
81.5T

67.6T
85.7T
82.4T

2.8T
—

0.9T

1.68
0.86
1.97

III (R)
III (B)
III (R)
III (B)

5
5
8
8

—
—
—
—

0.035
0.036
0.028
0.029

10.0T
16.6T
29.4T
26.9T

25.6T
18.9T
38T
31.3T

—
2.3T
—

4.4T

0.97
2.76
0.91
2.28

of waves N in the group or the type of initial wave
group structure. Based on the ensemble of results for
the three different classes of initial wave group geom-
etry (cases I, II, and III) in Table 1, we propose that a
common growth threshold dth for breaking can be taken
within the range 1.30 3 1023 to 1.50 3 1023. Breaking
is seen to occur whenever d(t) exceeds dth , while the
maximum values of d(t) for all of the recurrence cases
remains below dth. This key aspect of our findings is
summarized graphically in Fig. 8.

b. Time between exceeding threshold and breaking
onset

Foreshadowing the results of Part II, it is found that
the same proposed threshold range for dth is valid in the
presence of wind forcing and a background shear cur-
rent. Further, supplementary results on the influence of
intermediate water depth on breaking onset, to be re-
ported elsewhere, indicate that choosing dth at the upper
boundary 1.50 3 1023 also embraces unforced inter-
mediate water depth propagation in mean water depths
of up to at least one-third of the mean wavelength. On
this basis, we decided to use dth 5 1.50 3 1023 as the
reference level for assessing other properties of interest,
such as the lead time between exceeding the threshold
and breaking onset, noting that this choice provides the
most conservative estimate of the lead time tlead.

It is evident from Table 1 that each case has a different
time interval tlead between when the nominal threshold

dth 5 1.50 3 1023 is exceeded and the actual onset of
breaking. Some cases break within a short time, com-
parable to half the carrier wave period, while other cases
break only after more than four carrier wave periods
have elapsed. To our knowledge, this is the first sys-
tematic assessment of the lead time to breaking.

c. Breaking strength

It is observed that individual waves break with vary-
ing intensities, often characterized from ‘‘spilling’’ to
‘‘plunging,’’ yet there is presently little quantitative un-
derstanding of what controls this observed variation in
breaking strength. Rapp and Melville investigated this
question observationally in their extensive laboratory
study of chirped wave packets, quantifying the relative
or energy loss as the change in wave energy density
(energy per unit width of the flow for 2D waves) before
and after breaking, normalized by the energy density
prior to breaking. They explored how this parameter
varied as a function of their initial wave steepness pa-
rameter akc for different wave packet geometries, such
as relative bandwidth and distance to breaking. They
found that their breaking intensity, for conditions rang-
ing from incipient to plunging breaking waves, corre-
lated strongly with the initial wave steepness parameter
akc. The trend of their results is shown in Fig. 9.

For comparison, Fig. 10 shows our computed evo-
lution curves for ^m(t)& and the derived dependence on
akc of dmax for case III wave groups with N 5 5, for
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FIG. 8. Summary of all results for the maximum nondimensional growth rate dmax for case I,
II, and III wave groups as a function of the number of waves N in the wave group. The marginal
recurrence and marginal breaking results are shown, respectively, with open and dark symbols
and the legend identifies the cases. The proposed breaking onset threshold dth for deep water
waves lies within the shaded band.

initial steepness levels for marginal recurrence and a
number of breaking cases with progressively larger akc.
While this approach is unable in principle to provide
absolute levels of energy loss fraction, we see its value
as potentially supporting our viewpoint that it is the
mean energy convergence rate to the group maximum
that underlies the onset and strength of breaking. Indeed,
the favorable correspondence with the observational re-
sults in Fig. 9 both with respect to the general shape
and threshold initial steepness provide encouraging ini-
tial support for our proposed association of breaking
strength with dmax preceding breaking onset.

For comparison, Figs. 11 and 12 show the trend of
the calculated results similar to Fig. 10, but for case I
and II wave groups with N 5 5. The overall trends are
not dissimilar, but the marginal breaking steepness akc

thresholds are significantly reduced while the levels of
dmax are very similar. These differences warrant further
observational investigation, especially as it has not been
established whether chirped wave studies are represen-
tative of ocean wave breaking.

