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ABSTRACT

The Ertel potential vorticity theorem for stratified viscous fluids in a rotating system is analyzed herein. A
set of ‘‘tracers,’’ that is, materially conserved scalar quantities, and the corresponding Ertel potential vorticities
are used to obtain an absolute fluid velocity determination (including both horizontal and vertical components)
that generalizes earlier formulations known in the literature within the framework of the beta-spiral method.
Potential vorticity fields, respectively, of (i) density, (ii) potential temperature, (iii) salinity, and (iv) the latter’s
potential vorticities ratio are analyzed in order to infer properties of steady, or quasi-steady, nonhorizontal or
slightly viscous currents. For horizontal flows, general conservative properties of a large class of tracer potential
vorticities are found and discussed. These ideas are then applied to various steady cases of physical interest,
such as density fronts and thermohaline currents. These arguments, together with observational data, are used
to obtain some interesting results, even if the values obtained are affected by large experimental errors. Using
this method allows the ratio of the vertical and horizontal components of the velocity field to be estimated with
greater certainty. Further insight is also gained into a purely hydrological identification of the no-motion level,
a classical difficulty in hydrology.

1. Introduction

Ertel’s potential vorticity (EPV in the following) for
inviscid fluids is fundamental in geophysical fluid dy-
namics (Ertel 1942; Gill 1982; Pedlosky 1987; Haynes
and McIntyre 1987, 1990; Müller 1995; Salmon 1998;
Kurgansky and Pisnichenko 2000). As nicely shown in
Müller’s (1995) review, principal vorticity and circu-
lation theorems can be inferred from Ertel’s theorem.
Moreover, EPV conservation can simplify fluid dynam-
ics analyses. Finally, realistic aspects of physical ocean-
ography are often investigated in terms of EPV (Ped-
losky 1987; Rhines 1986; Ripa 1981; Salmon 1982;
Cushman-Roisin 1994; and many others as well).

On general grounds, Haynes and McIntyre (1987,
1990) investigated the effect of a realistic friction on
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EPV evolution. Also Salusti and Serravall (1999) ob-
tained a relation that expresses the evolution of EPV in
the presence of mild viscosity and identified novel EPV-
related invariants. This relation may be useful both for
approximating some particular problems and for diag-
nosing real current observations. Here we show how
similar ideas can be extensively generalized through the
application of EPV to oceanic tracer dynamics in order
to obtain an absolute velocity determination, and how
also rather unexpected properties are obtained for strict-
ly horizontal flows.

In the first instance, the original EPV theorem can be
applied to a large family of potential vorticities Pl re-
ferring to any regular scalar quantity l. In oceanography
a popular choice is to assume that marine water density
r is materially conserved, namely Dr/Dt 5 0 as for
incompressible fluids, and thus to assume l 5 r (Müller
1995). In so doing one arrives at the material conser-
vation of the density potential vorticity Pr, valid for
incompressible inviscid fluids. So, if both r and Pr are
conserved, it is the intersection of isopycnals r 5 const
with surfaces Pr 5 const that identifies streamlines.
Indeed, the direction of the velocity is known even if
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FIG. 1. Sketch of steady streamlines viewed as the intersection of
a, b, C, . . . planes.

its magnitude remains undetermined. However, besides
the density r, a number of materially conserved quan-
tities such as salinity S, potential temperature u (for
adiabatic flows) and many chemically inert tracers may
be found in the oceans. Unlike direct velocity field ob-
servations, some of these quantities are relatively easy
to measure and interpret (Wunsch 1978).

This naturally raises the general question of whether
the ‘‘perfect’’ knowledge of any of these fields, say x,
gives us any additional information of use in determin-
ing the fluid velocity. In steady cases, if density and its
potential vorticity are materially conserved, the answer
is negative since a streamline is identified as the inter-
section between these two surfaces r 5 const and Pr

5 const (Fig. 1). There is thus no point in adding that
x 5 const as it only gives a third plane passing through
the streamline, a kind of mathematically degenerate
problem.

However, it will be shown that, by considering a tracer
x and its potential vorticity Px with a well-known time
evolution, a step toward absolute velocity determination
can be made since the Px alongstream evolution in some
cases will allow the absolute fluid velocity horizontal
and vertical components to be estimated.

