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ABSTRACT

To calculate the effects of turbulent relaxation on oscillatory turbulent boundary layers, a viscoelastic term
is added to an eddy viscosity model. The viscoelastic term parameterizes the lag of turbulent properties in
response to imposed oscillatory shear and is proportional to the ratio between the timescales of eddy dissipation
and of the oscillating flow. It is found that the turbulent relaxation plays an important role in the phase variations
of velocity and shear stress with elevation, and that it decreases the friction factor and the phase lead of bed
shear stress over free stream velocity.

To assess the effects of turbulent diffusion in this problem, the viscoelastic model is extended by further
introducing a turbulent diffusion term in the model. The comparisons between these two models indicate that
turbulent diffusion significantly reduces the magnitudes of shear stress and velocity perturbation in the outer
region of the boundary layer. It is also found that the effects of turbulent relaxation and diffusion increase with
increasing relative roughness. As a result, the analytical solutions demonstrate an overall improvement over the
eddy viscosity model in predicting the observed temporal evolution of velocity and shear stress profiles; this
improvement is more distinct for rough beds than smooth beds.

1. Introduction

Shallow water waves and tidal flows generate an os-
cillatory boundary layer at the ocean bottom that is often
very thin compared to the water depth. This problem is
significant to our understanding of coastal processes
such as wave energy dissipation (cf. Weber 1991; Tol-
man 1994; Young and Gorman 1995; Agrawal et al.
1992), sediment transport, and suspension (Nielsen
1992; Fredsoe and Deigaard 1992). Quantitative eval-
uation of velocity fields, shear stress, drag force, and
mass transport within the layer depends on the Reynolds
closure models used in solving the Reynolds-averaged
Navier–Stokes equation (see Sleath 1990 for review and
Grant and Madsen 1986 for background knowledge).
Among these models, only the relatively primitive eddy
viscosity models have yielded analytical solutions (Ka-
jiura 1968; Johns 1969; Grant 1977; Smith 1977; Brevik
1981; Myrhaug 1982; Lavelle and Mofjeld 1983; Trow-
bridge and Madsen 1984; Davies 1986; Madsen and
Wikramanayake 1991). In fact, the analytical tractability
and comparative simplicity of eddy viscosity models
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have resulted in their prominence and widespread ap-
plication.

Nonetheless, these models neglect turbulent relaxa-
tion or vertical diffusion effects; therefore, none of them
allow the phase of the eddy viscosity to change with
height above the bed (cf. Davies 1986). These effects
are included in the second-order turbulent closure mod-
els (cf. Sleath 1990; Fredsoe and Deigaard 1992) and
their solutions, however, have to be evaluated numeri-
cally; therefore, they are hard to interpret and far less
accessible than their analytical counterparts. As a com-
promise between these two types of model, we approach
this problem differently by using a viscoelastic model
that includes the most important aspects of the second-
order closure models, yet is simple enough to yield an-
alytical solutions in a closed form. The reader should
refer to Speziale (1991) for a review on Reynolds-stress
closures in steady turbulent flow and Hanjalic (1994)
and Brereton and Mankbadi (1995) for a review of the
treatment of unsteady turbulent flow.

Measurements of suspended sediment in tidal flows
indicate a lag in concentration behind the free stream
velocity and the bed shear stress (cf. Davies 1977; Dyer
1986). It is also observed that, at any level, the sus-
pended sediment concentration is higher within a de-
celerating current than that within an accelerating cur-
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rent. During their measurements of sediment suspension
under wave groups, Hay and Bowen (1994) noticed a
lag between the sediment concentration and wave group
envelope that increases with the distance from the bed.
From their measurements of bottom turbulent layers in-
duced by tidal flows, both Gordon (1974) and McLean
(1983) found that shear stress and turbulent kinetic en-
ergy are larger during the decelerating phase of the flow
than those during the accelerating phase. The hysteresis
of sediment concentration is a consequence of the hys-
teresis of shear stress and turbulent kinetic energy com-
bined with the nonzero fall velocity of the sediment. It
has also been found that, away from the bottom, shear
stress lags the free stream velocity and that maximum
bedload sediment transport occurs before the maximum
free stream velocity and shear stress aloft (cf. Lavelle
and Mofjeld 1983).

These field measurements suggest that the phase lead
of shear stress over free stream velocity decreases from
a positive value at the bed to a negative value away
from the bed. In laboratory studies of oscillating flow,
Sleath (1987) observed a 1808 phase shift in shear stress
between the bed and a certain height above. He sug-
gested that it is caused by the jets of fluid associated
with vortex formation and ejection in oscillatory flow
over rough beds. It is obvious that such a proposal does
not apply to the wave boundary layer over smooth beds
where a similar phenomenon was observed by Jensen
et al. (1989). In contrast, from the comparison of the
present viscoelastic model with observations, we draw
the conclusion that eddy relaxation is the mechanism
behind this behavior.

The theoretical studies of oscillatory turbulent bound-
ary layer prior to the 1980s were prevailed by the time-
invariant eddy viscosity models of different forms. They
were proposed initially by analogy with the steady tur-
bulent flow. Experimental studies of oscillatory turbu-
lent flow have been mostly mean (ensemble average)
flow measurements (cf. Jonsson and Carlsen 1976; Van
Doorn 1982). As a result, few theoretical studies of this
problem are able to justify their predictions of Reynolds
stresses by comparison with direct measurements.
Sleath’s (1987) and Jensen et al.’s (1989) measurements
complement each other and provide a comprehensive
dataset of turbulence properties in addition to the mean
flow.

From his analysis of Jonsson and Carlsen’s (1976)
experiment, Nielsen (1985) observed a phase shift be-
tween shear stress and velocity gradient that varies with
height above the bed. He suggested that either a time-
variant real eddy viscosity or a complex eddy viscosity
be adapted to explain such behavior. Meanwhile, he
pointed out the lack of a theoretical basis for the com-
plex eddy viscosity. As shown later in this presentation,
introducing a turbulent relaxation term to the conven-
tional eddy viscosity model leads to a complex eddy
viscosity and results in an improved prediction of the

observed velocity profiles of Jonsson and Carlsen
(1976) and others.

Different from their predecessors, each of Lavelle and
Mofjeld (1983), Trowbridge and Madsen (1984), Davies
(1986), and Madsen and Wikramanayake (1991) pos-
tulated a time-varying eddy viscosity in their study of
the wave turbulent boundary. Nevertheless, these mod-
els all assume that the time-dependent part of eddy vis-
cosity has the same vertical structure as the steady part,
therefore, the phase of eddy viscosity does not vary with
height above the bed. This assumption, which contra-
dicts the existing observations and the numerical results
provided by the second-order turbulent closure models,
is avoided in the present investigation of this problem.