Table 2 summarizes the maximum growth rate esti-
mates and associated parameters of interest for cases I,
II, and III for a range of N values. In all cases, dmax is
found to increase with initial wave steepness while the
corresponding breaking time tbr decreases rapidly. In
addition, from the data for case I, the trend of dmax with

akc is shown in Fig. 13 and suggests an appreciable
dependence of predicted breaking strength on the num-
ber of waves N in the group. Results for case II seen
in Fig. 14 show a similar dependence, but for a more
limited range of N. This potentially interesting influence
of group size on predicted breaking strength could be
investigated in future observational studies.

6. Conclusions

Determining whether breaking will occur within a
two-dimensional nonlinear modulating wave group
evolving in deep water has been investigated in nu-
merical experiments in terms of the behavior of a di-
agnostic dimensionless growth rate associated with the
energy maximum of the wave group. Two different fully
nonlinear, two-dimensional inviscid free surface codes
were used in our computations and many initial wave
group structures were analyzed. In this paper we intro-
duced the conceptual framework and investigated con-
servative (unforced) nonlinear wave group evolution. In
Part II, we report on the additional influences of wind
forcing and a background shear current on the evolution
to breaking of the wave group.

The major conclusions of the present study are then
as follows:
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FIG. 9. Observed loss of excess momentum flux against akc for
(top) five packet bandwidths and (bottom) three center packet fre-
quencies. Incipient breaking, spilling, and plunging breaking events
are marked I, S, P, respectively. After Rapp and Melville (1990).

FIG. 11. As in Fig. 10 but for case I with N 5 5. (top) The numbers
on the curves in the upper panel correspond to different initial steep-
ness values s0 as follows: 1 (s0 5 0.111), 2 (s0 5 0.1125), 3 (s0 5
0.12), 4 (s0 5 0.14), 5 (s0 5 0.16), 6 (s0 5 0.18), and 7 (s0 5 0.20).

FIG. 10. Mean evolution of the local average nondimensional pa-
rameter ^m(t)& and the associated maximum growth rate dmax for break-
ing cases of different initial steepness for case III with N 5 5. (top)
The numbers on the curves correspond to different values of the initial
piston amplitude parameter Ap as follows: 1 (Ap 5 0.035), 2 (Ap 5
0.036), 3 (Ap 5 0.038), 4 (Ap 5 0.040), 5 (Ap 5 0.042), 6 (Ap 5
0.044).

FIG. 12. As in Fig. 10 but for case II with N 5 5. The numbers
on the curves in the upper panel correspond to different initial steep-
ness values s0 as follows: 1 (s0 5 0.069), 2 (s0 5 0.07), 3 (s0 5
0.08), 4 (s0 5 0.09), and 5 (s0 5 0.10).

1) Both for breaking and recurrence, the local energy
and its growth rate following the wave group max-
imum evolves in a complex fashion, with a fast os-
cillation superimposed on a longer term mean trend.
We propose that it is the longer term trend, which
reflects a systematic mean energy convergence to-
ward (or away from) the maximum energy region
within the wave group, that determines the ultimate
breaking or recurrence behavior. The fast oscillation,
due to the strong crest/trough asymmetry of the car-
rier waves, is believed to be primarily a kinematic
effect.

2) Our calculations indicate that breaking or recurrence
may be determined by a common threshold dth in the
range (1.30 3 1023, 1.50 3 1023) for the nondi-
mensional growth rate d(t) of the proposed diag-
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TABLE 2. Maximum growth rates and key time scales for selected breaking case I, II, and III wave groups for different initial steepness
s0 and different N. Symbols in this table have the same meanings as in Table 1.