This approach and its validity are fully discussed in
section 3, taking into account also its relationship with
the Needler (1985) equation and with the absolute ve-
locity vector determination outlined by Olbers et al.
(1985) according to their beta-spiral method (section 4).
It must be borne in mind that the essence of the beta-
spiral method involves using two independent tracer
conservation equations in order, at any point, to know
the direction of the absolute velocity of a current, which
has to be essentially baroclinic. The original scheme of
Stommel and Schott (1977) uses the thermal wind re-
lation, tracer conservation equations, and also a line-
arized vorticity balance equation linking vortex stretch-
ing and the horizontal advection of planetary vorticity
due to the beta term. Olbers et al. (1985) use potential
vorticity balance instead of the vorticity equation. All

this gives a complex integral–differential relation for
the absolute velocity determination, which contains sec-
ond-order spatial derivatives of the measured tracers.
An interesting attempt has been also made by Needler
(1985), who obtained from the Bernoulli theorem (cf.
Pedlosky 1987; Wunsch 1996) a closed expression for
the absolute velocity that is consistent with the beta-
spiral method formulation. His tracers are potential den-
sity r and potential vorticity Pr, and Needler’s equation
necessarily contains third-order derivatives of the po-
tential density.

In sections 4–6 we investigate properties of tracer
potential vorticities respectively related to Pr, that is,
P ; potential temperature u and salinity S, that is, Pu,Pr

PS; and finally of the latter’s ratio Pu /PS. In each case
a formula is given for absolute velocity determination,
valid for steady inclined baroclinic marine currents. In
addition, we show how some combinations of these po-
tential vorticities and of the fluid parcel depth are con-
served following horizontal motion, something not pre-
viously discussed in the literature. A comparison with
velocity measurements in the Ross Sea (Antarctica) is
discussed in section 7.

2. Tracers and tracer potential vorticities

Calling va the absolute vorticity, namely the sum of
planetary and relative vorticities (Pedlosky 1987), one
has va [ 2V 1 = 3 u [ 2V 1 v, where x is the
space position, t the time, u is the fluid relative velocity
and 2V [ (0, 0, f ) is the Coriolis vector. For any scalar
quantity l(x, t) the Ertel theorem gives (Pedlosky 1987)

D ] ] vaP [ 1 u · = P [ 1 u · = · =ll l1 2 1 21 2Dt ]t ]t r

v Dl 1 =l Fa5 · = 1 =l · =r 3 =p 1 · = 3
3r Dt r r r

[ « 1 « 1 « ,1 2 3 (1)

where F represents frictional effects.
Since r [ r(p, u, S), one has

]r ]r
=l · =r 3 =p 5 =l · =u 1 =S 3 =p, (2)1 2]u ]S

which will play a fundamental role in the following. In
addition, for large-scale regular flows f k | v | and
consequently va → f k, with k being the unit vertical
vector.

In the hydrostatic approximation (1) can be approx-
imated as

23 22« 5 r =l · =r 3 =p ù 2 gr =l · =r 3 k2

]
22 22[ 2gr k · =l 3 =r ø 2 f r =l · (ru ),g]z

where ug is the horizontal velocity in geostrophic ap-
proximation.
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FIG. 2. An (a, b) tube.

In general, it is usually assumed that Pl is conserved
if, and only if, «1 5 0, «2 5 0, «3 5 0, an obviously
unnecessarily rigid requirement. Indeed, also a milder
relation such as

D
P 5 « 1 « 1 « 5 A(t)P 1 G(t)l 1 2 3 lDt

can give a new conserved quantity Pl that generalizes
Pl (Salusti and Serraval 1999).

Given the general validity of Eq. (1), it is of some
interest to investigate the effect of this Ertel theorem
on our understanding of tracer dynamics. Let us first
consider one of the many tracers that can be found in
the oceans, such as salt, inert chemicals, etc., say x(x,
t). If this quantity is neither ‘‘created’’ nor ‘‘destroyed’’
by any biochemical reaction in the marine layers, then
the x-conservation equation gives

D ]
x 5 x 1 u · =x 5 0. (3)

Dt ]t

In three-dimensional nonstationary fluid flows a ‘‘per-
fect’’ knowledge of any three tracers x i, i 5 1, 2, 3,
obeying (3) can completely determine the velocity u 5
(u, y, w) if, and only if, all gradients =x i are noncom-
planar. If a current is stationary, as often happens in
oceans, all gradients =x i become complanar, as follows
directly from stationary tracer equations

u · =x 5 0, u · =x 5 0, u · =x 5 0 (4)1 2 3

and can also be seen in Fig. 1 showing the planes a,
b, C 5 const and their intersection, namely a streamline.
Every streamline can thus also be considered as the
intersection of all the planes xi 5 const, giving the
direction of velocity vector u but not its magnitude.

However, this opens up the interesting possibility of
using essentially nonconservative quantities, but with a
well-defined alongstream dynamical evolution, which
would help us to determine the velocity field. Thus, the
goal of the following sections is to show how these

nonconservative quantities can be ‘‘tracer potential vor-
ticities’’ Px, the temporal evolution of which is fixed
by the EPV theorem (1), possibly in the presence of
frictional effects.

3. Fluid tubes and basic equations

In order to gain some general insight into these prob-
lems, let us go back to Vilhelm Bjerknes’ classical idea
(Godske et al. 1957) that surfaces a(x, t) 5 const and
b(x, t) 5 const of two conserved tracers a and b divide
the fluid into fluid tubes (Fig. 2), or simply tubes, along
which the fluid parcels flow. By definition (a, b) tubes
cannot terminate or originate inside the fluid. They can
either be closed or end at the fluid boundaries.

