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ABSTRACT

Point vortex and finite-difference methods are used to study baroclinic eddies advected into weak and strong
encounters with topography. It is argued that weak interactions often scatter radially symmetric eddies into
generalized hetons. The dipole moments so generated within the eddy result in eddy propagations at various
angles to the current. Strong interactions can result in the complete separation of the upper- and lower-layer
circulations. Subsequent evolution in this case depends on many factors, although strong topographic obstacles
(i.e., seamounts) permit a reorganization of the centers into a coherent structure. Weaker topography, confined
to the deep ocean, can disrupt the lower center, although the upper center typically survives. Disassociation of
the centers with both retaining their integrity is also possible. Heton generation can occur for eddies with weak
lower-layer expressions, demonstrating a potentially strong control of shallow eddy propagation by deep sea
bathymetry. Analytical and numerical estimates of the induced propagation speeds are sizable, arguing topo-
graphic scattering is a potentially powerful mechanism influencing eddy propagation.

1. Introduction

Observations suggest that the ocean is heavily pop-
ulated with subsurface vortices (Ebbesmeyer et al.
1986). If true, the implications of these vortices for
property transport and mixing are profound. A particular
and well-observed example of such eddies are those of
Mediterranean origin (nicknamed ‘‘meddies’’), and it is
thought that they routinely undergo encounters with sea-
mounts (Richardson et al. 2000). A limited amount of
‘‘before’’ encounter and ‘‘after’’ encounter data is avail-
able on such meddies, suggesting topographic interac-
tions are disruptive and possibly fatal. This is important
to gauging tracer transport by meddies. In addition, the
ubiquity of bottom topography combined with the ap-
parent number of subsurface vortices throughout the
world ocean suggests vortex–topography interaction
should be a commonplace event. The objectives of this
paper are to numerically and theoretically study the
problem of eddy–topography and eddy–seamount in-
teraction to aid in the understanding and interpretation
of observations.

a. Background

Ebbesmeyer et al. (1986) in their analysis of North
Atlantic hydrographic data along 708W suggested sub-
surface vortices, with a North Atlantic population es-
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timated at 10 000, are a dominant form of ocean vari-
ability. Further, they showed that these vortices are often
composed of water types alien to the water masses in
which they are embedded. This both makes these eddies,
sometimes called SCVs (for submesoscale coherent vor-
tices: see McWilliams 1985), easily identifiable and of
potentially great significance to the mixing and transport
of ocean properties. The reason SCVs house such dis-
tinct water types can be partially ascribed to their ten-
dency to form near fronts between neighboring water
masses. This is characteristic of perhaps the most widely
recognized SCV in the World Ocean, the so-called med-
dy (i.e., an SCV of Mediterranean origin). Richardson
et al. (2000) give a recent review of meddy observations.

Meddies, found mostly in the eastern midlatitude
North Atlantic, are routinely composed of warm, salty
waters relative to the background North Atlantic water
type at their 1000-m equilibrium depth. A famous med-
dy observation, indeed perhaps the first, was made by
McDowell and Rossby (1978) in the western North At-
lantic, suggesting meddy survival over a 6000-km tran-
sit, probably requiring several years to complete. [Note
however, the interpretation of this observation is under
current debate (Prater and Rossby 1999)].

Early meddy life histories are dominated by north-
ward movement along the Iberian Peninsula and ejection
into the Iberian basin either at Cape St. Vincent or the
Tejo Plateau. They thereafter follow a curving trajec-
tory, of about 0.02 m s21 propagation amplitude, that
brings them into the vicinity of the Horseshoe Sea-
mounts. Richardson et al. (2000) suggest 70% of these
meddies interact with the Horseshoe Seamounts and ex-
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FIG. 1. Meddy–topography interaction. This is a westward-looking view of the Great Meteor
Seamount Chain as seen by meddies. Several seamounts appear and the oval indicates the average
depth and size of a typical meddy.

perience major structural distortion as a result. The re-
mainder skirt north of the topography and enter into the
Canary Basin. Of those interacting with the seamounts,
it is not unusual for some part of them to survive, also
to enter into the Canary Basin.

Typical meddy life histories in the Canary Basin fall
mostly into one of three categories (Richardson and Ty-
chensky 1998). The least active meddy history belongs
to those that move south in the eastern North Atlantic.
These have been observed to slowly decay, due to a
variety of processes, and eventually dissipate (Armi et
al. 1989). Second, many meddies interact with the
Azores Current. Their subsequent evolution can be com-
plicated, but survival of the encounter is routine. These
meddies can follow an open-ocean route toward the
Mid-Atlantic Ridge, and may be the family from which
the McDowell and Rossby Meddy came. The third class
are those that move dominantly southwestward and as
a result encounter the Great Meteor seamount chain.
This chain is composed of several major seamounts ex-
tending through the part of the water column occupied
by the meddies, as well as many smaller topographic
irregularities. Figure 1 contains a view of the Great
Meteor seamounts, looking westward from the coast of
Africa. The depth and size of a typical meddy are also
shown by the oval. The latter figure enforces that in-
teraction with seamounts of southwestward-moving
meddies is almost an inevitability. Indeed, Richardson
et al. (2000) estimate that between the Horseshoe and
Great Meteor seamount chains, 90% of the meddy pop-
ulation encounter seamounts. Typical seamount diam-
eters and separations are on the order of 50–100 km,
which is also comparable to the diameter of meddies.
Typical meddy speeds are also about 0.02 m s21 (Rich-
ardson et al. 2000).

Many, but not all, float-based observations of meddies
suggest their interactions with seamounts are very dis-
ruptive and perhaps fatal (Richardson and Tychensky
1998; Shapiro et al. 1995). If this is true, such inter-
actions become significant to the salt budget of the North
Atlantic Mediterranean tongue. As Mediterranean salt
is a major input to water masses in general (e.g., the
North Atlantic Deep Water), understanding the source,
sink, and transport mechanisms for the Mediterranean
outflow finds motivation.

Other types of SCVs have been less well defined ob-
servationally. Nonetheless, the ocean bottom is rough
and SCVs are apparently ubiquitous, so it is plausible
that subsurface vortex interactions with seamounts and
other topography are routine. Recent examples of such
interactions in the South Atlantic are given in Weatherly
et al. (2002).

The dynamical understanding of such interactions,
however, is relatively poorly developed, a point noted
by Richardson et al. (2000). Vortex topography–inter-
action has benefited from some numerical studies, often
involving rings and continental slopes (Louis and Smith
1982; Smith 1986; Yasuda et al. 1996), but much less
from laboratory, analytical, or process-oriented dynam-
ical studies. Exceptions are Carnevale et al. (1991) and
Stern (1999), who considered barotropic eddies near
bottom bumps and seamounts, the latter idealized as
right cylindrical obstructions. In Stern’s study, the ed-
dies were shielded, implying either a core of uniform
vorticity surrounded by a strip of opposite signed vor-
ticity, or a collection of point vortices of mixed sign,
such that the net vorticity vanished. This constraint on
the vorticity distribution ensures that the eddy has finite
energy and also permits the vortices to move into a near-
field interaction, as observed, with the topography. Stern
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demonstrated that such interactions could force a seg-
regation of the centers of vorticity and thereby generate
a dipole moment. Such moments can impart a stable
self-propagation mechanism to vortices, as demonstrat-
ed in Stern and Radko (1998), and therefore topographic
encounters were suggested for their role in influencing
vortex dynamics. The paper ended with Stern general-
izing his vorticity centroid invariance theorem to a two-
layer quasigeostrophic system and speculating on vortex
scattering scenarios for stratified fluids.