Cases N Ap s0 tth tbr td dmax 3 103

I (B)
I (B)
I (B)
I (B)

3
3
3
3

—
—
—
—

0.151
0.160
0.180
0.200

54.2
32.2T
20.0T
12.6T

55.5T
34.7T
24.3T
16.2T

0.7T
2.5T
4.3T
3.6T

3.3049
6.18
7.85
8.75

I (B)
I (B)
I (B)
I (B)
I (B)

5
5
5
5
5

—
—
—
—
—

0.112
0.120
0.140
0.160
0.180

80.3T
56.1T
36.5T
27.1T
20.2T

80.8T
60.5T
40.4T
30.6T
24.6T

0.5T
4.4T
3.9T
3.5T
4.4T

1.93
3.27
5.31
6.75
7.16

I (B)
II (B)
II (B)
II (B)
II (B)

5
5
5
5
5

—
—
—
—
—

0.200
0.070
0.080
0.090
0.100

19.2T
37.7T
23.7T
13.6T
11.1T

15.9T
40.2T
26.7T
19.2T
14.1T

4.7T
2.5T
3.0T
5.6T
3.0T

9.49
2.80
5.61
6.80
7.00

III (B)
III (B)
III (B)
III (B)
III (B)

5
5
5
5
5

0.036
0.038
0.040
0.042
0.044

—
—
—
—
—

16.6T
10.8T

9.2T
7.8T
5.8T

18.9T
14.5T
12.3T
10.4T

8.4T

2.3T
3.7T
3.1T
2.6T
2.6T

2.75
5.27
7.35
7.55
7.79

I (B)
I (B)
I (B)
I (B)
I (B)

7
7
7
7
7

—
—
—
—
—

0.100
0.110
0.130
0.150
0.170

94.3T
68.1T
47.3T
36.1T
28.1T

95T
70.8T
50.9T
39.4T
31.6T

0.6T
2.7T
3.6T
3.3T
3.5T

2.12
6.76
8.51

11.57
11.65

I (B)
II (B)
II (B)
II (B)
II (B)

7
7
7
7
7

—
—
—
—
—

0.190
0.062
0.070
0.080
0.090

22.7T
57.1T
37.4T
28.0T
19.1T

26.2T
60.3T
41.3T
31.6T
24.1T

3.5T
3.2T
3.9T
3.6T
5.0T

12.36
1.73
4.98
6.54
7.97

II (B)
II (B)

7
7

—
—

0.100
0.110

16.0T
12.2T

18.8T
15.6T

2.8T
3.4T

8.65
9.51

I (B)
I (B)
I (B)
I (B)
I (B)

10
10
10
10
10

—
—
—
—
—

0.088
0.100
0.110
0.130
0.150

118.5T
91.3T
75.4T
56.8T
45.8T

119.5T
94.3T
80.4T
60.9T
49.4T

1.0T
3.0T
5.0T
4.1T
3.6T

1.96
8.30
9.14

10.93
13.61

I (B)
I (B)

10
10

—
—

0.170
0.190

36.8T
30.8T

40.2T
34.5T

3.4T
3.7T

14.65
16.74

nostic parameter ^m(t)&, independent of the initial
group structure. For the various cases investigated,
recurrence always occurred when the maximum val-
ue of d(t) attained a peak value below this threshold
level, after which it decreased. This is in contrast
with all breaking cases we investigated, where d(t)
continued to increase after it reached this threshold
level, after which breaking always occurred subse-
quently within a time interval ranging from a fraction
to several carrier wave periods.

Foreshadowing the results of Part II, the same
breaking threshold range for dth is found to be ap-
plicable to all cases of wind forcing, vertical shear
wind-driven and combinations of these cases that we
investigated. Further, choosing dth at the upper bound
1.50 3 1023 allows the inclusion of flat bottom cases
for mean water depths at least as shallow as one-
third of the mean wavelength.

3) We propose that the strength of breaking events is
related to the mean rate of convergence of energy at

the group maximum immediately preceding breaking
onset and is reflected by the corresponding value of
d(t) at t 5 tbreak. The trend of our calculations of
d(tbreak) for periodic nonlinear wave groups shows an
encouraging close qualitative correspondence with
laboratory measurements of the fractional mean en-
ergy loss associated with breaking waves for in-
creasing initial group steepness.

4) The new insight into the breaking process provided
by these numerical experiments warrants a detailed
observational investigation to establish the validity
of the proposed threshold and indicative breaking
strength properties of the diagnostic parameter d(t).
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FIG. 13. Maximum nondimensional growth rates dmax for breaking case I wave groups as a
function of initial wave steepness for different numbers of waves in the group for N 5 3, 5, 7,
and 10. The symbols corresponding to the different N are identified in the legend.