In a steady case the mass continuity equation and
tracer equations are

= · (ru) 5 0, u · =a 5 0, u · =b 5 0. (5)

One can moreover show (Wunsch 1996) that (5) implies

ru 5 w(a, b) =a 3 =b, (6)

where w is an arbitrary single-valued function: indeed
the vector u is normal to both =a and =b, whilst ru
is divergence free (Ertel and Kuehler 1949); w depends
on spatial coordinates x only implicitly, via a and b.
Finally it should be noted that these relations (5)–(6)
do not depend on the momentum equations, but only
on continuity.

Equation (6) enables both the horizontal and vertical
components of the absolute velocity u to be determined,
but a precise measurement of the velocity should be
made at least in one point for each streamline, in order
to specify the function w(a, b). This is not always the
best option, so here we discuss another choice that may
prove useful when a supplementary third scalar field is
known: let us assume that we have some information
about a nonconservative quantity g(x, t), such that Dg/
Dt 5 G(x, t) where G ± 0. In a steady case, when
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u · =g 5 G, (7)

Eqs. (6) and (7) give that

G(x)
u 5 =a 3 =b, (8)

(=a 3 =b) · =g(x)

allowing one to obtain u from a knowledge of a, b, g,
and G. In Eq. (7) the dynamics may appear, as it is in
(1).

These relations produce two immediate consequences
of experimental interest. First, from (8) the ratio of hor-
izontal and vertical velocity components is readily ob-
tained, without any of the experimental uncertainties
due to the ratio G[(=a 3 =b) · =g]21. Only the gra-
dients of a and b, entering =a 3 =b in the numerator
of (8), contribute to these errors. Second, in cases where
some materially conserved tracers are known, such as
salinity, potential temperature, and some chemicals, one
can tentatively identify the no-motion level by searching
for cases where =a 3 =b 5 0. In general cases, it may
be wrong: it is easy to imagine a barotropic flow with
=a 3 =b [ 0, with a being the potential-temperature
salinity and b the salinity. Nevertheless, for inclined
baroclinic or slightly viscous flows, see also below, this
idea can work and will be applied to known cases of
the Mediterranean Sea in a subsequent paper.

Furthermore, if we consider two fixed a and b tracers
and different possible choices (g, G), (g1, G1), (g 2, G2),
etc., the resulting velocities u must be the same, as far
as (5)–(8) are exactly verified. But, if we sum or mul-
tiply these different (g, G) tracers, interesting properties
may be found such as

u · =(g 1 g ) 5 G 1 G ,1 1

u · =(gg ) 5 gG 1 g G,1 1 1

2u · =(1/g) 5 2g G, . . . , (if 1/g exists) (9)

that underline a general algebraic structure of (5)–(8),
of some interest in applications.

In addition, it is clear that the hypotheses relative to
(5)–(8) are not easily satisfied in realistic problems, as
discussed in section 7. We therefore now discuss the
limits of validity of our equations (5)–(8). The general
case is actually

] a 1 u · =a 5 A9,t

] b 1 u · =b 5 B9,t

] g 1 u · =g 5 G 1 G9 (10)t

for general time- and space-dependent quantities A9, B9,
G9 that act as sources of a, b, and g. Clearly, real field
observations give values of the various tracers that are
not actually constant, but in most cases show time-de-
pendent fluctuations due to external forcing such as at-
mospheric winds or tides, and also due to fronts, internal
waves, turbulence, etc. Nevertheless these tracer vari-
ations usually have relatively small amplitude compared

with the time-average of the various tracer concentra-
tions. On the other hand, the velocity field u 5 1 u9u
displays considerable fluctuations u9, often much larger
than the time-averaged value of the velocity , as nicelyu
discussed by Wunsch (1978). So the main difference
between (5)–(8) and (10) is in the strongly time-varying
velocity field u9. Note that, in addition, A9 and B9 can
contain small, steady terms to describe mixing and dif-
fusion of a and b.

In conclusion, we seek a solution for the velocity
vector in the form

u 5 U(x, t)=a 1 V(x, t)=b

1 W(x, t)(=a 3 =b), (11)

an absolutely general representation provided that =g
· =a 3 =b ± 0. Setting A* 5 A9 2 ] ta, B* 5 B9 2
]tb, and G* 5 G9 2 ] tg now leads to a general solution

G
u 5 (=a 3 =b) 1 u*

=g · =a 3 =b

G* 2 u* · =g
1 (=a 3 =b), (12)

=g · =a 3 =b

where the first right-hand term corresponds to (8). The
second right-hand term describes the velocity of flow
towards the tube walls, namely

u* 5 U=a 1 V=b,

with
2A*(=b) 2 B*(=a · =b)

U 5 ,
2 2 2(=a) (=b) 2 (=a · =b)

2B*(=a) 2 A*(=a · =b)
V 5 . (13)

2 2 2(=a) (=b) 2 (=a · =b)

Note how it follows from (11)–(13) that

u* · =a 5 A*, u* · =b 5 B*. (14)

Finally the third right-hand term in (12) provides cor-
rections for the alongtube velocity component.