The significance of dipole moment generation is that
of the possible inputs to vortex motion, that is, the b
effect, mean flow advection, and self-propagation, the
latter is emerging as perhaps the most oceanographically
relevant. Radko (2000, manuscript submitted to Rec.
Adv. Phys. Oceanogr., hereafter RAD) provides a con-
cise review. Stern’s results provide an apparently robust
mechanism for the generation of self-propagation ten-
dencies (albeit in a barotropic setting), while allowing
a vortex to retain a dominantly radial structure in keep-
ing with observations. A separate mechanism relying
on vortex instability has been proposed by Morel and
McWilliams (1997).

b. This paper

The above papers, particularly Stern (1999), are built
upon by considering the interactions of baroclinic vor-
tices with topography. Stern’s centroid theorem is first
generalized to continuously stratified quasigeostrophic
fluids. Additional assumptions are necessary to prove
potential vorticity centroid conservation, which gener-
alize the concept of an isolated vortex. These assump-
tions, however, are not required to prove the invariance
of the dynamically important barotropic vorticity cen-
troid. Next, vortex–bump interaction is examined in a
two-layer fluid using point vortex and finite-difference
models. This section addresses, among other things,
whether weak lower-layer vorticity anomalies can im-
part measurable tendencies on strong upper layer vor-
tices, and thereby control vortex propagation. It is ar-
gued topographic interactions have a pronounced ten-
dency to scatter eddies into stable, generalized hetons
(see Hogg and Stommel 1987) in geophysically relevant
parameter regimes. Last, these calculations are extended
to the case of finite-amplitude topography, where whole
column cylinders in the presence of baroclinic point
vortices are considered. Strong and weak interaction
experiments support the above scattering tendency for
this case. Accordingly, it is argued that baroclinic vortex
propagation mechanisms are sensitive to vortex–topog-
raphy interaction by means of scattering. The vortex–
vortex self-propagation so induced is of the heton class,
rather than the modon class as occurs in the barotropic
case.

The next section describes the continuously stratified
theorem. Section 3 follows with the two-layer calcu-
lation and results. Section 4 describes multilayer ex-

periments with idealized seamounts, and the paper ends
with a discussion section. Appendices contain some
mathematical details and a description of the numerical
procedure used to compute the Green’s function for the
point vortex in the presence of cylindrical seamounts.

2. Isolated vortices in continuously stratified fluids

The quasigeostrophic (QG) equation for a continu-
ously stratified fluid on an f plane is

2] f ]o2q 1 J(c, q) 5 0; q 5 ¹ c 1 c, (1)t h 2]z N ]z

where c is a streamfunction and q is the potential vor-
ticity of the fluid. The notation stands for the La-2¹h

placian operator in the horizontal, f o is the Coriolis
parameter, and N 2 is the buoyancy frequency. The J
denotes the usual Jacobian operator. To this equation
are appended the boundary conditions

c 1 J(c, c ) 5 0 at z 5 0, 2H, (2)zt z

where H is the nominal depth of the fluid. Note that a
flat bottom has been assumed.

To obtain a constraint on the potential vorticity center
of mass, (1) is multiplied by the vector r, denoting hor-
izontal location, and volume integrated. It is simple to
show that the integral of the weighted Jacobian vanishes,
given that the present potential vorticity anomalies lie
entirely within a finite volume. Thus,

` 0]
rq dVEE E]t

2` 2H

` 0

1 (c , 2c )q dV 5 0. (3)EE E y x

2` 2H

Integrating the second term on the left by parts and
applying (2) eventually yields

` 0]
rq dVEE E]t

2` 2H

0` 2f o5 (2c , c ) c dA . (4)EE y x z2[ ]N 2H2`

The comparable two-layer constraint derived by Stern
(1999) is

`]
(H q 1 H q )r dA 5 0, (5)EE 1 1 2 2]t

2`

where Hi and qi are the layer thicknesses and potential
vorticities respectively. Equation (5) shows there is a
difference in the center of potential vorticity mass evo-
lution between these two cases, reflecting buoyancy on
the boundary. Movements of nontrivial boundary buoy-
ancy can shift the q centroid essentially by a vortex
stretching mechanism. Such effects are avoided in the
layered model by construction. Conservation of the q
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centroid for the continuously stratified case can be guar-
anteed if there is no buoyancy structure on the bound-
aries in the initial condition. Equation (2) then shows
no such structure can develop on the boundaries and the
right side contribution to (4) vanishes for all time. These
are constraints in addition to those normally associated
with an isolated vortex.

On the other hand, for the barotropic problem, the
important dynamical constraint is on the vorticity cen-
troid rather than the potential vorticity centroid. This
was also the case for the two-layer theorem in Stern
(1999), as (5) immediately yields

`]
(H q 1 H q )r dAEE 1 1 2 2]t

2`

`]
2 25 (H ¹ c 1 H ¹ c )r dA 5 0, (6)EE 1 1 2 2]t

2`

thus constraining the vertically integrated center of vor-
ticity in a two-layer fluid.

If the vertical integration of the vortex stretching con-
tribution to potential vorticity is explicitly carried out
in (4) and (2), multiplied by r, and area integrated, it
is seen that

` 0]
2¹ cr dV 5 0. (7)EE E]t

2` 2H

Hence, the conservation of the vorticity centroid (usu-
ally defined as the dipole moment) for a continuously
stratified quasigeostrophic fluid, in the absence of ex-
ternal forces, is proven.

To illustrate the ramifications of (7), consider a two-
layer fluid with uniform potential vorticity patches in
the upper and lower layers, surrounded by fluid of van-
ishing potential vorticity anomaly. It is further assumed
that the bulk integrated potential vorticity vanishes; that
is,

H q A 1 H q A 5 0,1 1 1 2 2 2 (8)

where Ai is the area of the vortex in layer i and qi is
the associated potential vorticity anomaly. Equation (5)
can be evaluated in this case and is

]
(x 2 x )q A H 5 0, (9)1 2 1 1 1]t

where 1 and 2 are the zonal centers of mass for thex x
upper and lower vortices, respectively, and it is assumed
the meridional centers of mass both vanish. Equation
(9) demonstrates the ‘‘dipole moment’’ of this baroclinic
vortex is conserved in the absence of external forces.1

If Green’s theorem is now used, the propagation ten-

1 Note that dipole moments are usually associated with barotropic
vortices in the literature. Here we are discussing baroclinic settings
in which the baroclinic structure is integrally involved in the moment
generation.

dency of the upper-layer vortex center can be computed.
For small separations, the formula is

H q x a a2 2 2c (0, 0) 5 21 1 K , (10)1x 11 2[ ]2H R R

where the vortices are both assumed circular, the upper
vortex is centered at (0, 0), R 5

g9H H1 2

2(H 1 H ) f1 2 o

is the deformation radius, and a is the radius of the
lower-layer patch (see appendix A for details). Equation
(10) is related to a formula for slightly asymmetric bar-
otropic eddy propagation appearing in Stern (1999) and
can be used to estimate baroclinic eddy propagation.2

Considering the interesting case of a weak lower-layer
vortex under a strong upper-layer anticyclone, q2 is cho-
sen as q2 5 3 3 1026 s21 and H2 5 3000 m. If the
upper layer is characterized by q 5 23 3 1025 and H1

