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Abstract. In MyCrypt 2005, Augot, Finiasz, and Sendrier proposed FSB, a
family of cryptographic hash functions. The security claim of the FSB hashes
is based on a coding theory problem with hard average-case complexity. In
the ECRYPT 2007 Hash Function Workshop, new versions with essentially
the same compression function but radically different security parameters and
an additional final transformation were presented. We show that hardness of
average-case complexity of the underlying problem is irrelevant in collision
search by presenting a linearization method that can be used to produce collisions
in a matter of seconds on a desktop PC for the variant of FSB with claimed 2128

security.
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1 Introduction

A number of hash functions have been proposed that are based on “hard problems” from
various branches of computer science. Recent proposals in this genre of hash function
design include VSH (factoring) [3], LASH (lattice problems) [2], and the topic of this
paper, Fast Syndrome Based Hash (FSB), which is based on decoding problems in the
theory of error-correcting codes [1, 6].

In comparison to dedicated hash functions designed using symmetric cryptanalysis
techniques, “provably secure” hash functions tend to be relatively slow and do not al-
ways meet all of criteria traditionally expected of cryptographic hashes. An example of
this is VSH, where only collision resistance is claimed, leaving the hash open to various
other attacks [8].

Another feature of “provably secure” hash functions is that the proof is often a re-
duction to a problem with asymptotically hard worst-case or average-case complexity.
Worst-case complexity measures the difficulty of solving pathological cases rather than
typical cases of the underlying problem. Even a reduction to a problem with hard av-
erage complexity, as is the case with FSB, offers only limited security assurance as
there still can be an algorithm that easily solves the problem for a subset of the problem
space.

This common pitfall of provably secure cryptographic primitives is clearly demon-
strated in this paper for FSB – it is shown that the hash function offers minimal pre-
image or collision resistance when the message space is chosen in a specific way.



The remainder of this paper is structured as follows. Section 2 describes the FSB
compression function. Section 3 gives the basic linearization method for finding pre-
images and extends it to “alphabets”. This is followed by an improved collision attack
in Section 4 and discussion of attacks based on larger alphabets in Section 5.

Appendix A gives a concrete example of pre-image and collision attacks on a pro-
posed variant of FSB with claimed 128-bit security.

2 The FSB Compression Function

The FSB compression function can be described as follows [1, 6].

Definition 1. Let H be an r × n binary matrix. The FSB compression function is a
mapping from message vector s that contains w characters, each satisfying 0 ≤ si < n

w ,
to an r bit result as follows:

FSB(s) =
w⊕

i=1

H(i−1) n
w +si+1 ,

where Hi denotes column i of the matrix.

The FSB compression function is operated in Merkle–Damgård mode to process a
large message [7, 5]. The exact details of padding and chaining of internal state across
compression function iterations are not specified. 1

With most proposed variants of FSB, the character size n
w is chosen to be 28, so

that s can be treated as an array of bytes for practical implementation purposes. See
Appendix A for an implementation example.

For the purposes of this paper, we shall concentrate on finding collisions and pre-
images in the compression function. These techniques can be easily applied for finding
full collisions of the hash function. The choice of H is taken to be a random binary
matrix in this paper, although quasi-cyclic matrices are considered in [6] to reduce
memory usage.

The final transformation proposed in [6] does not affect the complexity of finding
collisions or second pre-images, although it makes first pre-image search difficult (equal
to inverting Whirlpool [9]). Second pre-images can be easily found despite a strong final
transform.

The security parameter selection in the current versions of FSB is based primarily
on Wagner’s generalized birthday attack [10, 4]. The security claims are summarized in
Table 1.

3 Linearization Attack

To illustrate our main attack technique, we shall first consider hashes of messages with
binary values in each character: si ∈ {0, 1} for 1 ≤ i ≤ w. This message space is a
small subset of all possible message blocks.

1 Ambiguous definitions of algorithms makes experimental cryptanalytic work depend on guess-
work on algorithm details. However, the attacks outlined in this paper should work, regardless
of the particular details of chaining and padding.