In general, in (12) for small ] ta and ] tb there is a
steady, or quasi-steady, flow related to and possiblyG
to u* · =g, superimposed on a time-dependent flow re-
lated to ] ta and ] tb. In addition, from (12) we see how
for small ] ta and ] tb the large velocity fluctuations are
essentially due to G9 2 ] tg. All this allows the validity
of our Eqs. (11)–(14) to be checked: indeed, if ] ta, A9,
]tb, B9, and G* are large, our treatment does not hold
and different relations have to be used.

Finally an intuitive depth-dependent representation of
potential vorticities for steady flows is discussed. From
(8) one easily obtains that

Dg =g · =a 3 =b Dz
5 . (15)

Dt k · =a 3 =b Dt

Particularly interesting general solutions of (15) are

g 5 F(a, b)L(z) 1 G(a, b), (16)
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valid for arbitrary functions L, F, and G, as long as =a,
=b, and k 5 =z are not complanar. Equation (16) shows
how inside an inclined (a, b) tube, each g value can
be seen as a mere function of z. Consequently a com-
bination of g and z becomes a constant of motion.

4. Applications to the density field

The most natural example to consider is to take g as
a radioactive isotope concentration with u · =g 5 G 5
2Lg, where t 5 L21 is the temporal decrement of
radioactive decay (Roether et al. 1999; England and
Maier-Reimer 2001). This point is intended to form the
basis of a forthcoming study.

Let us now analyze incompressible inviscid fluids:
following Needler (1985) we set a 5 r, b 5 Pr, and

g 5 Pb to extract all the possible information from the
density field alone. Thus Eq. (15) implies that the
streamlines lie along the intersections of r 5 const and
Pr 5 const surfaces (Olbers et al. 1985; Marshall et al.
1993).

From the EPV theorem for such incompressible in-
viscid currents it follows that

v · =PD D a r
P [b 1 2Dt Dt r

=P · =r 3 =pr
5 5 G, (17)

3r

which is generally not zero. In a hydrostatic steady case,
all this yields

22gr =P · =r 3 k g wru 5 2 (=r 3 =P ) ù (=r 3 =P ). (18)r r2r u · =(v · =P /r)a rv · =Pa r= · =r 3 =Pr1 2r

Interestingly, Pb and u are proportional to the vertical
velocity w. Note also that, if w → 0, we have from (18)
that (u · =Pb) u → 0. So, either u · =Pb → 0 or u →
0, but in the last case w } u2, which is not possible
since, for w → 0, one has u2 5 u2 1 y 2 1 w 2 ø u2 1
y 2 ± Cw (C is a constant). So for w → 0 one has that
u · =Pb → 0 and in (18) u is consequently an unde-
termined quantity. On physical grounds this means that
for horizontal inviscid flows, with w 5 0, Pb does not
vary along the streamline, as follows directly also from
Ertel’s theorem. This is probably the fundamental reason
for some difficulties being encountered in applying Nee-
dler’s (1985) relation.

In general, the last member of (18) may appear as
highly nonlinear because of the concomitant effect of
w, u, | u | , and so on. This difficulty can be solved by
approximating w/ | u | from experimental knowledge of
the current pathway. For instance, one can identify the
slope of the intersection of r 5 const and Pr 5 const
surfaces or, in order to diagnose density currents, the
bottom inclination beneath the current.

For large-scale currents, this equation (18) can be
simplified to give

1 1
P 5 (2V 1 = 3 u) · =r ø 2V · =rr r r

] f
2ù f lnr 5 2 N , (19)

]z g

(2V 1 = 3 u) 2V
P 5 · =P ø · =Pb r rr r

2 P 2f ] f ] fN2ø P ù 2 N [ 2 , (20)rr ]z gr ]z g

and finally
2g k · =r 3 =( fN )

2u(x) ø [=r 3 =( fN )]
2r 2f ]

2 2= N · =r 3 =( fN )1 2r ]z

g w
2ù [=r 3 =( fN )], (21)

2r 2f ]
2u · = N1 2r ]z

where N is the Brunt–Väisälä frequency. The last ex-
pression is the well-known Needler’s (1985) formula,
involving third-order space derivatives of r. Using (21),
the density can be inverted (Müller 1995).