5 1000, as suggested by Schultz–Tokos and Rossby
(1991), the upper-layer signal is an order of magnitude
greater than in the lower layer. The propagation speed
of the upper center of mass is

H q x2 2 2 21y ø ø 0.01 m s (11)
H 1 H1 2

for a separation of 20 km, which compares well to the
observed meddy speeds of 0.02 m s21. Given the small-
ness of this distance and the weakness of the lower-
layer potential vorticity anomaly, direct observation of
the lower-layer vortex would be demanding. The ve-
locity field surrounding meddies is not well known be-
cause most meddy observational programs have focused
on the meddies themselves. There is also lack of deep
observations under meddies, again because the obser-
vational focus, particularly with floats, has concentrated
on typical meddy central depths. In any case, there is
little to no evidence of coherent deep circulations as-
sociated with meddies, a feature reflected in the present
model by the weak deep flows assumed in (11). Yet, in
determining the overall propagation speed of the vortex,
such flows would be dominant. Thus it is plausible to
consider this self-propagation mechanism as an expla-
nation of meddy propagation speeds provided vortex
configurations can be found that are stable and at most
slowly varying.

The theorem in (7) and the accompanying discussion
provide the backdrop for the following numerical ex-
periments. A geophysically relevant question, given the
observations, is if weak vorticity anomalies under sur-
face intensified eddies will impact their propagation as
the eddies drift over topography. Such interactions ap-

2 M. Stern (2000, personal communication) has shown that (10) is
comparable to, but not exactly equal to, the eddy propagation speed.
The actual propagation speed requires computing the motion of the
vortex boundary, rather than the center of mass.



OCTOBER 2002 2793D E W A R

pear inevitable and represent conditions breaking the
assumptions built into both (6) and (7). Dipole moments
will generally not be indefinitely preserved, and the
question becomes what types of vortex structures
emerge from these interactions. Does the concept of a
dipole moment and its associated propagation influence
play a useful role in explaining subsequent eddy evo-
lution and, if so, what speeds are involved? Are such
moments stable? These questions are considered in the
next sections.

3. Baroclinic vortices near bumps

Consider a vortex in a two-layer f plane fluid im-
pinging on a bump. The QG equations governing this
encounter are

2q 1 J(c , q ) 5 F 2 C ¹ c d̂ , i 5 1, 2, (12)it i i i d 2 i,2

where

h h1 b2 iq 5 ¹ c 1 (21) f 1 f d̂ (13)i i o o i,2H Hi 2

defines layer potential vorticity, i is the layer index, and
Fi denotes friction in the ith layer. Biharmonic friction
will be used for Fi in all experiments shown here. The
quantity h1 is defined by f o(c1 2 c2)/g9, where g9 is
the reduced gravity of the interface. The quantity i,2d̂
denotes the Kronecker delta function and Cd denotes a
bottom drag coefficient.

a. Point vortex calculations

The neglect of b in (12) can be rationalized in a
couple of ways given meddy and SCV parameters. First,
meddies are characterized by radii of 25–50 km and
swirl speeds in excess of 0.2–0.3 m s21. These yield
Rossby numbers (Ro) of 0.2 (see also Schultz–Tokos
and Rossby 1991). The importance of b is relatively
weak, as expressed by the ratio of the b contribution to
potential vorticity to that from relative vorticity

211 21 5by by 2 3 10 (ms) 10 m
ø ø 5 0.1. (14)

2 24 21¹ c f Ro 10 s 0.2o

Second, it is useful to compare the observed meddy
propagation rates of 0.02 m s21 to that expected from
the b effect. The latter is estimated by Nof (1982) to
be O(0.001 m s21), suggesting that non-b propagation
mechanisms must play a role. These we will study using
point vortex techniques.

Topography in this problem is confined to the lower
layer and all frictional parameters are neglected. In this
case, potential vorticity is a conserved quantity, a point
exploited by writing it in layer i as

q 5 a d(r 2 r ), (15)Oi i j i j
j

where d is the Dirac delta function. Identifying meddies
with patches of anomalous potential vorticity is also

consistent with their probable formation, involving en-
trainment of background Atlantic water by boundary
currents of pure Mediterranean outflow. Note that (15)
implies potential vorticity vanishes everywhere away
from the point vortices, even over the bump. Such a
situation will arise under suitable initial conditions, or
under arbitrary initial conditions if all of the fluid ini-
tially over the bump is swept downstream. Manipulation
of (13) yields the equations

h hb b2 22¹ c 2 R c 5 f 1 q 2 q 5 f 1 qc c o 1 2 o cH H2 2

2¹ c 5 2 f h 1 H q 1 H qb o b 1 1 2 2

5 2 f h 1 q (16)o b b

governing the horizontal structure associated with the
vertical normal modes cb and cc, where cb 5 H1c1 1
H2c2 and cc 5 c1 2 c2. The quantities qc 5 q1 2 q2,
and qb 5 H1q1 1 H2q2 are the potential vorticity pro-
jections of the two-layer system onto the barotropic and
baroclinic modes. The quantity R is the first deformation
radius

H H1 22R 5 g9 .
2(H 1 H ) f1 2 o

Isolated, radially symmetric topography centered at r 5
0 is considered, implying hb 5 0 for | r | . ro. The
assumption that potential vorticity vanishes aside from
point vortices requires that we further impose

ro

rh (r) dr 5 0 (17)E b

o

to insure the circulation bound to the topography has
finite energy [this is easily shown from (16)].

The linearity of (16) permits cb and cc to be broken
into three pieces: one for the point vortices, one for the
topography, and one for the mean flow. In this case, the
solutions of (16), including a barotropic mean flow, are

2 ny (i) (i11)(21) a K (|r 2 r |/R) |r|i j o i j
c 5 2 1 AKO Oc o1 22p Ri51 j51

2 ny (i) H a ln(|r 2 r |)i i j i j
c 5 2 U Hy, (18)O Ob o2pi51 j51

where H 5 H1 1 H2, for | r | . ro. The constant A in
the above is given by

ro r̂ f ho b2R r̂I dr̂E o1 2R H2o

A 5 . (19)
r r r ro o o or K I 1 K Io o 1 1 o1 2 1 2 1 2 1 2[ ]R R R R

Equation (17) implies that the bump generates no bar-
otropic circulation; an example of a bump satisfying
this constraint is a hill surrounded by a weak valley.
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FIG. 2. Point vortex interaction with a bottom bump. (upper panel)
Upper-layer point vortex trajectories and (lower panel) the zonal and
meridional separation between the upper- and lower-layer point vor-
tices from the experiment indicated by the upper panel arrow. No
dipole moment exists prior to the interaction; postinteraction, the
dipole moment is finite and fixed in time.

Such topography still generally supports a bound vortex
with a baroclinic expression outside ro. The bottom cir-
culation at the edge of a 100-m-tall cosine-shaped bot-
tom bump of radius 35 km, as computed using (19), is
about 0.002 m s21. Equations (18) yield the layer pres-
sures, namely,

c 5 (H c 1 c )/H; c 5 (c 2 H c )/H (20)1 2 c b 2 b 1 c

from which velocities may be deduced by geostrophy.
The vortices are then advected and used to reevaluate
the layer streamfunctions according to (18) and (20).