It takes time for the turbulent properties, represented
by Reynolds stresses, to relax to attain a new equilib-
rium state set by a new mean velocity strain at each
instant. The lag depends on the ratio between the time
scales of eddy relaxation and of the oscillating shear
flow, and therefore varies with height. This relaxation
aspect of turbulent flow is not adequately described by
any of the eddy viscosity models listed above.

Adding a viscoelastic term to an eddy viscosity mod-
el, we obtain the following equation that is analogous
to Maxwell’s equation for non-Newtonian flow (cf. Zou
1995, 1998); that is,

Dt
T 1 t 5 t [ n (u 1 w ), (1.1)e 0 0 z xDt

where t is the shear stress, t0 is the corresponding shear
stress in the eddy viscosity model with a Boussinesq
viscosity n0, Te 5 le/(a1u*) is the eddy relaxation time,
t0 5 is the peak shear stress at the bed, u* is the2u*
friction velocity, le 5 kz is the eddy mixing length, k
is von Kármán’s constant, a1 5 2^u9w9&/q2 is the ratio
between shear stress 2^u9w9&, turbulent energy q2 and
its empirical value for steady flow is a1 5 O(k2) (cf.
Townsend 1976; Bradshaw et al. 1967), and the sub-
scripts x and z signify partial differentiation hereinafter.
Viscoelastic model (1.1) could be derived from Town-
send’s turbulent energy equation for steady turbulent
flow by neglecting the vertical diffusion term (cf. ap-
pendix A of Zou 1998). Following many previous in-
vestigators of this problem, we will apply it directly to
the oscillatory turbulent flow in this problem.

We assume the near-bottom orbital velocity induced
by a progressive wave or tidal flow of the form

u 5 av exp(ivt 2 ikx) 1 c.c.,` (1.2)

where a is the excursion amplitude of the orbital motion,
v is the radian frequency, k is the wavenumber, and c.c.
is the complex conjugate of the preceding variable and
will be omitted hereinafter. The convective term in (1.1)
is O(ka), therefore negligible for a small wave slope,
the associated shear stress t has the same (x, t) depen-
dence as the near-bottom orbital velocity (1.2) and (1.1)
reduces to a complex effective eddy viscosity
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n0n 5 , (1.3)
1 1 ia(z/l)

where a 5 k2/a1 is taken as the weight coefficient of
eddy relaxation and l 5 ku*/v is equivalent to the wave
boundary layer thickness proposed by previous inves-
tigators. In contrast to the eddy viscosity model n 5 n0

[ ku*z, both amplitude and phase of the eddy viscosity
(1.3) depend on the oscillatory frequency. The phase of
the effective eddy viscosity (1.3), Fn 5 2arctan(az/l),
decreases from zero at the bed to about 2908 at the top
of wave boundary layer z/l → `, where the shear stress
and velocity strain are in quadrature. In the case of a
5 0, namely in the absence of eddy relaxation, the clo-
sure model (1.3) reduces to the eddy viscosity model,
n 5 n0 [ ku*z. The former approaches the later as-
ymptotically in the region z K l where eddies attain a
local equilibrium with the ambient mean flow.

As demonstrated later, it is necessary to further in-
clude turbulent diffusion in (1.1) to accurately predict
the observed rapid decay of shear stress and velocity
defect in the outer region of the boundary layer. As-
suming the vertical diffusion of turbulent energy is pro-
portional to its gradient with a diffusivity n0 5 ku*z,
we have (cf. Townsend 1972; Zou’s 1998 appendix A)

Dt
T 1 t 5 n (u 1 w ) 1 T (n t ) . (1.4)e 0 z x e 0 z zDt

Similar to the second-order closure models, the visco-
elastic–diffusion model (1.4) represents the turbulent
energy balance due to production, dissipation, relaxa-
tion, and vertical diffusion. Unlike these models, (1.4)
can be solved analytically. Furthermore, most previous
eddy viscosity models involve a discontinuity in eddy
viscosity or its gradient and a preassumption of match-
ing height between adjacent layers. As shown later, by
avoiding these physically unrealistic assumptions, (1.4)
results in improved predictions of observed velocity and
shear stress profiles within the wave bottom boundary
layers.

Although eddy relaxation effects in oscillatory tur-
bulent flow have been recognized by some investigators
(Lavelle and Mofjeld 1983; Trowbridge and Madsen
1984; Nielsen 1992, etc.), their quantitative evaluation
has not been the focus of previous analysis. Our objec-
tive is to apply the viscoelastic closure model (1.1) to
the Reynolds-averaged Navier–Stokes equation and cal-
culate the effects of eddy relaxation on oscillatory tur-
bulent flow. Further comparison between the viscoelas-
tic–diffusion model (1.4), the viscoelastic model (1.1)
and observations allows us to examine the role of tur-
bulent vertical diffusion in this problem. In section 2,
we give a detailed discussion of these two models, sub-
stitute them into the Reynolds-averaged Navier–Stokes
equation, and derive their analytical solutions. The the-
oretical and experimental results are compared in sec-
tion 3. Finally, in section 4, the major findings of this
study are summarized and discussed.

2. Governing equations and their solutions

We consider here the wave turbulent boundary layer
generated by a progressive wave over a flat seabed. We
assume that the associated turbulent flow is neutrally
stable and fully developed. The x and z components of
the Reynolds-averaged Navier–Stokes equations are

Du p
25 2 2 ^u9 & 2 ^u9w9& , (2.1a)x z7 8Dt r x

Dw p
25 2 2 ^w9 & 2 ^u9w9& , (2.1b)z x7 8Dt r z

where x is positive in the direction of wave propagation,
z is positive upward with z 5 0 at the bed, u [ ^u& and
w [ ^w& are the mean velocity components, p is the
mean pressure, r is the density, u9 and w9 are randomly
fluctuating velocities in the x and z directions, and angle
brackets imply a phase average. The order of magnitude
estimation of (2.1b) and the mass conservation equation

u 1 w 5 0x z (2.2)

show that the vertical pressure gradient is O[(kl)2],
hence

p p Dub `2 25 1 O[(kl) ] 5 1 O[(kl) ], (2.3)7 8 7 8r r Dtx x

where the subscript ` denotes the variable in the po-
tential flow just outside of the boundary layer and here-
inafter. Substituting (2.3) into (2.1a) and omitting terms
of O(ka) and O(kl), we have

]u ]u`5 1 t . (2.4)z]t ]t

a. The viscoelastic model

Nondimensionalized by scalings

u 2 u t u u` `, , ,
25 6u* u* u* u*

5 {u , t , u , u} exp(ivt 2 ikx), (2.5a,b,c)d `

and combined with (1.3), the momentum equation (2.4)
becomes

dt
5 iku , (2.6a)ddz

where

kz dudt 5 (2.6b)
1 1 iaz dz

and z 5 z/l is the stretched coordinate.
The boundary conditions follow from the no-slip con-

dition at the bottom and the continuity of velocity at
the top of the boundary layer; that is,
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2u at z → z (2.7a)` 0
u 5d 50 at z → `, (2.7b)

where z0 5 z0/l, z0 is a roughness length determined by
the geometry of the roughness elements on the seabed,
along with the flow condition.