Equations (15) and (16) applied to this kind of stream-
tube give

2f ]
2 2 2P [ N 5 F(r, fN )L(z) 1 G(r, fN ), (22)2fN r ]z

with L, F, and G as arbitrary functions. So, inside a
given inclined fluid tube P is a function of z only.2fN

For a special choice of L, F, and G some illuminating
analytical u representations are discussed in appendix
A. For steady motions, in hydrostatic approximation we
have

D
P } w,2fNDt

which leads to P constancy for steady horizontal and2fN

slightly viscous motions.
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Furthermore, (22) allows an interesting simplification
of (21), namely

2 2g =r 3 =( fN )[k · =r 3 =( fN )]
u 5

2r 2 2] f ]N
2k · =r 3 =( fN )1 2]z r ]z

2g =r 3 =( fN )
5 (23)

2r 2] f ]
2N1 2]z r ]z

since, in general,

]F ]F ]F
=F(a, b, z) 5 =a 1 =b 1 k.

]a ]b ]z

This formulation is, interestingly, related only to local
quantities since both the vector product and the second
vertical derivative of N 2 are measurable in a single tran-
sect. So in the following we will call this kind of formula
‘‘local.’’

In short, although we obtained some useful properties
of P we also had to overcome the basic difficulty2fN

that, even if r is not a dramatically varying function,
then Pr can be affected by a quickly varying velocity
field. In addition, the gradients of p, r, N 2, and ]N 2/]z
are all comparatively similar functions, even if we are
sure that their triple vector products do not vanish. So,
it is the fine structure of the potential density field that
rules the velocity amplitudes, and this could represent
a practical difficulty when field measurements do not
give clear enough information about these quantities
(Wunsch 1978). Consequently, the approximations out-
lined in (17)–(23) cannot always be used, which rep-
resents a basic difficulty affecting this kind of tracers,
such as density and its potential vorticity.

5. Importance of T–S tubes

The preceding difficulties concerning potential den-
sity raise some fundamental questions. For instance,
could we use information about an additional tracer, say
x, to obtain a relation similar to Needler’s formula but
avoiding third-order space derivatives, often producing
large experimental errors? The answer is affirmative:
indeed, let us take a 5 r, b 5 x, g 5 Px. In hydrostatic
approximation we thus obtain

D
22P 5 u · =P 5 2gr =x · =r 3 k and (24)x xDt

22gr =x · =r 3 k
u 5 2 (=r 3 =x)

v · =xa= · =r 3 =x1 2r

g w
ø (=r 3 =x)

2r f ]x
u · =1 2r ]z

g =r 3 =x
ø , (25)

2r ] f ]x1 2]z r ]z

the latter being the local equation. Note that we again
obtain the interesting property that DPx /Dt } w, thus
showing that each Px is constant for purely horizontal
or slightly viscous currents, a feature of some general
interest.

For steady adiabatic flows from (2) it is natural to
assume that x is the salinity S or the potential temper-
ature u. This would also enable one to use more com-
plete information about u and S, as obtained from in
situ measurements. So, in general, we now analyze an
adiabatic inviscid current with materially conserved po-
tential temperature and salinity, assuming a 5 u, b 5
S, g 5 Pu. In hydrostatic approximation we have

22gr (]r/]u)=S · =u 3 k
u 5 2 (=u 3 =S)

v · =Sa= · =u 3 =S1 2r

g w(]r/]u)
[ (=u 3 =S)

2r u · =PS

g ]r/]u
ø =u 3 =S, (26)

2r ]P /]zS

the last equation giving a local value. For a viscous fluid
one instead has

23r (]r/]u)=p · =u 3 =S
u 5 (=u 3 =S)

=P · =u 3 =SS

21r =S · = 3 (F /r)
1 (=u 3 =S), (27)

=P · =u 3 =SS

written in general form without the hydrostatic approx-
imation. The presence of the viscous correction in (27),
as in the other case to be discussed (29), are of fun-
damental importance since it allows the preceding con-
siderations to be extended to slightly viscous fluids, also
for horizontal flows. Indeed for horizontal flows the first
right-hand term in (27) is zero and the main term is the
viscous correction. This could be essential in order to
identify the no-motion level, where the inviscid for-
mulation (26) could give confusing results.

Two different absolute velocity determinations,
namely for {u, S, Pu} like (26) and (27) and for {u, S,
PS} as below:

22gr (]r/]S)=u · =S 3 k
u 5 2 (=u 3 =S)

v · =ua= · =u 3 =S1 2r

g w(]r/]S)
[ 2 (=u 3 =S)

2r u · =Pu
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FIG. 3. General geographical situation and position of transects A, C, and F observed by Baringer and
Price (1997a,b) off Gibraltar. Depths are in fathoms.