Figure 2 shows typical results from experiments of
this type. The vortex in this case consisted of two point
vortices of equal, but opposite strength in layers of 500
m thickness. They were situated one over the other and
started at a distance of 500 km east of the bump. A
barotropic mean flow of 0.02 m s21 advected them into
a near-field interaction with the topography. Their po-
sition relative to the bump center was varied and results
from four such experiments are shown. The meridional
initial positions of these vortices were 20, 10, 210, and
220 km relative to the center of the bump.

The upper panel contains the trajectories of the upper
vortex of the pair (the lower vortex trajectories were in
all these cases essentially indistinguishable from that
shown). Upstream of the bump, the trajectories are con-
sistent with the advection field. In all cases, however,
the interaction with the topography generates curvature
in the trajectory, followed by propagation at a new
steady rate. The lower panel shows a typical time history

of the separation of the point vortices from the exper-
iment indicated by the arrow in the upper panel. The
early stages are characterized by the two members mov-
ing as a unit. This is followed by a fairly complex tra-
jectory in the immediate vicinity of the bump, during
which time the pair separates. The subsequent trajectory
quickly falls into an equilibrium characterized by a fixed
separation. Note that the separation occurs in both east–
west and north–south directions, with the stronger of
the two being the zonal. This separation also gives rise
to the new vortex propagation tendencies in the direction
normal to the advecting current. In this case, the relative
speed is roughly 0.01 m s21, comparable to that of the
advective velocity itself.

These experiments address the issue of the influence
of the bottom topography on a vortex. Specifically in
‘‘weak’’3 interactions such as these, the vortex can scat-
ter from the topography at an angle driven by the to-
pographically induced tendency for the vorticity cen-
troid to evolve.

b. Continuous vortices

Several point vortex experiments were run, all yield-
ing results essentially like those described above. Ex-
perimentation with a finite-difference QG numerical
model, set in a periodic channel, was then pursued to
investigate continuous vorticity patches.

The parameters used typically consisted of H1 5 1000
m, H2 5 3000 m, f o 5 1024 s21, k 5 23 3 108 m4

s21, and 5 1000 days. Slip boundary conditions21C d

were employed and Gaussian bottom topographies of
variable height and radius were used. Several initial
vortex structures and barotropic advection speeds were
examined. Figure 3 contains the results of an experiment
with a 400 m Gaussian bump, an e-folding scale of 30
km and a barotropic advection of 20.02 m s21. The
initial upper-layer potential vorticity distribution was
taken to be constant at 20.3 f o inside of 30 km (the
deformation radius was 48 km) in the upper layer. [Even
though the implied Rossby number in these experiments
(0.3) is not small, experience with quasigeostrophic
models suggests that they display qualitatively useful
evolution in this range. This is partly due to the con-
servation of potential vorticity that governs strong vor-
tices such as meddies.] The lower-layer potential vor-
ticity anomaly was also constant, but extended to 60
km. The requirement of no net barotropic potential vor-
ticity anomaly was enforced, making the lower vorticity
anomaly roughly an order of magnitude weaker than
that of the upper layer. The lateral vortex structure was

3 The term ‘‘weak’’ is used in the informal sense of Stern (1999)
and denotes a vortex–topography interaction characterized by the pair
remaining locked together. Conversely, a ‘‘strong’’ interaction is one
in which the upper and lower point vortices are stripped apart. An
analogous, informal definition will also apply when continuously dis-
tributed vortices are considered later.
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FIG. 3. Vortex–topography weak interaction from a finite-difference
model: upper-layer q (upper panel) and lower-layer q (lower panel).
This is a composite of six different plots. The dates of the plots in
days appear by each vortex snapshot. The location of the bottom
topography appears in both panels. The topography includes a bound
anticyclonic vortex that is largely steady for the duration of the ex-
periment and thus not labeled with a date.

FIG. 4. Composite of upper and lower q fields from a scattered
vortex. Results from days 700 and 900 are shown, indicating the
stability of the structure and the induced propagation speed. Further
the structure is hetonlike. The approximate southward translation
speed is 0.01 m s21.

composed of Bessel functions and logarithms, as re-
quired by the solution of (16) for uniform vorticity and
a flat bottom. The vortex center was initially placed 200
km south and 350 km east of the topographic center.

Figure 3 shows a composite diagram of the upper-
layer potential vorticity for times before and after the
topographic interaction. The upper panel contains the
upper-layer q anomaly and the lower panel the bottom-
layer q anomaly. The location of the topography is in-
dicated in both plots and a persistent, nearly steady an-
ticyclonic circulation appears in the lower layer over
the bump. Note that the coherence of the vortex structure
has survived in both layers, placing this in the weak
interaction category. Considerable distortion of the low-
er q field has occurred, but the later distorted structure

is stable, as evidenced by the intermediate and later
times. It is also evident that the vortex in the later time
period is moving southward. This later period is also
characterized by a considerable separation from the
bump, arguing that the vortex motion is now indepen-
dent of any direct topographic effect. Further evidence
of this is that the bump circulation field is anticyclonic,
as seen in the lower-layer q plots, and would induce a
northward drift on the vortex as contrasted to the ob-
served southward motion.

Figure 4 shows a composite of the upper- and lower-
layer potential vorticities at two later dates from Fig. 3,
from which it is clear that the vortex is a coherent struc-
ture including the lower layer. The initial structure of
this vortex was radially symmetric with the centers of
the potential vorticity anomalies in each layer aligned
vertically. By the latter date, the upper- and lower-layer
centers have separated, giving rise to a dipole moment
à la (7). This configuration is called ‘‘hetonlike,’’ after
the original heton formulation first found by Hogg and
Stommel (1987). On the other hand, the overall structure
of the upper layer, which is where the dominant kine-
matic and dynamic signature of the vortex is found, is
still circularly symmetric. The layer vortex centers are
arranged with the lower cyclone to the east of the upper
anticyclone, a configuration set to generate southward
propagation as observed. The vortex meridional center
of mass location as a function of time is plotted in Fig.
5, demonstrating a southward propagation of roughly
0.01 m s21. The zonal center of mass trajectory appears
in Fig. 6. The later zonal speeds are slower than 0.02
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FIG. 5. Upper meridional q centroid trajectory as a function of
time. The slope of the included line is 0.012 m s21, which roughly
parallels the track.

FIG. 6. Upper zonal q centroid trajectory. The slope of the included
line is 20.013 m s21, indicating a considerable impedance of vortex
propagation by self-interaction mechanisms.

FIG. 7. A strong vortex–topography interaction. Composite of three
separate lower-layer q plots is shown; the times of the plots in days
appears next to the vortices. A plot of the upper q anomaly for the
later date appears as well and shows the disassociation between the
upper and lower vortex expressions. This interaction leaves the lower
anomaly intact, if distinct from the upper anomaly.

m s21 to the west due to the eastward-directed self-
propagation of the induced heton.

An example of a ‘‘strong’’ interaction between a bar-
oclinic vortex and topography appears in Fig. 7. This
is a composite of three snapshots of the q anomalies
(the bump location is indicated). The distinction be-
tween this and the previous experiment is that the as-
sociation between the upper and lower layers is under-
mined. The two vortices are stripped apart and, as shown
principally by the upper vortex trajectory, subsequently
are carried zonally by the advecting current. It is inter-
esting that the separate centers maintain their coherent
structures throughout the sequence.