Combination of (2.6a) and (2.6b) gives

2z d t
5 it . (2.8)

21 1 iaz dz

By introducing a new independent variable

ẑ 5 2ibz, (2.9)

where

b 5 Ïa, (2.10)

we reduce (2.8) to Whittaker’s equation [cf. Olver
(1974); Abramowitz and Stegun, sec13.1.31],

1 1
t 1 2 2 t 5 0. (2.11)ˆˆzz [ ]4 2bẑ

The solution to (2.11) that vanishes at | ẑ | → ` is

1 1
t 5 C exp 2 ẑ ẑU 1 1 , 2, ẑ , (2.12)1 2 1 22 2b

where U is the confluent hypergeometric function and
the constant coefficient C is determined by the no-slip
boundary condition at the bed, (2.7a) in combination
with (2.6a); that is,

1
u 5 t 5 2u as z → z . (2.13)d z ` 0ik

Differentiating (2.12) about z and combining with (2.13)
and (2.9) gives

F(b, z)
u 5 u 1 2 , (2.14a)` [ ]F(b, z )0

where the function F(b, z ) is related to the confluent
hypergeometric function U by

1
F(b, z) 5 exp(2ibz) ibzU 1 1 , 2, 2ibz1 2[ 2b

1
2 U , 1, 2ibz . (2.14b)1 2]2b

Substituting (2.14) into (2.6b), we obtain
21t 5 2iku [F(b, z )] z` 0

1
3 exp(2ibz)U 1 1 , 2, 2ibz . (2.15)1 22b

In appendix a, we show that, as b → 0, the eddy
relaxation term becomes zero and (2.14a) becomes

ker2Ïz 1 i kei2Ïz
u 5 u 1 2 , (2.16)`1 2ker2Ïz 1 i kei2Ïz0 0

which is identical to solution of the eddy viscosity mod-
el, n 5 n0 [ ku*z (cf. Grant and Madsen 1986). It
follows that (2.14) and (2.15) are general solutions for
the viscoelastic model with an arbitrary relaxation co-
efficient b.

On the assumption that the roughness length z0 is
much smaller than the wave turbulent boundary layer
thickness l, that is, z0 5 z0/l K 1, near the surface (z
→ z0), u approaches its asymptotic value of

 
1

b 1 w 1 2g 1 ln2ibz1 2 2b 2u z` u(z → z ) 5 u 1 2 5 ln , (2.17a,b)0 ` z01 1
G F(b, z ) b 1 w 1 2g 1 ln2ibz 0 01 2 1 22b 2b 

where w is digamma function and g is Euler’s constant,
while approaches its asymptotic value oft

2ku`t 5 t (z → z ) 50 0

1
G F(b, z )01 22b

2ku`5 , (2.18a,b)
1

b 1 w 1 2g 1 ln2ibz01 22b

which is the bed shear stress. As indicated by (2.17a,b)
and (2.18a,b), the near-wall flow exhibits a logarithmic
velocity profile and a constant shear stress that depend
on the viscoelasticity coefficient b.

The bed shear stress is related to the orbital velocity by

1
t 5 f |u |u exp(iF ), (2.19)0 w ` ` t02

where f w is the wave friction factor, F is the phaset0

lead of the bed shear stress t0 over the free stream
velocity u`. The amplitude of the bed shear stress t0 is

; that is,2u*
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ku`t 5 5 1. (2.20)0

1
b 1 w 1 2g 1 ln2ibz0)) 1 22b

Invoking z0 5 vz0/(ku*), ` 5 av/u*, and z0 5 r/30,u
where r is the Nikuradse equivalent roughness of the
bed, (2.20) reduces to

) )1) )b 1 w 1 2g 1 ln2ibz1 2) )2b a
2) ) 5 30k . (2.21)

) )z r0

Using the Newton–Raphson method, z0 can be calcu-
lated for each value of a/r and substituted into (2.19)
to obtain the friction factor, that is,

a t 20f 5 2 5 , (2.22)w 2 21 2r u ` a
30kz01 2r

and then substituted into (2.18b) to obtain F . As b →t0

0, (2.18b) and (2.21) become

2ku`t 5 t (z → z ) 5 ; (2.23a)0 0 p
2g 1 lnz 1 i0 2

) p)
) )2g 1 lnz 1 i0) )2 a

2) ) 5 30k , (2.23b)
) )z r0

which are identical to the corresponding formula of the
eddy viscosity model (A.6b) and (A.7a).

b. The viscoelastic–diffusion model

To quantitatively evaluate the effects of eddy vertical
diffusion, we nondimensionalize the viscoelastic–dif-
fusion model (1.4) by the scalings (2.5) and combine it
with the momentum equation (2.6a) and thus have

du ikazdt 5 kz 1 u . (2.24)ddz 1 1 iaz

Different from the viscoelastic model (1.3), the visco-
elastic–diffusion model (1.4) does not yield exact an-
alytical solutions that satisfy the governing equations
(2.6a) and (2.24) and boundary conditions (2.7a,b). In
addition, the boundary conditions (2.7a,b) are not com-
plete at the bed (z 5 0), so it is not possible to integrate
(2.6a) and (2.24) directly starting at the bed. Instead a
shooting method has to be implemented [cf. Zou (1995,
1998) for a detailed description of this method] to obtain
the numerical solutions to the problem.

Nonetheless, the approximate solutions may be de-
rived analytically by the following manipulations of the
governing equations. Substituting (2.24) into (2.6a)
leads to

d du iazdz 1 u 5 iu . (2.25)d d1 2dz dz 1 1 iaz

Substituting (2.6a) into (2.25) gives

2d t iaz dt
z 1 5 it . (2.26)

2dz 1 1 iaz dz

Introducing the transformation

21/2t 5 (1 1 iaz) W (2.27)

in (2.26) gives

2 2d W 3 a i
1 2 W 5 0. (2.28)

2 21 2dz 4 (1 1 iaz) z

For z K 1, (3/4) [a2/(1 1 iaz)2] K i/z; therefore, (2.28)
is well approximated by

2d W i
2 W 5 0, (2.29)

2dz z

which is the same as the governing equation of shear
stress for the eddy viscosity model; therefore,

W 5 C t ,1 e (2.30a)

where C1 is a constant coefficient,

ker 2Ïz 1 i kei 2Ïz1 1
t 5 ku Ïiz (2.30b)e `

ker2Ïz 1 i kei2Ïz0 0

is the shear stress solution of the eddy viscosity model
(cf. appendix A), ker, kei, ker1, and kei1 are the zeroth
and first-order Kelvin functions. Substituting (2.30) into
(2.27) yields