Security r w n n/w

64-bit 512 512 131072 256
512 450 230400 512

1024 217 225 256
80-bit 512 170 43520 256

512 144 73728 512
128-bit 1024 1024 262144 256

1024 904 462848 512
1024 816 835584 1024

Table 1. Parameterizations of FSB, as given in [6]. Line 6 (in bold) with claimed 2128 security
was proposed for practical use. Pre-images and collisions can be found for this variant in a matter
of seconds on a desktop PC.

We define a constant vector c,

c =
w⊕

i=1

H(i−1) n
w +1,

and an auxiliary r × w binary matrix A, whose columns Ai, 1 ≤ i ≤ w are given by

Ai = H(i−1) n
w +1 ⊕H(i−1) n

w +2.

By considering how the XOR operations cancel each other out, it is easy to see that
for messages of this particular type the FSB compression function is entirely linear:

FSB(s) = A · s⊕ c.

Note that in this paper s and c and other vectors are column vectors unless otherwise
stated.

Furthermore, let us consider the case where r = w, and therefore A is a square
matrix. If detA 6= 0 the inverse exists and we are able to find a pre-image s from the
Hash h = FSB(s) simply as

s = A−1 · (h⊕ c).

If r is greater than w, the technique can still be applied to force given w bits of
the final hash to some predefined value. Since the order of the rows is not relevant, we
can simply construct a matrix that contains only the given w rows (i.e.. bits of the hash
function result) of A that we are are interested in.

3.1 The selection of alphabet in a preimage attack

We note that the selection of {0, 1} as the set of allowable message characters (“the
alphabet”) is arbitrary. We can simply choose any pair of values for each i so that
si ∈ {xi, yi} and map each xi 7→ 0 and yi 7→ 1, thus creating a binary vector for the
attack.



The constant is then given by

c =
w⊕

i=1

H(i−1) n
w +xi

,

and columns of the A matrix are given by

Ai = H(i−1) n
w +xi+1 ⊕H(i−1) n

w +yi+1.

To invert a hash h we first compute

b = A−1(h⊕ c)

and then apply the mapping si = xi + bi(yi − xi) on the binary result b to obtain a
message s that satisfies FSB(s) = h.

3.2 Invertibility of random binary matrices

The binary matrices are essentially random for each arbitrarily chosen alphabet. Since
the success of a pre-image attack depends upon the invertibility of the binary matrix A,
we note (without a proof) that the probability that an n × n random binary matrix has
non-zero determinant and is therefore invertible in GF(2) is given by

p =
n∏

i=1

(1− 2−i) ≈ 0.28879 ≈ 2−1.792

when n is even moderately large.
Two trials with two distinct alphabets are on the average enough to find an invertible

matrix (total probability for 2 trials is 1− (1− p)2 ≈ 0.49418).

4 Finding collisions when r = 2w

We shall expand our approach for producing collisions in 2w bits of the hash function
result by controlling w message characters. This is twice the number compared to pre-
image attack of Section 3.1. The complexity of the attack remains negligible – few
simple matrix operations.

Assume that by selection of two distinct alphabets, {xi, yi} and {x′i, y′i}, there are
two distinct linear presentations for FSB, one containing the matrix A and constant
c and the other one A′ and c′ correspondingly. To find a pair of messages s, s′ that
produces a collision we must find a solution for b and b′ in the equation

A · b⊕ c = A′ · b′ ⊕ c′.

This basic collision equation can be manipulated to the form

(
A |A′) ·

(
b
b′

)
=

(
c
c′

)
.



The solution of the inverse (A | A′)−1 will allow us to compute the message pair
(b | b′)T that yields the same hash in 2w different message bits (since r = 2w yields a
square matrix in this case).

(A |A′)−1 ·
(

c
c′

)
=

(
b
b′

)
.

The binary vector (b | b′)T can then be split into two messages s and s′ that produce
the collision. For 1 ≤ i ≤ w we apply the alphabet mapping as follows:

si = xi + bi(yi − xi),
s′i = x′i + b′i(y′i − x′i).

Here xi, yi and x′i, y
′
i represent the alphabets for si and s′i, respectively.