TABLE 1. Values relative to the bottom current flowing off Gibraltar, estimated from the Baringer and Price (1997a,b) dataset. In this table
the first part comes from direct estimates taken from Baringer and Price (1997a,b), often without errors, although uncertainties of ;10%
may reasonably be assumed. The values of =u and =S are the values of u and S in the center of the current, minus the value along the S
5 36.4 psu surface, over h. In the same way we have tentatively estimated the angles between =u and =S. Finally, cD is usually taken to
be 5 3 1023 (MKS units), but the total stress (bottom and interfacial) from Baringer and Price (1997a,b) is about twice their bottom stress
(in their Fig. 6a), given cD 5 (2–12) 3 1023 (MKS units); so we assumed cD 5 0.02 (MKS units) (rht 5 right-hand term).

Quantity (MSK units) Transect A Transect C Transect F

Dx, distance from transect A (km)
Bottom current thickness h (m)
Current radius of curvature R (km)

0
125
300

21
90

50 6 10

84
140
200

w /|u| 5 Dz /Dx (40 6 4) 3 1024 (40 6 4) 3 1024

Average bottom current velocity (m s21) 0.6 6 0.1 0.34 6 0.1 0.18 6 0.1
=S in the bottom current (psu m21) 2(16 6 1) 3 1023 2(16 6 1) 3 1023 (11 6 1) 3 1023

=u in the bottom current (8C m21) 1(4 6 1) 3 1023 2(6 6 1) 3 1023 2(5 6 2) 3 1023

Angle between =u and =S (7 6 2) 3 1023 (2 6 1) 3 1023 (2 6 2) 3 103

f 1 v ] f 2 |u|/R ]Sz 2 21 21S ù (ppt m s kg )
r ]z r ]z

2(16 6 1) 3 10210 2(14 6 1) 3 10210 2(11 6 1) 3 10210

f 1 v ] f 2 |u|/R ]uz 2 21 21u ù (8C m s kg )
r ]z r ]z

1(4 6 1) 3 10210 2(5 6 1) 3 10210 2(5 6 2) 3 10210

22|=u 3 =S| (8C psu m ) (58 6 10) 3 1028 (19 6 10) 3 1028 (11 6 11) 3 1028

2 2 22F/r 5 c u /h 5 0.02u /h (m s )D (7 6 2) 3 1025 (4 6 1) 3 1025 (5 6 1) 3 1025

Estimated inviscid velocity (m s21) using the first rht of (26), a
‘‘nonlocal’’ value

0.5 6 0.1 0.3 6 0.2 0.2 6 0.2

Estimated viscous correction (m s21) using (27) 0.1 0.05 0.03
Estimated inviscid velocity (m s21) using the first rht of (28), a

‘‘nonlocal’’ value
2 6 2 1.5 6 0.5 —
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g ]r/]S
ø 2 =u 3 =S, (28)

2r ]P /]zu

the last being a local value, and for a viscous fluid,
23r (]r/]S)=p · =u 3 =S

u 5 (=u 3 =S)
=P · =u 3 =Su

21r =u · = 3 (F /r)
1 (=u 3 =S) (29)

=P · =u 3 =Su

must result at the same vector u for every dynamically
possible case of u and S. Indeed, subtracting (29) from
(26) for steady currents of incompressible fluids shows
that these two formulations are equivalent since, for c2

5 ]r/]p → ` from (26)–(28), we have

]r ]r ]r
u · =P 1 =P 5 u · =P 2 =PS u r p1 2 1 2]S ]u ]p

D
5 P 5 0.rDt

We again stress that both u and S are the tracers that
are most often observed in field measurements. So the
aforementioned ratio of horizontal and vertical velocity
components is best obtained from these (26)–(29) re-
lations, which are valid also in the case that mild friction
must be taken into consideration. Again, similar con-
siderations hold also for the search of the hydrologic
no-motion level.

To get some idea of the practical applicability of these
relations (26)–(29), in appendix B we discuss a classical
density current, that of salty dense Mediterranean Water

that crosses the deepest part of the Strait of Gibraltar
and flows towards the Atlantic Ocean (Baringer and
Price 1997a,b). More in detail, this density current flows
along the local topography into the Atlantic Ocean (Fig.
3). Between the hydrological sections B and D the cur-
rent turns northward with a curvature radius of R ; 40
km; beyond these sections the flow is essentially rec-
tilinear. From sections A to F, over an irregular sea
bottom, the current thickness h and its width W are found
to increase while the velocity u and density difference
Dr compared with the surrounding water masses de-
crease as the current moves off Gibraltar (Table 1). From
(26)–(29) the velocity is obviously along the u 5 const
and S 5 const surfaces, even if friction is considered.
The velocity intensity is ruled by the gradients of u, S,
as well as by F. In Table 1 we show how the nonlocal
u estimates obtained from Eq. (26) fit the experimental
data satisfactorily, while the local u computations are
affected by errors that are difficult to estimate. In ad-
dition, the viscous corrections are seen to be smaller
than the estimates of experimental errors.