FIG. 14. Maximum nondimensional growth rates dmax for breaking case II wave groups as a
function of initial wave steepness for different numbers of waves in the group for N 5 5 and
7. The symbols corresponding to the different N are identified in the legend.
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FIG. A2. The surface profile h(t), surface envelope r(t), and half-
wavelength averaged energy Ê1/2 for the case I wave group with N
5 5, s0 5 0.12 at t/T 5 60 (dashed line), 60.2 (dash–dotted line),
and 60.4 (solid line). For these times, the crest is at the envelope
maximum.

FIG. A1. Propagation speeds of (top) the surface envelope maxi-
mum cse and (bottom) the half-wavelength averaged energy c forÊ1/2

the case I wave group with N 5 5, s0 5 0.12 during the time interval
t/T 5 58.5–60.5.

APPENDIX A

Refinement of the BT98 Calculations

In the course of our investigation, we reviewed certain
key aspects of the BT analysis. The following findings
led to the refinements that were central to the present
study.

A number of approximations were made by BT in
calculating the nondimensional relative growth rate pa-
rameters for Ê1/2 and M̂1/2 following the wave envelope
maximum. In particular, BT estimated these growth rates
through the Eulerian operator

ˆ ˆ ˆDE ]E ]E1/2 1/2 1/25 1 c ,Ê1/2Dt ]t ]x

discussing in some detail the potential sources of error
in this approach. After implementing our more direct
WGF method, we noted the following:

1) BT found that c ; 0.75 at selected times duringÊ1/2

the evolution and adopted this as a constant for all
times. We found that within a cycle of O(2T), cÊ1/2

actually varied quite markedly and we were con-
cerned that the assumption of constant c may haveÊ1/2

led to errors in their calculations of the growth rate
(t).maxbÊ1/2

2) BT needed to use smoothing (postfiltering) in their
calculations. We were concerned about the overall
influence of this filtering although BT reported that
their results were not sensitive to the choice of filter
properties.

3) We noted a minor coding error that caused Ê1/2 to
be underestimated by several percent, although this
may have only had a secondary effect on the results
since this term appears in normalized form in the
growth rate.

We undertook a systematic investigation to assess the
impact of these potential sources of error. After cor-
recting the coding error in the BT calculation of the
local wave energy (and momentum density), we inves-
tigated the errors caused by filtering and the assumption
that c had a fixed value of 0.75. We recalculated theÊ1/2

relative growth rate of (t) as defined in BT by ourmaxbÊ1/2

more accurate explicit WGF technique. These calcula-
tions showed that the maximum of (t) for the mar-maxbÊ1/2

ginal breaking case is just a little larger than for the
marginal recurrence, without an obvious threshold sep-
arating these cases. This agrees with BT, but we could
not reproduce the subsequent near-constant positive
growth rate reported by BT after the threshold was
reached. Our assessment of the likely source of error
follows below.

Although c is close to the surface envelope velocityÊ1/2

cse 5 0.5 for linear wave groups, our detailed WGF
calculations revealed that both c and cse could not beÊ1/2

taken as a constant. Rather, they both have rapid fluc-
tuations due to the highly asymmetric carrier wave pro-
files that characterize the evolution of nonlinear wave
groups. Figure A1 shows the fluctuations of cse and
c for case I with N 5 5 and (ak)0 5 0.12 during theÊ1/2

time interval (58.5, 60.5). The largest values (near the
phase speed c 5 1) was found both for cse and c ,Ê1/2

when the much sharper and higher crest occupies the
envelope maximum, as seen in Fig. A2. The smallest
values (sometimes less than zero) occur both for cse and
c when the trough is at the envelope maximum, asÊ1/2

seen in Fig. A3.
To minimize the errors arising from the assumption

that c has a constant value of 0.75 and from filtering,Ê1/2

we recalculated the relative growth rate of (t) de-maxbÊ1/2

fined in BT by using the following simple WGF deriv-
ative
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FIG. A3. As for Fig. A2 but at times t/T 5 59.3 (dashed line), 59.5
(dash–dotted line), and 59.7 (solid line) when the trough is at the
envelope maximum.