21/2t 5 C (1 1 iaz) t .1 e (2.31)

Substituting (2.31) into (2.6a) gives

a
21/2 23/2u 5 C u (1 1 iaz) 2 t (1 1 iaz) , (2.32a)d 1 ed e[ ]2k

where

ker2Ïz 1 i kei2Ïz
u 5 2u (2.32b)ed `

ker2Ïz 1 i kei2Ïz0 0

is the perturbation velocity solution of the eddy viscosity
model (cf. appendix A). Substituting (2.32b) and (2.30b)
into (2.32a), we obtain

ker2Ïz 1 i kei2Ïz
21/2u 5 2C u (1 1 iaz)d 1 ` [ker2Ïz 1 i kei2Ïz0 0

ker 2Ïz 1 i kei 2Ïza 1 1
1 Ïiz

2 ker2Ïz 1 i kei2Ïz0 0

23/23 (1 1 iaz) . (2.33)]
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The constant coefficient C1 is determined by the no-slip
boundary condition at the bed (2.7a); that is, d 5u
2 ` as z → z0 so that the velocity solution (2.33) be-u
comes

F (a, z)1u 5 u 1 u 5 u 1 2 , (2.34a)` d ` [ ]F (a, z )1 0

where

ker2Ïz 1 i kei2Ïz ker 2Ïz 1 i kei 2Ïza 1 1
21/2 21F (a, z) 5 (1 1 iaz) 1 Ïiz (1 1 iaz) (2.34b)1 [ ]2ker2Ïz 1 i kei2Ïz ker2Ïz 1 i kei2Ïz0 0 0 0

FIG. 1. The predicted and measured (a) magnitude and (b) phase
of the dimensionless complex amplitude of velocity, u/u`, for the
wave boundary layer over a rough bed. (c) Evolution of dimensionless
velocity defect, [u(t, z) 2 u`(t)]/av over one-half wave cycle for a
free-stream velocity of u` 5 av sinvt: analytical solution (2.34) (solid
lines) and numerical solution (dashed-dot lines) of viscoelastic–dif-
fusion model; the eddy viscosity model solution (2.32b) (dashed
lines); Jonsson and Carlsen’s (1976) test 2 (circles).

and the shear stress solution (2.31) becomes
21 21/2t 5 ku [F (a, z )] (1 1 iaz)` 1 0

ker 2Ïz 1 i kei 2Ïz1 1
3 Ïiz . (2.35)

ker2Ïz 1 i kei2Ïz0 0

Similar to the velocity and shear stress solutions of vis-
coelastic model, (2.14) and (2.15), those of viscoelastic–
diffusion model, (2.34) and (2.35), reduce to those of the
eddy viscosity model, (2.30b) and (2.32b), as a → 0.

Near the surface (z → z0), approaches its asymptotict
value of

2ku`t 5 t (z → z ) 5 , (2.36)0 0 1 p
2g 2 a 1 lnz 1 i02 2

which is the bed shear stress. The bed shear stress is
related to the orbital velocity by

1
t 5 f |u |u exp(iF ), (2.37)0 w ` ` t02

where f w is the wave friction factor and F is the phaset0

lead of the bed shear stress over the free stream velocity
u`.

The amplitude of the bed shear stress t0 is ; that2u*
is,

a p
t 5 ku 2g 2 1 lnz 1 i 5 1. (2.38)0 ` 0@) )2 2

Invoking z0 5 vz0/(ku*), ` 5 av/u* and z0 5 r/30,u
where r is the Nikuradse equivalent roughness of the
bed, (2.38) reduces to

) a p)
) )2g 2 1 lnz 1 i0) )2 2 a

2) ) 5 30k , (2.39)
) )z r0

which is identical to the corresponding formula (2.23b)
of the eddy viscosity model as a → 0. From (2.39), z0

is calculated for a given value of a/r and substituted
into (2.22) and (2.36) to obtain f w and F . As dem-t0

onstrated in the next section, solutions (2.34) and (2.35)
compare well with the numerical results using the shoot-
ing method.

3. Comparison with experiment results

We now compare the present analytical solutions,
(2.34) and (2.35), of the viscoelastic–diffusion model,
(2.14) and (2.15), of the viscoelastic model as well as
those of the eddy viscosity model, (A3) and (A4), with
measurements of the oscillatory boundary layer over
rough and smooth beds. The former is more relevant to
that in the natural environment. According to Jensen et
al.’s (1989) measurement, a 5 k2q2/^u9w9& ø 2, so we
will first use this value to evaluate the model in the
comparisons, then carry out a sensitivity study of the
viscoelastic–diffusion model relative to the choice of a.

As demonstrated in Figs. 1a and 1b, in comparison
with the eddy viscosity model, the viscoelastic–diffu-
sion model provides improved overall predictions for
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FIG. 2. The predicted and measured (a) magnitude and (b) phase
of the dimensionless complex amplitude of velocity, u/u`, for the
wave boundary layer over a rough bed. (c) Evolution of dimensionless
velocity defect, [u(t, z) 2 u`(t)]/av over one-half wave cycle for a
free-stream velocity of u` 5 av sinvt: analytical solution (2.34) (solid
lines) and numerical solution (dashed-dot lines) of viscoelastic–dif-
fusion model; the eddy viscosity model solution (2.32b) (dashed
lines); Van Doorn (1982) observations (circles).

FIG. 3. The predicted and measured (a) magnitude and (b) phase
of the dimensionless complex amplitude of velocity, u/u`, for the
wave boundary layer over a rough bed. (c) Evolution of dimensionless
velocity defect, [u(t, z) 2 u`(t)]/av over one-half wave cycle for a
free-stream velocity of u` 5 av sinvt: analytical solution (2.34) (solid
lines) and numerical solution (dashed-dot lines) of viscoelastic–dif-
fusion model; the eddy viscosity model solution (2.32b) (dashed
lines); Sleath (1987) observations (circles).

the velocity profiles observed by Jonsson and Carlsen
(1976). The two models give identical predictions of
| u/u` | in the near-bed region, while diverging in the
outer region of the boundary layer. Both magnitude and
location of the velocity overshoot are well captured by
the present model, but poorly by the eddy viscosity
model. The two models are also distinct from each other
in predicting the observed phase variation of velocity
through the wave boundary layer. The improvement rep-
resented by the present model is due to the incorporation
of turbulent relaxation and diffusion. Also evident from
Fig. 1 is the agreement of the analytical solutions (solid
lines) with the numerical results (dashed-dot lines) ob-
tained using a shooting method. As shown next, similar
conclusions may be drawn from the comparisons be-
tween the present model and other observations with
different relative roughness lengths.