5 Larger alphabets

Consider an alphabet of cardinality three, {xi, yi, zi}. We can construct a linear equa-
tion in GF(2) that computes the FSB compression function in this message space by
using two columns for each message character si. The linear matrix therefore has size
r × 2w. The constant c is computed as before as:

c =
w⊕

i=1

H(i−1) n
w +xi

,

and the odd and even columns are given by

A2i−1 = H(i−1) n
w +xi+1 ⊕H(i−1) n

w +yi+1,

A2i = H(i−1) n
w +xi+1 ⊕H(i−1) n

w +zi+1.

The message s must also be transformed into a binary vector b of length 2w via a
selection function v:

si v(si)
xi (0, 0)
yi (1, 0)
zi (0, 1)

The binary vector b is constructed by concatenating the selection function outputs:

b = (v(s1) ‖ v(s2) ‖ · · · ‖v(sw))T .

We again arrive at a simple linear equation for the FSB compression function:

FSB(s) = A · b⊕ c.

The main difference is that the message space is much larger, 3w ≈ 21.585w. This
construction is easy to generalize for alphabets of any size: r × (k − 1)w size linear
matrix is required for an alphabet of size k. However, we have not found cryptanalytic
advantages in mapping hashes back to message spaces with alphabets larger than three.



5.1 Pre-image search

It is easy to see that even if A is invertible, not all hash results are, since the solution of
b may contain v(si) = (1, 1) pairs. These do not map back to the message space in the
selection function.

Given a random binary b, the fraction of valid messages in the message space (al-
phabet of size 3) is given by (3/4)w = 2−0.415w. Despite this disadvantage, larger
alphabets can be useful in attacks. We will illustrate this with an example.

Example. FSB parameters with w = 64, n = 256× 64 = 16384 and r = 128 is being
used; 64 input bytes are processed into a 128 bit result. What is the complexity of a
pre-image attack ? 2

Solution. We will use an alphabet of size 3. Considering both matrix invertibility (Sec-
tion 3.2) and the alphabet mapping, the probability of successfully mapping the hash
back to the alphabet is 0.28879 × (3/4)64 = 2−28.4. We can precompute 227 inverses
A−1 for various message spaces offline, hence speeding up the time required to find an
individual pre-image. There are also early-abort strategies that can be used to speed up
the search.

Using these techniques, the pre-image search requires roughly 228 steps in this case,
compared to the theoretical 2128.

5.2 Collision search

Three-character alphabets can be used in conjunction with the collision attack outlined
in Section 4. It is easy to see that it is possible to mix 3-character alphabets with binary
alphabets. Each character position si that is mapped to a 3-character alphabet requires
two columns in the linear matrix, whereas those mapped to a 2-character alphabet re-
quire only one column.

Generally speaking, the probability for finding two valid messages in each trial is
(3/4)2k = 2−0.830k when k characters in s and s′ are mapped to 3-character alphabets.

Example. FSB parameters with w = 170, n = 256 × 170 = 43520 and r = 512 is
being used; 170 input bytes are processed into a 512-bit result. What is the complexity
of collision search ? 3

Solution. We use a mixed alphabet; k = 86 characters are mapped to a 3-character
alphabet and the remaining 84 characters are mapped to a binary alphabet. The linear
matrix A therefore has 2× 86+84 = 256 columns, and the combined matrix

(
A |A′)

in the collision attack (similarly to 4) has size 512 × 512. Success of matrix inversion
is 2−1.792. The probability of success in each trial is 2−0.830k−1.792 = 2−73.2, collision
search has complexity of roughly 273.

2 The complexity of a collision attack in this case is negligible, as r = 2w and the technique
from Section 4 can be used.

3 These security parameters are proposed for 80-bit security in [6] and reproduced in Table 1.



6 Conclusions

We have shown that Fast Syndrome Based Hashes (FSB) are not secure against pre-
image or collision attacks under the proposed security parameters. The attacks have
been implemented and collisions for a variant with claimed 128-bit security can be
found in less than a second on a low-end PC.