While the upper-layer survival appears to be robust
for a variety of initial states, the lower layer can exhibit
more complex behaviors. Figure 8 shows a composite
of the lower-layer evolution during a very strong inter-
action. Not only are the upper and lower layers stripped
apart, but the lower layer is sheared out to a zonal ten-
dril. The survival of the upper-layer vortex is perhaps
not surprising given that the topography directly affects
only the lower layer.

c. Distributed topography

Bottom irregularities are common, although diverse
in structure and amplitude. The effect of a distributed
set of bottom bumps can be considered by examining
(16) in the presence of a large number topographic cen-
ters at random locations and of random amplitudes. Ex-
amples of the trajectories so computed are compared in
Fig. 9, where the three pathways shown are differen-
tiated by their initial conditions being 5 and 10 km apart.

In all cases, the vortices were subject to a far-field west-
ward barotropic mean flow of 0.02 m s21. Trajectories
of both the upper and lower vortex centers are shown
in the plot to emphasize that they track each other. The
topography in this case consisted of 200 bottom bumps
distributed randomly over an area of 2000 km 3 2000
km. This yields an average separation of 140 km, not
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FIG. 8. A very strong vortex–topography interaction. Three plots
of the lower q anomaly are shown, and the associated dates in days
are indicated. The latter date shows the destruction of the lower-layer
vortex, which has been sheared out into a zonal tendril. The upper-
layer vortex at this time (not shown) is no longer associated with the
lower center, and subsequently propagates zonally.

unlike the major topographic anomalies seen in Fig. 1.
The amplitude of the bumps was taken from a Gaussian
distribution centered on 100 m and with e-folding scale
of 50 m. (Negative heights generated by the random
number sequence were simply converted to positive val-
ues.) The lateral scale of the bottom bumps was taken
to be the 35-km deformation radius. Such bumps are
characterized at a distance of one deformation radius
from their centers roughly by an anticyclonic deep cir-
culation of 3 3 1023 m s21.

The motivation for showing Fig. 9 here is because
meddy trajectories are observed to be irregular. This
feature was one of the main observational aspects of
meddies, to which Morel and McWilliams (1997) ap-
pealed to support the applicability of their unstable med-
dy model. Clearly, a similar highly time-dependent na-
ture can be imparted to meddy and SCV trajectories by
their interactions with distributed bottom topography.

4. Vortex interactions with strong topography

The previous calculations involved topography that
is small in the usual QG sense. On the other hand,
meddies and vortices in general are likely to encounter
seamounts as well as bumps on the bottom. It is not
possible to categorize such topography as small; rather,
a much more intuitively satisfactory idealized model of
seamounts is as a cylinder extending through the entire
water column. Meddy–seamount interaction is exam-
ined in the present section using a point vortex approach,
whereby the vortex is modeled as a cloud of point vor-

tices embedded in a three-layer fluid. The net barotropic
potential vorticity anomaly vanishes here due to the
presence of opposite signed q anomalies in the various
layers.

Three layers, rather than two, are chosen because
meddies are vortices embedded in the thermocline. This
feature can be captured by placing the potential vorticity
anomaly in the middle layer. The three-layer model is
also dynamically richer than the two-layer case because
of the presence of a second deformation radius. Finally,
comparisons of some of the upcoming results with ob-
servations will be given later, an activity that the more
‘‘realistic’’ three-layer model facilitates.

One important distinction between this configuration
and that of the weak bumps is that the perturbations to
the mean flow induced by the topography are different.
Note that in the weak topography formulation, circu-
lations form over the bump because of vortex stretching.
Such compression is not possible for seamounts ex-
tending throughout the column. Instead, the flow parts
around the seamounts with a degree of asymmetry
caused by the presence of other seamounts in the neigh-
borhood.

A point vortex approach is used because the presence
of a circular boundary is relatively straightforward to
include. In contrast, in a classical gridpoint formulation,
the seamount boundary would entail a series of steps
on which no-normal-flow boundary conditions would
apply. These have the potential to make the boundary
interaction very viscous. On the other hand, the inviscid
problem seems more relevant because vortex–seamount
interactions, inasmuch as they have been observed for
meddies, are short-lived events. It is therefore ques-
tionable if the potential vorticity anomaly of the vortex
can be significantly modified during the encounter. (It
is also possible to employ boundary-fitted coordinates
to handle the seamount. These would remove the finite-
difference concerns mentioned above, but such a model
has not been developed here.)

Contour dynamics (Stern and Pratt 1985) methods
also lend themselves to this problem, but have not been
used in order to avoid the contour surgery that would
be required if the vortices ‘‘broke’’ around the sea-
mount. Nonetheless, the calculation of Green’s function
for this problem is a computationally challenging task
and is described in appendix B. For present purposes,
it is noted that the employed procedure is iterative and
can accommodate any number of layers (the specific
case of three layers is demonstrated in appendix B),
vortices or seamounts, and any size and location for the
seamounts. All seamounts are, however, restricted to
circular symmetry.

Radially symmetric vortices are used at the outset and
are brought into the near field of the seamounts by
means of a barotropic flow. At large distance, this flow
is uniform at values of 20.02 m s21.

An example of vortex–seamount interaction appears
in Fig. 10, where before and after states are shown. This
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FIG. 9. A weak interaction between a vortex and a seamount. The locations of the point vortices
are shown from four different dates (the time in days of the snapshots appears next to the vortices),
and the seamount location is indicated. The vortex centers separate because of the interaction and
the long-term evolution is nearly steady.

FIG. 10. Vortex trajectories in the vicinity of distributed topography. The locations of the
bumps are indicated by the asterisks. Their amplitude is random, but centered on a height of
100 m. Three trajectory sets are shown; both upper and lower point vortex paths appear. Their
initial locations are close and all indicated by the mark at (21000 km, 2250 km). Their subsequent
trajectories are characterized by rapid separation in space, and their final locations are also
indicated by a cross. Note the twists and kinks in the computed trajectories.
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FIG. 11. Centroid separation time history. Both zonal and merid-
ional components appear, with the former dominating in size. Positive
values denote the upper layer leading the lower layer.

vortex began at (150 km, 0 km), moving westward into
an interaction with a seamount located at (0, 90 km).
The seamount radius was 50 km. The uppermost of the
three layers was 100 m thick, the second 300 m, and
the third 3000 m. No point vortices were introduced
into the first layer. The second layer housed a vortex of
30-km radius and a Rossby number of 20.2. The third
layer included a vortex of the same radius and a Rossby
number of 0.02, that is, 10 times smaller than that of
the upper layer. The initial radially symmetric config-
uration appearing in the figure maintained itself for
roughly 100 days prior to the interaction with the sea-
mount. The configuration would be stable in the absence
of external effects for the duration of the experiment.
The distortion experienced by the vortex due to the sea-
mount encounter is clearly minor, as also seen in the
figure. The main effect is in the separation of the vor-
ticity centers of the two layers. The subsequent trajec-
tory of this newly developed generalized hetonlike pair
included a persistent northward drift at the rate of 0.01
m s21. Once formed, this latter configuration was also
apparently stable and persisted for several hundred more
days.

The vortex center separation of the upper and lower
layer vortices is documented in Fig. 11, where the zonal
and meridional q center history from this vortex is
shown. The first part of the history is dominated by the
two centers tracking each other, as expected from their
radial symmetry and overall stability. As they move into
the seamount encounter, the separations exhibit a rea-
sonably complicated pattern, characterized by time-de-
pendent separations in the zonal and meridional direc-
tions. These settle to finite values as the vortex exits
the seamount neighborhood, with the zonal separation
being the largest. This separation is the one responsible

for the northward migration. Note however, that the me-
ridional separation is arrayed so as to impede the west-
ward vortex advection by the barotropic flow. The zonal
speed of the vortex self-propagation is roughly 0.005
m s21, representing a measurable slowing of the vortex.