FIG. B1. The open circles joined by solid lines show the results of
the cubic smooth spline fit to the local maxima and minima of m(t)
and the thick solid line shows ^m(t)&, the average of these two smooth
spline curves. (a) Marginal recurrence case I wave group with N 5
5 and s0 5 0.111. (b) Marginal breaking case I wave group with N
5 5 and s0 5 0.112.

max maxˆ ˆE (t 1 Dt) 2 E (t 2 Dt)1/2 1/2maxb 5 ,Ê max1/2 ˆ2vDE (t)1/2

where (t) is Ê1/2 evaluated at the envelope maximummaxÊ1/2

at time t. This intrinsically more accurate approach high-
lighted the absence of any obvious threshold apparent
between the marginal recurrence and the marginal
breaking cases. Moreover, it motivated our present focus
on m(t) and on the longer term evolution ^m(t)& as the
correct physical basis for breaking onset.

APPENDIX B

Calculations of ^m(t)& and dmax

The local average of m(t), denoted ^m(t)&, was cal-
culated using standard MATLAB software. A few meth-
ods were tested to find a robust method for evaluating
the mean (or the trend) using various analytical test
signals and the calculated data. Serious difficulties can
occur near the ends where the data have large oscilla-
tions when using polynomial fitting, bidirectional fil-
tering with standard Butterworth or Chebyshev filters,
or wavelet analysis methods. To reduce the end effects
as far as possible, the method used in this paper was to

1) detect the local maximum points and minimum
points of m(t);

2) fit cubic smoothing splines to the respective sets of
detected maximum and minimum points over the
whole time interval. For these calculations, we used
the MATLAB routine ‘‘spaps.m’’ with a tolerance
TOL 5 1027 and uniform weights W 5 1/Nr, where
Nr is the total number of points in the ensemble.
TOL could be varied between 1026 and 1028 with
no significant change to the results;

3) obtain the local average ^m(t)& as the average of the
smooth-splined maximum and minimum curves.

A typical example is illustrated in Fig. B1, which shows
m(t) and the corresponding ^m(t)& for maximally recur-
rent and marginal breaking case I wave groups with N
5 5.

The diagnostic growth rate function d(t) was routinely
calculated by differentiating ^m(t)& using centered dif-
ferences, with backward differences for the last time
step. The maximum value dmax was detected using the
MATLAB library routine max. For breaking cases, the
occurrence of dmax at the endpoint of the growth curve
for ^m(t)& required special attention. The calculation of
dmax depends on the numerically challenging task of
determining a derivative at the endpoint of an interval
of a heavily smoothed oscillatory function. Issues such
as the spatial resolution of the surface and the temporal
resolution of the time-stepping each had an effect on
the endpoint of the calculation just prior to breaking
and hence on the value of dmax. These effects were of
secondary importance in relation to our primary goal
of determining a breaking onset criterion, but need to
be noted in relation to the proposed link between dmax

and breaking intensity.
The results presented were based on standard time

steps of 0.1T for cases I and II, and 0.05T for case III
used in our calculations of m(t), ^m(t)&, and the average
growth rate d(t). For recurrence cases, the influence of
a smaller time step or higher spatial resolution on the
calculations was negligible. However, for breaking cas-
es, using a smaller time step can allow the evolution of
the wave group to proceed marginally further before
breaking onset and these additional values of m(t) can
have a small influence on ^m(t)& and, hence, affect the
value of dmax at breaking onset. We explored the effect
of increasing the spatial resolution and found that in-
creasing spatial resolution had little impact on our cal-
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culated values of dmax at breaking onset. We also rou-
tinely examined visually the wave profile and local en-
ergy for the last time step prior to breaking onset to
check for smoothness. In only very few cases was there
evidence of nonsmoothness, in which case we discarded
this point.

Overall, with smaller time steps of 0.01T we found
typical increases of O(25%) for dmax at breaking onset
and that the absolute level of dmax at breaking onset can
only increase. On this basis we concluded that our stan-
dard resolution results are on the conservative side in
supporting our proposed breaking onset criterion. In re-
gard to the proposed link between dmax at breaking onset
and breaking strength, the effect of increased resolution
would preserve the overall trend of our results but re-
scale the ordinate by O(25%). Since the comparison we
make is qualitative, this has no significant impact on
our conclusion. In any event, with the potential sensi-
tivity of these results to the method used to filter m(t)
to obtain ^m(t)&, it is essential that these numerical re-
sults be investigated through careful measurements.
Such a companion observational laboratory program is
presently in progress.
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