6. The ratio Pu /PS and its dynamical properties

This general symmetry between u and S suggests the
utility of a further possibility, namely a 5 u, b 5 S, g
5 Pu /PS, an element of the algebra (9) generated by
PS and Pu. A somewhat analogous construction, the
ratio of EPV and the magnetic analogue of EPV, was
introduced by Hide (1996) in a magnetohydrodynamics
context. We limit the present analysis to inviscid flows;
from (1) we obtain

]r ]r ]r ]r
P 1 P P 1 PS u S uD P 1 ]S ]u g ]S ]uu 5 (=p · =u 3 =S) ù 2 (k · =u 3 =S)

3 2 2 21 2Dt P r P r PS S S

P 2 (]r/]p)P Pg w g w ]rr p p 22ø 2 ø 2 ; c 5 . (30)
2 2 2 2r P |u| r P |u| ]pc→`S S

Therefore we again have (D/Dt)(Pu /PS) } w, so for
purely horizontal flows Pu /PS is constant. Also of in-
terest is the fact that for inclined flows the ratio Pu /PS

takes on a particularly elegant form:

f ]u

P r ]z ]u/]zu ø 5 (31)
P f ]S ]S /]zS

r ]z

in a quasigeostrophic approximation, so Pu /PS ø
(]u/]z)/(]S/]z) remains invariant also in the course of
extended meridional excursions of ocean water masses
when f changes because of the b effect. So, (31) shows

how Pu /PS changes deterministically because of the
sole effect of baroclinicity, as described by the term «2

in Eq. (1). In addition, Pu /PS can easily be computed
from a single CTD cast as Du/DS, using finite differ-
ences to approximate vertical derivatives.

For inclined steady motions one ultimately has

1
P 2 P =p · =u 3 =Sr p21 2c1

u 5 (=u 3 =S). (32)
3 2r PS Pu= · =u 3 =S1 2PS

In addition from (15) and (16) one has
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P ]u/]zu ø 5 F(u, S)L(z) 1 G(u, S)
P ]S /]zS

with arbitrary functions F, L, and G. So, inside a (u–
S) tube, Pu /PS is a function only of the depth z, and
the local version of (32) is

2N k · =u 3 =S
u ø (=u 3 =S)

2f ]S ] ]u/]z
k · =u 3 =S1 2 1 2]z ]z ]S /]z

21 N
5 (=u 3 =S). (33)

2f ]S ] ]u/]z1 2 1 2]z ]z ]S /]z

This can be compared directly to Needler’s (1985)
classical result (21). Unlike (21), this equation (33) in-
volves only second-order derivatives of u and S, which
is a definite advantage since u and S are known more
exactly and have richer space variability than the other
quantities in (21), as illustrated above.

To examine the relation (33) more properly, we define
a pseudovector U 5 [U(z), V(z), 0] with horizontal com-
ponents U 5 ]u/]z and V 5 ]S/]z. In (33) the quantity

2
]S ] ]u/]z ]U

H 5 5 k · 3 U1 2 1 2 1 2]z ]z ]S /]z ]z

[ U · = 3 U

stands for the rate of change of direction of U with z:
indeed, one can likewise write

V ]f
2 2 2H 5 2(U 1 V ) arctan 5 2U , (34)

U ]z

where f is the angle (measured anticlockwise) between
U and a fixed direction in the horizontal plane. If U
were the horizontal velocity vector, then H could be
called the kinematic helicity (Hide 1989); in our case
we call H the ‘‘thermohaline helicity.’’

In order to estimate water velocity, H has to be com-
puted. Note how (33) fails when H 5 0; that is, the
vector U changes only in magnitude with depth, but not
in direction. In particular, this failure occurs when ]u/]z
and ]S/]z are substantially nonzero and vary with depth,
but their ratio remains constant. So, absolute velocity
determinations based on Eq. (33) should be restricted
to a range of depths with H ± 0. The marine currents,
which satisfy this necessary condition, may very well
be considered essentially as thermohaline currents.

In practical calculations of section 7, in order to avoid
large experimental errors coming from taking second
vertical derivatives of u and S in (34), we shall ap-
proximate H with its space-averaged value, as also hy-
drological velocity estimates are related to space av-
erages. Plotting the U hodograph and estimating the area
swept up by the U vector facilitates this procedure.

7. The Ross Sea dataset

It must be stressed that practical applications of the
above relations are not an easy task in the open sea.
Indeed, in this approach we are forced to assume that

1) the flow is steady, or at least quasi-steady;
2) there are enough detailed observations of two dis-

tinct, materially conserved tracers; and
3) one can identify a tracer potential vorticity with a

well-known time or space evolution.

These requirements are not easy to satisfy. Indeed, as
a realistic concluding example we now analyze current
meter and hydrologic data obtained in the Ross Sea
(Antarctica) during the CLIMA Project (Budillon et al.
2002) relative to a current flowing over the continental
shelf. To study a flow that is clearly not horizontal we
use u–S data for stations 87 and 88 of transect D, and
for stations 89 and 90 of transect E (Fig. 4) positioned
at 758S (transect D) and half a degree (;55 km) north
(transect E). Stations 88 and 90 were located at ;19
km and ;24 km, respectively, west of stations 87 and
89 (Table 2).