Several initial value experiments of this sort were
conducted, each differentiated from the others by the
initial vortex placement relative to the seamount with
all other parameters remaining unchanged. The initial
point vortex centers were positioned 200 km east of the
seamount and at points 120, 90, 290, 2100, and 2120
km north of the seamount center. The seamount itself
had a radius of 50 km. The vorticity center trajectories
over a period of 200 days from these cases are shown
in Fig. 12. Note that, depending on the nature of the
interaction, both northward and southward self-propa-
gations can develop. Also the zonal self-propagation
generated by the interaction can be in either sense. This
appears in the trajectories south of the seamount zonally
lagging those north of the seamount. These lags are
caused by the vortices to the south developing an east-
ward self-propagation tendency, while those to the north
develop a westward tendency and reinforce the advec-
tion.

An example of a strong interaction with strong to-
pography is shown in Fig. 13. In this case, the vortex
initial location was at (150 km, 0 km) while the cylinder
was at (0 km, 30 km). The subsequent evolution differed
markedly from the weak interaction scenario. Rather
than directly scattering into a hetonlike configuration,
the vortex broke around the seamount. (Note, the break-
ing does not involve direct contact of the meddy with
the topography.) This involved the upper and lower cen-
ters moving largely in opposite senses about the sea-
mount, as seen in Fig. 13. These are very complicated
histories, and are under further study; nonetheless, the
subsequent evolution shows an unexpected tendency to
reorganize into a hetonlike configuration. The interac-
tion of the centers after their topographic separation is
mediated by the seamount geometry. Given their split,
it is essentially impossible for the upper and lower q
anomalies to reunite in a radially symmetric shape;
therefore, the resultant structure is dipolar. The subse-
quent center displacement generates a dipole moment
whose interaction drives the vortex away from the to-
pography.

Note the later heton formation is not a perfect process.
Some of the initial vortex mass is lost from the emerging
heton. This experiment, however, shows that a majority
of the mass can reorganize into a coherent vortex. This
is a result typical of several such experiments, sug-
gesting heton generation is a very robust vortex mech-
anism.

It is interesting to comment on the similarities be-
tween this experiment and the observations, Shapiro et
al. (1995), of the structure of a meddy that had recently
encountered a seamount. They reported that Meddy Ir-
ving partially survived its interaction with the Irving
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FIG. 12. Centroid trajectories from several vortex seamount interactions from weak interactions.
The seamount location is indicated and results from 200 days of integration are shown.

FIG. 13. A strong interaction between a vortex and a seamount. Three different plots are shown; the
dates of the plots are shown. Note the disruption of the vortex by the interaction, but its remarkable capacity
for reorganizing into a heton configuration.

Seamount, emerging as a coherent eddy. Further, they
found a wake of saline water trailing the meddy, ap-
parently made of diluted water from the vortex periph-
ery and two smaller cores of much more pure vortex
stock. These features appear in the above experiment.
Namely, the vortex survives as a coherent structure in
spite of a very strong topographic encounter. A wake
of vortex water is generated however, appearing in Fig.
13, as the point vortices detached from and trailing the
main dipole. A few smaller cores of more intense q
anomaly appear in the wake. Since a Lagrangian prob-
lem is solved to determine the evolution of this system,
the distribution and density of point vortices can equally
well be interpreted in terms of salinity or potential tem-
perature, a view that strongly connects this experiment
with the Irving data. Of the 81 point vortices initially
in the meddy, approximately 23, or 28% of the total,

are expelled. Shapiro et al. (1995) report somewhere
between 20% and 27% of the buoyancy anomaly of
Meddy Irving was found in its wake. The experiment
rationalizes those data and their interpretation in terms
of potential vorticity dynamics. The survival of the med-
dy is ascribed to the persistence of the q anomaly and
the strong tendencies of anomalies to regularize.

5. Discussion

The problem of vortex topography interaction has
been studied with particular, but not sole, emphasis on
weak interactions, where the integrity of the vortex prior
to interaction is largely maintained throughout the in-
teraction. This is a problem motivated by the apparent
ubiquity of subsurface coherent vortices in the World
Ocean along with the global distribution of nontrivial
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bottom topography. Baroclinic vortices are studied, both
as a complement to the earlier work on barotropic vor-
tices conducted by Stern (1999) and because of the large
numbers of observations of baroclinic vortices in the
ocean.

The most well-observed member of the subsurface
vortex class is the meddy, and an unresolved issue sur-
rounding them is the identification of the mechanisms
responsible for their propagation. Evidence is provided
here that topographic interactions can often induce di-
pole moments in baroclinic vortices and the generation
of apparently stable hetonlike structures capable of ef-
fecting important vortex self propagation. Given the ge-
neric character of bottom irregularities, vortex trajec-
tories so-influenced should be themselves irregular, and
exhibit a number of kinks and turns. These are indeed
both computed in the present case and observed in the
ocean.

Many of the above results were argued based on point
vortex calculations, but finite-difference models have
also been used. The basic tendency for vortices to scatter
into continuously distributed generalized hetons was
found in this case as well. These structures were found
to be very stable and capable of surviving during prop-
agations over many eddy radii. This is significant as
there are few examples of hetons with continuous po-
tential vorticity distributions.

Both small topography and seamounts have been con-
sidered as limiting examples of topographic interactions.
In both cases, scattering into a hetonlike configuration
is typical, even though the nature of the interaction be-
tween the cases is quite different. Evidence is also of-
fered that this is a very robust tendency, occurring even
in instances where the vortex can break around the sea-
mount. A correspondence has been found between the
highly idealized experiments in this case and the ob-
servations of a meddy shortly after encountering to-
pography. Those observations suggest that vortex–sea-
mount interaction need not be fatal, and this is certainly
consistent with the present results. Such interactions can
‘‘wound’’ the vortex however, and computed losses from
the main coherent structure are quite like those estimated
from data.

The existing meddy observational database does not
make a strong case for counterrotating flows persis-
tently in the vicinity of meddies. On the other hand,
the cases studied here consist of vortices for which the
cyclonic companions of the anticyclones are compar-
atively weak, and therefore would be challenging to
identify in observations. They are also underneath the
core anticyclone, where few observations exist, a
shortcoming that future observational programs may
wish to address.

Relative to the issue of weak asymmetry in vortices,
one point is worth making explicit. RAD argues that
vortices governed by reduced-gravity, f -plane, qua-
sigeostrophic dynamics with weak asymmetries do
not survive for long. A reason forwarded for this is

that these equations require the center of mass to be
motionless. Asymmetries initially present in vortex
can cause vortex migration, but the vortex is none-
theless constrained not to wander far from its initial
location as a coherent vortex. The asymmetries quick-
ly break down, and a motionless symmetric structure
occurs. Quasigeostrophic b-plane dynamics require
the center of mass to move westward at the long-wave
speed. While less experimental work has been done
on the b plane, the mechanics of vortex regularization
are still at work and it is plausible that reduced-grav-
ity, weakly asymmetric eddies still survive only for
propagations of several diameters. An unexpected re-
sult argued by RAD is that primitive equation f plane,
reduced-gravity vortices with weak asymmetry are
longer lived than f -plane QG eddies, an effect that
he shows is due to gravity wave dynamics. These
results suggest weak asymmetry can be difficult for
vortices to sustain for long periods of time. The ex-
periments here show very different characteristics.
The weak asymmetry, at the heart of the vortex prop-
agation, resides in different layers. This implies that
vortex regularization is less likely to dominate, and
the vortices at the outset break the reduced-gravity
requirement. It appears that this combination of in-
gredients can result in stable and very long lived
asymmetric configurations on the f plane that are ca-
pable of significant self-propagation. This feature per-
haps suggests that the current model is more appli-
cable to observed vortices than is the reduced-gravity
model.