Given a free stream velocity of u` 5 av sinvt, Fig.
1c shows the temporal evolution of predicted and ob-
served velocity defect profiles, d 5 (u 2 u`)/u`, overu
a half oscillatory cycle. After the flow reversal (vt ø
08), a velocity overshoot is generated near the bed, dif-
fuses away from the bed with time, and intensifies with
time until the flow reaches maximum amplitude at mid-
cycle (vt ø 908). During the following decelerating
stage, the velocity overshoot continues moving upward
but declines in magnitude, and a new velocity overshoot

is generated close to the bed in the opposite direction.
Near the midcycle, both the present model and the eddy
viscosity model predictions agree with the measure-
ments fairly well in the near-bed region. Farther away
from the bed, the two models start to deviate from each
other, and the present model is in better agreement with
the observations in the velocity overshoot region.

During the period of flow reversal (vt ø 08 and vt
ø 1808), velocity overshoot comes into existence in both
upper and lower parts of the boundary layer, the eddy
viscosity model fails to capture the vertical variation of
velocity throughout the layer, while the present model
remains reasonable agreement with the observations. At
this stage of the wave period, turbulence is generated
and diffuses away from the bed, therefore has not
reached an equilibrium with the mean flow. The asso-
ciate strong turbulent relaxation and diffusion prohibit
it from being adequately described by the eddy viscosity
model. After flow maximum, turbulence is well devel-
oped and in a close analogy with its counterpart of
steady flow, the eddy viscosity model becomes more
suitable to characterize its dynamics.

There exists a wide range of relative roughness in
both natural wave boundary layers and laboratory ex-
periments. It is therefore useful to examine whether the
present model is applicable for turbulent flows with a
variety of relative roughness. We carried out similar
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FIG. 4. The predicted and measured (a) magnitude and (b) phase
of the dimensionless complex amplitude of velocity, u/u`, for the
wave boundary layer over a rough bed. (c) Evolution of dimensionless
velocity defect, [u(t, z) 2 u`(t)]/av over one half wave cycle for a
free stream velocity of u` 5 av sinvt: analytical solution (2.34) (solid
lines) and numerical solution (dashed-dot lines) of viscoelastic–dif-
fusion model; the eddy viscosity model solution (2.32b) (dashed
lines); Jensen et al. (1989) test 13 (circles).

FIG. 5. The discrepancy between the predicted and observed di-
mensionless complex amplitude of velocity, | (upred 2 uobs)/u` | for
(a) Jonsson and Carlsen’s (1976) test 2, (b) Van Doorn (1982), (c)
Sleath (1987), and (d) Jensen et al. (1989) test 13: analytical solution
(2.34) (solid lines) of viscoelastic–diffusion model; the eddy viscosity
model solution (2.32b) (dashed lines).

TABLE 1. The key parameters for the laboratory measurements
of WBL.

Parameters T (s) a (m) r (m) r / a

Jonsson and Carlsen (1976)
Van Doorm (1982)
Sleath (1987)
Jensen et al. (1989)

7.2
2
4.58
9.7

1.79
0.33
0.45
3.1

0.063
0.021
0.003 26
0.000 84

0.0352
0.0636
0.0072
0.000 27

TABLE 2. The average discrepancy between predicted and
observed velocity over the boundary layer thickness.

Experiments r /a

2 2 1/2[# |u (z) 2 u (z)| / |u | dz]pred obs `

Viscoelastic–
diffusion Eddy viscosity

Jonsson and Carlsen
(1976)

Van Doorn (1982)
Sleath (1987)
Jensen et al. (1989)

0.035
0.064
0.0072
0.000 27

0.062
0.028
0.027
0.041

0.12
0.094
0.073
0.056

comparisons with the measurements by Van Doorn
(1982), Sleath (1987), and Jensen et al. (1989), and the
results are displayed in Figs. 2, 3, and 4, respectively.
Table 1 lists wave period T, the semiexcursion amplitude
of orbital velocity a, the Nikuradse equivalent roughness
length r, and the relative roughness length r/a for these
experiments.

From these figures, one may draw similar conclusions
to those in the preceding paragraphs from Fig. 1. To
further quantify the performance of the viscoelastic–
diffusion model relative to the eddy viscosity model in
predicting these observations, Fig. 5 illustrates how the
discrepancy between two models and observations
varies across the boundary layer, and Table 2 lists their
averaged values over the boundary layer thickness. To-
gether with the intercomparisons among Figs. 1–4, they
suggest the following: 1) the velocity overshoot de-
creases as the bed roughness becomes smaller; 2) in the

rough bed case, a more rapid deduction of the mean
velocity toward the bed is observed due to the enhanced
momentum exchange by the increased bed roughness;
3) the deviation of the present model from the eddy
viscosity model is dependent on the relative roughness
and it is smaller in smooth bed case than in rough bed
case; and 4) the discrepancy given by the present model
is about one half or one quarter of that by the eddy
viscosity model (cf. Fig. 5, Table 2).

Nielsen (1985) was intrigued by the behavior of the
nondimensional velocity defect Du 5 1 2 u/u`. He
noted that the identity relationship, log | Du | [ arg(Du),
which is valid for laminar flow, also holds with great
accuracy for most turbulent flows with reasonable rel-
ative roughness. He also pointed out that neither the
eddy viscosity models nor the numerical mixing length
models are able to reproduce this behavior. In case of
a rough bed, as demonstrated by Fig. 6a, the observed
profiles of 2log | Du | and 2arg(Du) satisfy this rela-
tionship, while in case a smooth bed, as demonstrated
by Fig. 6b, they diverge from each other significantly.
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FIG. 6. (a) The predicted and measured dimensionless complex amplitude of velocity defect
Du 5 1 2 u/u` for rough bed: 2ln | Du | (dark) and 2arg(Du) (gray): analytical solution (2.34)
(solid lines) and numerical solution (dashed-dot lines) of viscoelastic–diffusion model (1.3); the
eddy viscosity model solution (2.32b) (dashed lines), Van Doorn (1982) Test M10 RAL (pluses
and circles). (b) Jensen et al. (1989) test 13 (pluses and circles).

This behavior is well captured by the present model but
not by the eddy viscosity model.