We feel that the claim of “provable security” is hollow in the case of FSB, where
the security proof is based on a problem with hard average-case complexity, but which
is almost trivially solvable for special classes of messages.
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A Appendix: A Collision and Pre-Image Example

For parameter selection r = 1024, w = 1024, n = 262144, s = 8192, n/w = 256, the
FSB compression function can be implemented in C as follows.

typedef unsigned char u8; // u8 = single byte
typedef unsigned long long u64; // u64 = 64-bit word

void fsb(u64 h[0x40000][0x10], // "random" matrix
u8 s[0x400], // 1k message block
u64 r[0x10]) // result

{
int i, j, idx;

for (i = 0; i < 0x10; i++) // zeroise result
r[i] = 0;

for (i = 0; i < 0x400; i++) // process a block
{

idx = (i << 8) + s[i]; // index in H
for (j = 0; j < 0x10; j++)

r[j] ^= h[idx][j]; // xor over result
}

}

Since the FSB specification does not offer any standard way of defining the “ran-
dom” matrix H (or h[][] above), we will do so here using the Data Encryption
Standard. Each 64-bit word h[i][j] is created by encrypting the 64-bit input value
(i << 4) ^ j under an all-zero 56-bit key (00 00 00 00 00 00 00 00).
The input and output values are handled in big-endian fashion. Some of the values
are: 4

Input to DES Table Index Value
0x0000000000000000 h[0x00000][0x0] = 0x8CA64DE9C1B123A7
0x0000000000000001 h[0x00000][0x1] = 0x166B40B44ABA4BD6
0x0000000000000002 h[0x00000][0x2] = 0x06E7EA22CE92708F

....
0x0000000000000010 h[0x00001][0x0] = 0x5B711BC4CEEBF2EE
0x0000000000000011 h[0x00001][0x1] = 0x799A09FB40DF6019
0x0000000000000012 h[0x00001][0x2] = 0xAFFA05C77CBE3C45

....
0x00000000003FFFFD h[0x3FFFF][0xD] = 0x313C4BDBE2F7156A
0x00000000003FFFFE h[0x3FFFF][0xE] = 0x19F32D6B2D9B57F5
0x00000000003FFFFF h[0x3FFFF][0xF] = 0x804DB568319F4F8B

We shall define two 1024-byte message blocks that produce the same 1024-bit chosen
output value in the FSB compression function, hence demonstrating the ease of pre-
image and collision search on a variant with claimed 2128 security. They were found in
less than a second on an iBook G4 laptop.

4 Please note that x86 platforms are little-endian. Bi-endian gcc source code for producing pre-
images can be downloaded from: http://www.m-js.com/misc/fsb_test.tar.gz



The first message block uses the ASCII alphabet {A, C} or {0x41, 0x42}:

CAACACACCACAACACACACCACAACCCCCCACCAACACCAAACAAACACCAACACCACACCAA
ACACACCCCCAACCCAAAAAACCCACCACCCACCAAACACACCCCCCAACCACACCCAACACCA
AACCCACCCCCAACCCAAACAAAAACCCACAAAACACACCACCACCCCCACAACCCCACACAAA
AACCCCACCCCAACAACAAAAACAAAACCACACACACACCCCCAAACCCCCAAAAACCCACAAC
CAAACAACCCAAACACCAACCCCACACCCCAAAACCCAAAAAACACAAACCCCAACAAAACCAA
ACACCCCCCCCCAACAAAAACACCCACCCAACAAAAAAACACACCCCCCCAACCCACCCCAACA
AAAACCAACAACACCACCCCACCCCCACCACAAACACCCACCACCCAACCCCACCCAACAAAAC
ACCACCCCAACCCACAACCACCCAACACCAACACCAAAACACACCAAAACACCCAACACACCCC
CAAACACACACCACCACCACCCAAAAAAACCACACACCCCAAAAAAACCCAAACCACCACCCCA
CACAAACCCCAACCCAACCCAACCAACCACCAAAACCCAACCCCCAAAAAACAACCAAACCCCA
AACACCCACAAACACCACCACAACAAAAACCAAACCCAAAAACCCACCACACCCACACACAAAA
CCACCCCAACCCCCAACAACCCCACACAACACAAACCACCCAACCCCAACCACAAAAACCCACC
ACAACCCAAACACACCCCAACAAACCAAACCCCACACCCAAAACCCCACACCACACACAAACAC
CACCCAAAAAACAACAACCACACACAACAAACCAAACAAAAAAAAAACCAAAAAACCCCCAACC
CACCCACCCACAAACAAAACCAAAAAAAACCCAAAAAAACCCAAAACCACAACCACCCCAACCA
CCCACCAAACAACAACCACACAAAAACACCCCACACCCCCCCACCAACACAAAACCAAAAACCA