In summary, these results argue two conclusions:
First, topographic interactions are an almost inevitable
source of long-lived weak asymmetry in vortices and
therefore of importance to vortex trajectories. The self-
propagation tendencies so generated are comparable to
those observed and the distribution of topography lends
a random-looking component to vortex movement. Sec-
ond, even strong interactions, during which the integrity
of the vortex is severely disrupted, can fail to destroy
the eddy. The eddy q anomalies are strong and survive
the encounter. The subsequent evolution of the system
is capable of reorganization. These results support the
suggestion by Shapiro et al. (1995) that meddy–sea-
mount interaction need not be fatal. It is interesting to
speculate that vortices generally survive strong sea-
mount interactions, with a concomitant and small loss
of mass to the surrounding fluid. This conjecture is cur-
rently under study.

Acknowledgments. WKD is supported by NSF Grant
ATM-9818628 and NASA Grants NAG5-7630 and
NAG5-8291, the latter awarded in support of the NASA
Seasonal to Interannual Prediction Project. The author
wishes to acknowledge a number of interesting con-
versations with Melvin Stern and Gouhui Wang. Ms. J.
Jimeian assisted with computational issues. This is a
contribution of the Climate Institute, a Center of Ex-



2802 VOLUME 32J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

cellence support by the Research Foundation of the Flor-
ida State University.

APPENDIX A

Center of Mass Velocity

Consider a two-layer, inviscid, f -plane, quasigeo-
strophic fluid and assume patches of uniform potential
vorticity occur in each layer such that

q H A 1 q H A 5 0,1 1 1 2 2 2

where q1 and q2 are the layer potential vorticities, H1

and H2 are the layer thicknesses, and A1 and A2 are the
areas of the patches. The solution to (16) is

c (x ) 5 G (x ; x)q (x) dxb o EE b o b

c (x ) 5 G (x ; x)q (x) dx, (A1)c o EE c o c

where the barotropic and baroclinic Green’s functions
are

1 |x 2 x |oG (x ; x) 5 2 Kc o o1 22p R

1
G (x ; x) 5 ln(|x 2 x |). (A2)b o o2p

Consider a two-vortex configuration where it is assumed
that they occur one in each layer, the vortex boundaries
are circular, and the upper and lower centers are found
at (0, 0) and (x2, 0), respectively. Using standard contour
dynamics manipulations, the contribution to the merid-
ional velocity at the upper vortex center by the baro-
clinic mode cc is given by

q |x|2c (0, 0) 5 K î · n dl, (A3)c R o1 22p R

where the outward pointing unit normal vector of the
layer-two vortex is denoted by n. A similar formula
yields the barotropic contribution at this same point.
Assuming the separation of the two centers is small
compared to the deformation radius, the argument of
the integral in (A3) can be Taylor expanded, and the
integral evaluated. Following a similar procedure for
the barotropic mode and then computing the upper-layer
velocity according to (20) yields (10).

APPENDIX B

A Point Vortex Model of Meddy–Seamount
Interaction

The inviscid, three-layer, unforced, layered quasigeo-
strophic (QG) equations on an f plane are

d
q 5 0, i 5 1, 2, 3idt

in which

c 2 c1 22 2q 5 ¹ c 2 f1 1 o g9H1

c 2 c c 2 c1 2 2 32 2 2q 5 ¹ c 1 f 2 f2 2 o og9H g0H2 2

c 2 c2 32 2q 5 ¹ c 1 f , (B1)3 3 o g0H3

where f o denotes the Coriolis parameter, Hi the average
thickness of layer i, ci the ith layer streamfunction, d/dt
the quasigeostrophic material time derivative

d ]
5 1 J(c , ·),idt ]t

and g9, g0 the reduced gravities of the two interfaces.
A solution to (B1) under these constraints is

t

q (x, t) 5 q (x , 0); x 5 x 1 u(x, t) dt, (B2)i i o o E
o

expressing the conservation of potential vorticity by flu-
id parcels.

Consider now a patch of anomalous potential vorticity
on an f plane, embedded within a fluid of otherwise
vanishing potential vorticity and threaded vertically at
NC locations, rk, by solid circular islands of radius ak.
The boundary conditions for this system are c i → f (r)
for r → ` where f (r) is the known undisturbed far-field
flow, no-normal flow on the cylinder boundaries c i(rk

1 akr̂k) 5 ck 5 constant, where r̂k denotes the radial
unit vector centered at rk and

2p

c a du 5 S 5 0, (B3)r k kR
o

stating the persistence of the circulation, Sk, around an
island.

Defining

2 1/2g9 H 1 H g0(H 1 H ) H 1 H g0(H 1 H ) 4g02 3 1 2 2 3 1 2g 5 2 2 6 2 1 , (B4)6 5 1 2 6[ ]2g0 H g9H H g9H g93 1 3 1
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the layer potential vorticity equations can be written as
2 2 22¹ c 5 q , ¹ h 2 R h 5 q , (B5)b b 6 6 6 6

where

c 2 c c 2 c1 2 2 3h 5 f 1 g 5 h 1 g h6 o 6 1 6 21 2g9 g0

f oq 5 [q 1 (g 2 1)q 2 g q ]6 1 6 2 6 3g9

g9H H2 12R 5 . (B6)6 2f (H 1 H 2 g H )o 1 2 6 1

Equation (B6) defines the two baroclinic deformation
radii of the problem and hi are the layer interfaces.

The equations are nondimensionalized by scaling dis-
tance on the first deformation radius (R1) and stream-
function by f o . The nondimensional normal equa-2R1

tions are identical to (B5), where

H H H1 2 3c 5 c 1 c 1 cb 1 2 3H H HT T T

H H H1 2 3q 5 q 1 q 1 qb 1 2 3H H HT T T

h 5 h 1 g h6 1 6 2

q 5 q 2 q 1 g (q 2 q )6 1 2 6 2 3

(q*, q*) 5 f (q , q )b 6 o b 6

2*R122 22(R , R ) 5 1, , (B7)1 2 2*1 2R2

all unstarred variables are nondimensional and starred
variables are dimensional. Each of (B5) has an asso-
ciated Green’s equation,

2¹ G 5 d(x 2 x )b o

2 22¹ G 2 R G 5 d(x 2 x ); (B8)6 1 6 o

constrained by the same boundary conditions. Solutions
of (B5) may then be written

z zz(x ) 5 G (x ; x)q (x) dA, (B9)o EE o

where z 5 {cb, c6}, Gz 5 {Gb, G6}, and qz 5 {qb,
q6}.