Figure 7a illustrates the temporal evolution of the
predicted and observed shear stress profile over a half
oscillatory cycle. During the accelerating stage, turbu-
lence is generated near the bed, diffuses away from the
bed with time until midcycle when it starts to distribute
uniformly across the layer. During the decelerating
stage, the adverse pressure gradient comes into play, it
enhances the shear instability according to the inflection

point criterion, which is in analogy to the separating
flow in the steady turbulent flow. As a result, turbulence
is intensified at the bed, moves upward, and decays until
the flow starts to reverse and new eddies are created
near the bed (cf. Jensen et al. 1989). The elevation of
zero shear stress marks the division between the new
and old turbulence. According to the observations, it
moves from close to the bed to the top of the boundary
layer within a half cycle. The other important feature
exhibited in this figure is the shear stress overshoot mov-
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FIG. 7. (a) Evolution of dimensionless shear stress profile, t(t, z)/
, over one-half wave cycle. The predicted and measured (b) mag-2u*

nitude and (c) phase of the complex amplitude of shear stress t/ :2u*
analytical solution (2.35) (solid lines) and numerical solution (dashed-
dot lines) of viscoelastic–diffusion model; the eddy viscosity model
solution (2.30b) (dashed lines), Jensen et al. (1989) test 13 (circles).

FIG. 8. Comparison of the observed (a), (c) magnitude and (b), (d)
phase of velocity and shear stress by Jensen et al. (1989) with the
predictions by the analytical solutions (2.34) and (2.35) of visco-
elastic–diffusion model using three different values of a; i.e., a 5
0 (the eddy viscosity model; dashed lines), a 5 2 (the present model;
solid lines), and a 5 4 (dashed-dot lines).

ing upward with time. This feature is in connection with
the similar upward motion of the velocity overshoot
shown by Fig. 4c. The eddy viscosity model is unable
to track either of the observations for these events,
whereas the present model does an excellent job in pre-
dicting their elevations as well as the overshoot mag-
nitude of shear stress.

The difference between these two models in predict-
ing the observed shear stress profile is further elucidated
in Figs. 7b and 7c where only the magnitude and phase
of its complex amplitude are exhibited. The two models
are identical to each other in the near-bed region while
separate from each other farther up in the water column,
where the present model gives improved prediction of
the decreasing magnitude and phase of shear stress with
the height above the bed. Nonetheless, it is noticeable
in both Figs. 7a and 7b that neither model predicts the
shear stress magnitude well right next to the bed.

Both Sleath (1987) and Jensen et al. (1989) noticed
that due to the reflection of the laser beam off the bed,
the laser-Doppler anemometer (LDA) tends to under-
estimate the shear stress in this region. Alternatively,
the bed shear stress was estimated from the logarithmic
fit of the near-bed velocity profile and through the mo-
mentum integration method (cf. Jensen 1989). The for-
mer was used to derive the observed friction factor f w

(denoted as circles) in Figs. 10 and 11, while the later
is listed as in Table 1 of Jensen et al. (1989) and2u*

used as the scaling for nondimensionalizing the shear
stress. They are consistent with each other and with the
prediction by viscoelastic–diffusion model with a 5 2
as shown in Fig. 10. They are, however, almost twice
as much as that given by LDA at the measuring point
closest to the bed (cf. Fig. 7b).

As pointed out in the introduction, the phase lead of
shear stress Ft relative to the free stream velocity is an
important quantity in studies of wave dissipation and
sediment transport and suspension in the ocean bottom
boundary layers. As shown in Figs. 7b and 7c, the pres-
ent model (solid lines) predicts Ft remarkably well
across the whole layer, whereas the eddy viscosity model
(dashed lines) underestimates Ft and the discrepancy
increases with the height above the bed. This deviation
is mainly attributed to the turbulent relaxation effect
neglected by the eddy viscosity model. From (1.3), we
have the phase of the effective eddy viscosity in the
form of Fn 5 2arctan(az/l); accordingly, Fn of vis-
coelastic models decreases from zero at the bed to about
2908 at the top of wave boundary layer, whereas Fn of
the eddy viscosity model remains zero across the layer.

According to the viscoelastic model (1.3), b 5 Ïa
is a weight coefficient of eddy relaxation since, as b →
0, (1.3) reduces to the eddy viscosity model. It is worth-
while examining how a affects the results. Therefore,
we applied a 5 0 (the eddy viscosity model, denoted
by dashed lines), a 5 2 (the present model, solid lines),
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FIG. 9. Comparison of the observed (a), (c) magnitude and (b), (d)
phase of velocity and shear stress profiles by Jonsson and Carlsen
(1976) with the predictions by the analytical solutions (2.34) and
(2.35) of viscoelastic–diffusion model using three different values of
a; i.e., a 5 0 (the eddy viscosity model, dashed lines), a 5 2 (the
present model, solid lines), and a 5 4 (dashed-dot lines).

FIG. 10. Friction factor (a) and phase lead (b) of the bed shear
stress over the free stream velocity as a function of a/r. The predic-
tions by the viscoelastic–diffusion model using three different values
of a [cf. Eqs. (2.39), (2.22), and (2.36)]; i.e., a 5 0 (the eddy viscosity
model; dashed lines), a 5 2 (the present model; solid lines), and a
5 4 (dashed-dot lines) and by the k–« turbulent closure model (de-
noted by diamonds; cf. Justesen 1988). The observed results by Kam-
phuis (1975) (denoted by X), Jonsson and Carlsen (1976) (denoted
by 1), Sleath (1987) (denoted by *), and Jensen et al. (1989) (denoted
by C).

and a 5 4 (dashed-dot lines) to the viscoelastic–dif-
fusion solutions (2.34) and (2.35). The predicted ve-
locity and shear stress profiles are exhibited in Figs. 8
and 9 together with the measurements by Jensen et al.
(1989) and Jonsson and Carlsen (1976) respectively.
Both figures suggest that, while a 5 0 and a 5 2 yield
the diverging results that have been thoroughly dis-
cussed in the preceding paragraphs, a 5 2 and a 5 4
predict identical magnitudes of velocity and shear stress
overshoot, but only the former manages to locate the
velocity and shear stress overshoot correctly.

The friction factor f w and phase lead of the bed shear
stress over free stream velocity, F , are both importantt 0

quantities to evaluate in any theoretical model of this
problem. Figure 10 shows the predictions by (2.39),
(2.22), and (2.36) for the viscoelastic–diffusion model
with a 5 0, 2, and 4 together with the measurements
of f w and F for 104 $ a/r $ 101 by Kamphuis (1975),t 0

Jonsson and Carlsen (1976), Sleath (1987), and Jensen
et al. (1989). The predicted f w and F decrease witht 0

increasing a and the deviations reduce considerably
for small relative roughness r/a. The viscoelastic–dif-
fusion model with a 5 2 (denoted by solid line) pro-
vides the optimal prediction of the observed f w at a/
r . 10 2 while underpredicting it at a larger roughness
a/r , 10 2. This result is consistent with the fact that
a 5 2 gives the optimal prediction of the observed

velocity and shear stress profiles (cf. Figs. 8 and 9).
Also evident from Figs. 10a and 10b is the close ap-
proximation between the predictions by the viscoelas-
tic–diffusion model with a 5 2 and those by the more
sophisticated k–« turbulent closure model (denoted by
diamonds: cf. Justesen 1988). The deviation between
theory and observation at a/r , 10 2 is probably due
to the significant form drag associated with the large
roughness element in this parameter region, which is
not included in the theory or models.