The second message block uses ASCII alphabet {A, H} or {0x41, 0x48}:

AHHHHAAAAAHAAAHAHAAAHAHHAHHAAHAAHHAHHHAAAAAHHAAHHHAHAHAAHAAAHHAA
AAAAHAHHAAAHAHHAHAAAHAAHAHAAAAHHHHHHHAAHAHAAAAAHAHHHHHAAHHHHAHAH
AAHAAAHAHAHHHHHAHHAHAHAAAHAHAAHAHHAAAAHAAHAAAHAAHHHHHAHAAHHAAHAH
HHAHAAHHHAAHAAAHHHHAHHHHAAHAAHAAAAAHAAHHAAAHAAHHHAAHAHAHHHAHAAHA
AHHAAAHHAAAAAHHAHAAAAAHAHAHHAHHAHAAHHAHAHAAHHHHAAHAHHHAAHHAHAAHH
AAHAHAAAHAHAAAHHAAAHAHHAHAHHAAAAAHHHHAAHAHAHHAHHHHHAAHHAAHHHHAHH
HHHAAAAAAAHHHAHAAAAHAAAHAAAAAAAHAAHHAHHAHHAHHAHHHAAAAAAAHAHAAAHH
HAHHHHHHAHAAAHHAHAAHHHHAAHHAHHAHHAAHHHAHHAHHHAAHHAAAHHAHAAHAHHHA
AAHAHAAAHAAHAAAAHHHHAHHHHHAAHHHAAHHHAHHAAAHHHAHHAHAHHHHAAHAHHAHH
AAHAHAAHHAHHAAAAHHAHAHHHHHAAHHHAAHAAAHAAAHAAHHAHHAHHHAHHHHHAHHHA
AHAHAAAAHHAAAAHHAAHHHHHAAHAAHAAHHAAAHAHHAAAAAHHAAHAHHAHHHAAHHHAA
HHHAHHAAHAAHAAHAAHHHHHAAHAHHAHHAAHAAAAHHAHHHHHAHAHHHHHAHHHHHAAAA
HHHHHAAAAHHHAHHHHAHAAAHHAHAAAHHAAAHAHAHAAAHHHHHHHAHAAHAAHAAAAHAA
HAAAHAHAHHHAHHAHHAHAAHAHHAAAAHAAAAHHAAHHHHAHHAAHHHAHAAAHAAAHHHAA
HAAHAAHAAAHAHHHAAHAHAAHAAAHAHHAHAAHHHAAHAAAAAHHAAAAHHHAHAHAAAAAH
AAAHAHAHHAAAAHHHAAHHAHAAHHHHAHAAHHAHHHAAHAHHAHHHAAAAHHHAAHAAAAHH

The 1024-bit / 128-byte result of compressing either one of these blocks is:

Index Hex ASCII
00000000 5468697320697320 6120636f6c6c6973 |This is a collis|
00000010 696f6e20616e6420 7072652d696d6167 |ion and pre-imag|
00000020 6520666f72204661 73742053796e6472 |e for Fast Syndr|
00000030 6f6d652042617365 6420486173682e20 |ome Based Hash. |
00000040 4172626974726172 79207072652d696d |Arbitrary pre-im|
00000050 616765732063616e 20626520666f756e |ages can be foun|
00000060 6420696e20612066 72616374696f6e20 |d in a fraction |
00000070 6f66206120736563 6f6e642120202020 |of a second! |