The meddy is modeled using point vortices. The q

anomaly strength of each point vortex is taken from
(B9); that is, the integral there is approximated by

NV

G(x ; x)q(x) dA ø G (x ; x )q(x )dA , (B10)OEE o p o p p p
p51

where the Green’s function Gp is that forced by a Dirac
delta function at location xp. The ‘‘strength’’ of the point
vortex is given by q(xp)dAp, where dAp is the area of
the original vortex now assigned to the point vortex p.
The computational challenge of this problem is to obtain
the Green’s function solutions to (B5).

a. The barotropic solution

The barotropic solution is written as the sum of the
barotropic flow at large r, a singular part and a ho-
mogenous part

G 5 2U Hy 1 c 1 c ,b o s h (B11)

where the amplitude of the mean flow is Uo. The no-
net-circulation constraint is satisfied trivially by the bar-
otropic mode. The general homogenous solution is

`

2|m | 2imuc 5 a r eOh m
m52`

`

|m | 2imu1 g r e 1 d log(r), (B12)O m o
m52`

where m is an integer and the coefficients am and gm are
complex. Note, gm 5 do 5 ao 5 0 by the boundary
conditions. The quantity ch is real, so 5 a2m anda*m
thus

`

2m r ic 5 2 r [a cos(mu) 1 a sin(mu)], (B13)Oh m m
m51

where , denote the real and imaginary parts of am.r ia am m

This can be generalized by writing

NC `

2m r ic 5 2 R [a cos(mu ) 1 a sin(mu )] ,O Oh k k,m k k,m k5 6k51 m51

(B14)

where the subscript k denotes the kth cylinder, Rk the
radial coordinate relative to the kth cylinder center (Rk

5 | r 2 rk | ), and uk the angular coordinate relative to
the kth cylinder center.

Neglecting cs, the NC boundary equations reduce to

NC `

2m r ic 5 2 (|r 2 r |) [a cos(mu ) 1 a sin(mu )] 2 U H(y 1 a sinu ) (B15)O Ok dk k k,m dk ,k k,m dk ,k o k k ko o o o o o o5 6k51 m51

for ko 5 {1, NC}. In (B15), rk 5 (xk, yk) denotes the center of cylinder k and r a point on the boundary ofdko
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the koth cylinder. The quantity u is the angle of adk ,ko

point on the koth cylinder relative to the center of cyl-
inder k.

If there is only one cylinder (NC 5 1), the solution
to (B15) can be obtained by a Fourier transform in u.
The result is

2U Hao 1ic 5 2U Hy , a 5 (B16)1 o 1 1,1 2

and all other coefficients vanish. The need for an iter-
ative solution arises when there are several cylinders.
Each cylinder cancels their barotropic pressure distri-
bution using (B16), but those homogenous contributions
‘‘broadcast’’ their own pressure distributions across
neighboring cylinders. These must be cancelled by other
contributions to the coefficients.

Given a guess for the amplitudes, here called , thenak,m

pressure on the koth boundary left by these amplitudes is

NC P

2m r n i nc 1 U H(y 1 a sinu ) 1 2 {|r 2 r | [a cos(mu ) 1 a sin(mu )]}O Ok o k k k dk k m,k dk ,k m,k dk ,ko o o o o o o
k51 m51

5 dG [x 1 a cos(u ), y 1 a sin(u )], (B17)b k k dk k k dko o o o o o

where P is the number of retained azimuthal modes.
The ‘‘correct’’ amplitudes ak,m yield dGb 5 0, although
in general the guess will not satisfy this constraint.nak,m

Therefore, a correction to the coefficients, d n11, is[r,i]a k,m

computed from the residual in (B17):

NC P

2m r n11dG 5 2 {|r 2 r | [da cos(mu )OOb,k dk k m,k dk ,ko o o
k51 m51

i n111 da sin(mu )]}.m,k dk ,ko

(B18)

The right-hand side of (B17) is approximated by using
the contribution from cylinder ko only:

P

2m r n11dG ø 2 {|r 2 r | [da cos(mu )Ob,k dk k m,k dk ,ko o o o o o
m51

i n111 da sin(mu )]}.m,k dk ,ko o o

(B19)

A Fourier transform in u of (B19) gives the corrections
to the coefficients. The (n 1 1)th estimate of the total
coefficient is n11 5 n 1 d n11. The trun-[r,i] [r,i] [r,i]a a ak ,m k ,m k ,mo o o

cation of the exact equation in (B18) to its ‘‘precon-
ditioned’’ form in (B19) implies the coefficients n11[r,i]a k ,mo

will not exactly cancel the pressure structure on the
cylinder boundary; therefore, the procedure is repeated
until the corrections exceed a stopping criterion like

NC P/2 r n11 i n11|da | |da |k,m k,m1 , e. (B20)O O r i1 2|a | |a |k51 m51 k,m k,m

Vanishing amplitudes are used at the beginning of the
integration. After that, the iterations are started using
the amplitudes from the previous time step. Rather strin-
gent stopping criteria, like e 5 O(10211), are achieved
in six to eight iterations.

Including singular solutions is straightforward. Given
NV( i) vortices in layer i, each at known locations xi,
these project onto NV( i) delta function contribu-3Si51

tions to each equation. Considering the collection of
point vortices,

3 NV(i) ai, j
c 5 ln(|x 2 x |), (B21)O Os i, j2pi51 j51

where the ai, j are associated with the ‘‘strength’’ of the
vortices. Each of these singular vortices broadcasts a
pressure distribution across the cylinders and the above
iterative technique is used to cancel them.

b. Baroclinic solutions

The procedure here is similar to the above; that is,
the baroclinic mode is written

G 5 h 1 h ,s h (B22)

where G denotes (G6), hs the singular contributions
from the vortices and hh the homogenous solutions of
(B5). The singular solutions are written as

3 NV(l) s |r 2 r |l,p l,ph 5 2 K , (B23)O Os o1 22p Rl51 p51

where R is the appropriate nondimensional deformation
radius and Ko is the zeroth modified Bessel function of
the first kind. The quantity sl,p is the vortex strength of
the c th vortex in layer l, as it appears to the baroclinic
mode. The homogenous solution to (B5) is

NC |r 2 r |krh 5 b KOh k,o o5 1 2Rk51

` |r 2 r |k1 KO m1 2Rm51

r i3 [b cos(mu ) 1 b sin(mu )] , (B24)k,m k k,m k 6
where Km is the mth modified Bessel function of the
first kind.
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The major difference here is that the singular and
homogenous baroclinic solutions can ‘‘broadcast’’ cir-
culation as well as pressure. This must be cancelled on
a cylinder by the Ko contribution to the homogenous
solutions.

Given a guess for the bk,m coefficients, the azimuthal
velocity on the cylinder boundaries is computed and
summed to yield an estimate of the residual circulations,

. Additional corrections to the Koth coefficients arenS k

then computed according to

n1122pdb ak,o k nK 5 S ; (B25)1 k1 2R R
n11 n n11b 5 b 1 db (B26)k,m k,m k,m

is then enforced, and the iteration continued until a stop-
ping criterion, like (B20), is met.

c. Special issues

Two cases requiring special attention are for vortices
very close to one another in the horizontal and vortices
very near the cylinder boundaries. In the former, if the
separations were less than a preset value (typically
0.01R1), analytically generated small argument expan-
sions were used in place of the Bessel functions. The
latter case could result in the spurious penetration of
vortices through the cylinder boundaries. Vortex location
relative to cylinder boundaries was monitored and, if
penetration was noted, the offending vortex was
‘‘pushed’’ radially outward to the vortex boundary. The
number of occurrences of this behavior was a function
of the time step, and could be controlled by reducing it.
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