The same comparison was conducted in Fig. 11 for
the predictions by the viscoelastic model solutions
(2.21), (2.22), and (2.18b) with a 5 0, 2, and 4. Similar
to the viscoelastic–diffusion model, the predicted f w and
F decrease with increasing a and the deviations de-t0

crease for small relative roughness r/a. The intercom-
parison between Figs. 10 and 11 and Table 3 indicates
that the predicted f w and F by the viscoelastic modelt0

using a 5 4 is approximately the same as those by the
viscoelastic–diffusion model using a 5 2 and by the
k–« turbulent closure model.

The sensitivity study of model parameter a is carried
out further in Fig. 12. According to Fig. 12a, the depth-
averaged velocity discrepancy between the viscoelastic–
diffusion model and observation attains a minimum val-
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FIG. 11. Friction factor (a) and phase lead (b) of the bed shear
stress over the free stream velocity as a function of a/r. The predic-
tions by the viscoelastic model using three different values of a [cf.
Eqs. (2.21), (2.22), (2.18b)]; i.e., a 5 0 (the eddy viscosity model;
dashed lines), a 5 2 (the present model; solid lines), and a 5 4
(dashed-dot lines) and by the k–« turbulent closure model (denoted
by diamonds; cf. Justesen 1988). The observed results by Kamphuis
(1975) (denoted by X), Jonsson and Carlsen (1976) (denoted by 1),
Sleath (1987) (denoted by *), and Jensen et al. (1989) (denoted by
C).

TABLE 3. The friction factor fw calculated by the eddy viscosity, viscoelastic, viscoelastic–diffusion, and k–e models.

a/r

fw

Eddy
viscosity

Viscoelastic

a 5 2 a 5 4

Viscoelastic–diffusion

a 5 2 a 5 4 k–e model

101

102

103

104

0.055
0.020
0.0096
0.0053

0.044
0.017
0.0084
0.0048

0.037
0.015
0.0076
0.0045

0.035
0.014
0.0073
0.0043

0.023
0.010
0.0057
0.0035

0.038
0.016
0.0081
0.0045

ue of 0.05, 0.027, 0.027, and 0.028 at a 5 1.5, 2.1, 2.2,
and 1.2 for Jonsson and Carlsen (1976), Van Doorn
(1982), Sleath (1987), and Jensen et al. (1989), respec-
tively. As listed in Table 2, the discrepancy goes up to
0.12, 0.09, 0.07, and 0.06 at a 5 0 for the eddy viscosity
model.

To study the effects of turbulent diffusion separately
from those of turbulent relaxation, we compare the ve-
locity and shear stress solutions according to the vis-
coelastic–diffusion model (1.4), the viscoelastic model
(1.1), the eddy viscosity model, as well as the visco-
elastic model with exponentially decaying mixing
length (B.1). Figures 13 and 14 illustrate the compari-
sons for smooth and rough bed respectively. As dem-

onstrated in these figures, in contrast to the eddy vis-
cosity model, the viscoelastic and viscoelatic–diffusion
models result in identical phase shifts for shear stress.
Both of them are able to resolve the feature of over-
shooting velocity and shear stress. However, the vis-
coelastic model overestimates their heights and mag-
nitudes. This deficiency is due to the turbulent diffusion
neglected in the model, which tends to reduce the mag-
nitudes of velocity and shear stress at the top of bound-
ary layer. Unlike turbulent diffusion, turbulent relaxa-
tion is more relevant to the phase variations of velocity
and shear stress in the vertical direction.

4. Conclusions and discussions

In this work, by adding viscoelastic and diffusion
terms to the conventional eddy viscosity model, we have
constructed a viscoelastic–diffusion model to study the
turbulent relaxation and diffusion effects in oscillatory
boundary layers [cf. Eq. (1.4)]. The resulting analytical
solutions are found to be in better agreement with ob-
servations than the previous solutions using time-in-
variant eddy viscosity and time-variant eddy viscosity
models such as that by Madsen and Wikramanayake
(1991, cf. their Fig. 26). Our analysis shows that the
turbulent relaxation plays a key role in the phase var-
iations of velocity and shear stress in the vertical di-
rection, whereas the turbulent diffusion is mainly re-
sponsible for reducing the magnitude of these variables
at the top of the boundary layer.

The present study yields a complex eddy viscosity
instead of the real one assumed by the eddy viscosity
models. Furthermore, unlike most eddy viscosity mod-
els (Kajiura 1968; Johns 1969; Grant 1977; Smith 1977;
Brevik 1981; Myrhaug 1982; Lavelle and Mofjeld 1983;
Trowbridge and Madsen 1984; Davies 1986; Madsen
and Wikramanayake 1991), the viscoelastic diffusion
model (1.4) does not involve any discontinuity in eddy
viscosity or its gradient and requires no pre-assumption
of matching height between adjacent layers. The merit
of this modification is demonstrated by the better agree-
ment between predicted and observed phase variations
and the magnitude of the velocity and shear stress pro-
files.

The viscoelastic–diffusion model provides a good
prediction of the velocity profile in both inner and outer
regions of the boundary layer at any phase of wave
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FIG. 12. The depth averaged discrepancy between the predicted and observed (a) dimensionless
complex amplitude of velocity [# | (upred 2 uobs)/u` | 2 dz]1/2, (b) its amplitude [# ( | upred | 2 | uobs | )2/
| u` | 2 dz]1/2, and (c) phase [# | 2 | 2 dz]1/2: Jonsson and Carlsen’s (1976) test 2 (dashedpred obsF Fu u

lines); Van Doorn (1982) (solid lines); Sleath (1987) (dashed-dot lines); and Jensen et al. (1989)
test 13 (dotted lines).

cycle. Thus, the present velocity solution serves as a
better candidate than that of the eddy viscosity model
for estimating the roughness length and friction velocity
from velocity profile measurements in the laboratory
and field (cf. Zou and Hay 2002, manuscript submitted
to J. Phys. Oceanogr.). Furthermore, the comparisons
between the predicted and observed velocity and shear
stress profiles, the friction factor f w and phase lead of
the bed shear stress over free stream velocity, F , overt0

a smooth bed and a rough bed suggest that the deviation
of the present model and the eddy viscosity model in-
creases with increasing relative roughness. In the pres-
ence of a rough bed, for a given free-stream velocity,
the friction velocity is greater; so is the boundary layer
thickness and eddy length scale le 5 kz. It follows that
eddies with longer life span dominate the turbulent dy-
namics, which results in more significant eddy relaxa-
tion and diffusion effects.

As observed by Sleath (1987) and Jensen et al.
(1989), the turbulence intensity showed a significant
variation during an oscillatory cycle. To incorporate this
characteristic, Lavelle and Mofjeld (1983), Trowbridge
and Madsen (1984), Davies (1986), and Madsen and
Wikramanayake (1991) have used time-variant eddy vis-
cosity models in their investigations of this problem.
They have found that such modification improved the
model comparisons with observed streaming velocity
and wave–current interaction at an oblique angle. Nev-

ertheless, these models all assume that the time-depen-
dent part of the eddy viscosity has the same vertical
structure as the steady part. As pointed out by some of
these authors, this physically unrealistic assumption
makes it unlikely that these models correctly resolve the
vertical structure of streaming velocity within the wave
bottom boundary layers. Therefore, it is worth revisiting
this problem with a time-variant viscoelastic–diffusion
model.

In summary, turbulent relaxation and diffusion have
significant effects on the overshooting of velocity and
shear stress, their phase variations across the wave
boundary layers, as well as the magnitude and phase of
bed shear stress. By including these effects, the present
model obtains better agreement with the observations
of these properties by previous investigators than the
eddy viscosity model. It also provides readily evaluated
solutions in a closed form which are applicable to both
smooth and rough beds.
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FIG. 13. The predicted and observed (a), (c) magnitude and (b),
(d) phase of velocity and shear stress for Jensen et al. (1989) by the
viscoelastic–diffusion model [Eqs. (2.34) and (2.35); solid lines]; the
eddy viscosity model [Eqs. (2.30b) and (2.32b); dashed lines]; the
exponentially decayed viscoelastic model [Eqs. (B.4) and (B.5); dot-
ted lines], and the viscoelastic model [Eqs. (2.14) and (2.15); dashed-
dot lines].

FIG. 14. Comparisons of the predicted and observed (a), (c) mag-
nitude and (b), (d) phase of velocity and shear stress for Jonsson and
Carlsen (1976) by the viscoelastic–diffusion model [Eqs. (2.34) and
(2.35); solid lines]; the eddy viscosity model [Eqs. (2.30b) and
(2.32b); dashed lines]; the exponentially decayed viscoelastic model
[Eqs. (B.4) and (B.5); dotted lines], and the viscoelastic model [Eqs.
(2.14) and (2.15); dashed-dot lines].
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APPENDIX A

Comparison with Previous Eddy-Viscosity Model
To check the consistency of analytical solutions

(2.14) and (2.15), we derive the asymptotic behaviors
as b → 0 and compare them with those of the eddy-
viscosity model (cf. Grant 1977). The following rela-
tionship is valid for confluent hypergeometric functions
(cf. Abramowitz and Stegun 1970, sec. 13.3.3):

1 1
lim G U , 1, 2ibz 5 2K (2Ïiz ). (A.1)01 2 1 22b 2bb→0

Similarly, we have

1 1
lim G U 1 1 , 2, 2ibz1 2 1 22b 2bb→0

21/25 2(iz) K (2Ïiz ). (A.2)1

Substituting (A.1) and (A.2) into (2.14), we have

ker2Ïz 1 i kei2Ïz
u 5 u 1 2 (A.3)`1 2ker2Ïz 1 i kei2Ïz0 0

ker 2Ïz 1 i kei 2Ïz1 1
t 5 ku*u Ïiz . (A.4)`

ker2Ïz 1 i kei2Ïz0 0

Solutions (A.3) and (A.4) are identical to those by Grant
(1977) using the eddy viscosity model. Near the surface
(z → z0), u approaches its asymptotic values of

1 2g 1 lnz 1 ip/2
u(z → z ) 5 u 1 2 (A.5a)0 `5 62 ker2Ïz 1 i kei2Ïz0 0

2u z`5 ln , (A.5b)
2g 1 lnz 1 ip/2 z0 0

which is a logarithmic velocity profile, while t ap-
proaches its asymptotic value of

1 ku*u`t 5 t(z → z ) 5 (A.6a)0 0 2 ker2Ïz 1 i kei2Ïz0 0

2ku*u`5 , (A.6b)
2g 1 lnz 1 ip0

which is the bed shear stress. Following the same pro-
cedure as in section 2, we derive the following implicit
equation for z0:
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|2g 1 lnz 1 ip/2| a0 25 30k (A.7a)
z r0

2
f 5 . (A.7b)w 2a

30kz01 2r
APPENDIX B

Exponential Decay Viscoelastic Model

As the outer region of wave turbulent layer is ap-
proached, the shear stress profile starts to display an
exponential decay. Since the turbulent dissipation time
is about the same as turbulent relaxation time Te and in
the outer region the eddy-evolving time is about 1/v,
the turbulent intensity decays like exp(2vT e ) 5
exp(2z ) as its origin at the bed. Accordingly, we add
an exponential decay coefficient to both the original
eddy viscosity n0 and the viscoelastic term in (1.3);
namely that,

n exp(2z)0n 5 . (B.1)
1 1 iaz exp(2z)

Effective eddy viscosity (B.1) is equivalent to (1.3) ex-
cept at z ø l. Following the same procedure as that in
section 3, we derive the governing equation:

2z exp(2z) ] t
5 it , (B.2)

21 1 iaz exp(2z) ] z

where 5 t/ is nondimensional shear stress, z 5 z/l2t u*
and a 5 k2/a1. The shear stress is related to velocity
defect by

z exp(2z) ]udt 5 , (B.3)
1 1 iaz exp(2z) ]z

where d 5 (u 2 u`)/u* is nondimensional velocityu
defect.

Equations (B.2) and (B.3) are analytically intractable.
A simple WKB analysis shows that their solutions dis-
play an exponentially decaying asymptotic behavior at
a very large z. Eqs. (B.2) and (B.3) become equivalent
to (2.6) and (2.4b) when z K 1. Accordingly, we es-
timate their solutions by multiplying (2.14) and (2.15)
with exp(2z/2); that is,

F(b, z) z
u 5 u 1 2 exp 2 (B.4)` 1 2[ ]F(b, z ) 20

21t 5 2iku*u [F(b, z )] z` 0

1 z
3 exp(2ibz)U 1 1 , 2, 2ibz exp 2 . (B.5)1 2 1 22b 2

The solutions to equation (B.2) and (B.3) are then cal-
culated numerically using the shooting method de-
scribed in Zou (1995) and Zou (1998). To test the code,

we use it to compute the solutions to Eq. (2.6) and
boundary conditions (2.7) and then compare the results
with analytical solutions (2.14) and (2.15). It was found
that the analytical solutions (B.4) and (B.5) are in ex-
cellent agreement with the numerical results.

As expected, the predictions are identical to those
given by the viscoelastic model at z , 1, but the com-
parisons between theory and experiment are improved
remarkably at z $ 1. It is also noticeable that neither
phase lead of shear stress Ft nor that of velocity Fu is
influenced by this modification except that prediction
of Fu near the bed is improved.
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