The hydrologic data (Fig. 5) show in all transects A–
E the northward flow of a particularly dense cold water
mass, the ‘‘Deep Ice Shelf Water’’ (DISW), beneath
another cold lighter water, the ‘‘Low Salinity Shelf Wa-
ter’’ (LSSW). Using mass conservation properties, Bud-
illon et al. estimated the northward DISW velocity as
8 cm s21 at the bottom transect D, with errors that were
rather difficult to define, probably 2–3 cm s21. No sim-
ilar estimate was however possible in transect E since
DISW was no longer clearly identifiable. On the other
hand, in the western part of both transects a warmer
water was also observable, the Circumpolar Deep Water
(CDW). The northward velocity of CDW is smaller than
that of the bottom DISW; it is ;4 cm s21, with an overall
error of 3–4 cm s21. So some rather large spatial gra-
dients, both vertical and horizontal, of the northward
velocity must have been present.

In addition direct current meter data show that the
mean flow in the mooring H̃, south of transect D (shown
in Fig. 4), was directed northeastwards at all depths at
a velocity of 3–4 cm s21. In particular the most super-
ficial current meter, at a depth of 282 m, gave a north-
ward horizontal velocity of ;6.3 cm s21 during the CTD
observation time (July 1995).

From vertical density profiles for stations 87–90 we
found an evident velocity variation in transect D at a
depth of ;50 m, so we focused our attention on deeper
layers around a streamtube present in both D and E
transects bounded by surfaces u 5 21, 20.48C and S
5 34.3, 34.5 psu. Its mean depth is ;75 6 10 m in
transect D and ;120 6 10 m in transect E: so moving
northward this current deepens by ;40 m over 55 km:
this gives a ratio of vertical and alongstream velocities
w/y ; 27 3 1024, with an error of 20%.
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FIG. 4. Mooring (triangle) and CTD cast (dots) positions in the Ross Sea (Antarctica); depths are in meters, depths below 500 m are
shaded. The density vertical fields of the transects D–E are discussed in the text and shown in Fig. 5. More details on the hydrological field
are in Budillon et al. (2002).

For this streamtube, in the more regular transect D
we estimated

29 22(=u 3 =S) 5 (4 6 1) 3 10 8C psu m ,x

28 22(=u 3 =S) 5 (13 6 2) 3 10 8C psu m ,y

211 22(=u 3 =S) 5 2(5 6 1) 3 10 8C psu m , (35)z

where the x axis is directed westward, the y axis north-
ward, and the z axis upward. The errors in the gradients
in (35) were rather difficult to estimate: we assumed
that u and S between two stations is the linear inter-
polation of the observed values. So the relative errors
here are assumed as that of the majority of hydrologic
measurements, namely ;10%. From these (35) the ratio
w/y can be estimated as 24 3 1024, with an error of
40%, in agreement with the previous estimate.

To check the applicability of this method, from (33)
we computed

2N
y 5 (=u 3 =S) (36)yfH

with H ± 0 given by (34). The northward component
(=u 3 =S)y between the depths of 50 and 200 m is (=u
3 =S)y 5 (13 6 2) 3 1028 8C psu m22 for transect D
and (=u 3 =S)y 5 (3.1 6 0.8) 3 1028 8C psu m22 for
transect E, with N 2 5 (1.8 6 0.1) 3 1025 s22 for transect
D and N 2 5 (2.5 6 0.1) 3 1025 s22 for transect E. The
main uncertainty comes from the denominator of (36).
From the arithmetic mean of depth averages H for sta-
tions 87, 88 and for 89, 90 we obtained HD 5 29.6 3
1027 8C psu m22 and HE 5 27.8 3 1027 8C psu m22

for transect D and E, respectively. Collecting all the
numerical values we obtained yD 5 1.7 cm s21 for tran-
sect D, with the uncertainty interval (0.9/3.4) cm s21

mainly resulting from H values dispersion for individual
stations, and yE 5 0.7 cm s21 for transect E, with the
uncertainty interval (0.4/2.7) cm s21.
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TABLE 2. Synthesis of hydrologic data obtained during the X Italian
Expedition in the Ross Sea (CLIMA Project); see Budillon et al.
(2002) for more details.

Depth (m) u (8C) S (psu) su (kg m23)

(a) Station 87
25
50
75

100
150
200

21.3
21.2
21.0
20.4

0.7
1.2

33.91
34.14
34.25
34.45
34.64
34.71

27.28
27.46
27.53
27.66
27.73
27.77

(b) Station 88
25
50
75

100
150
200

21.15
21.3
21.3
21.28
20.95
20.8

34.03
34.20
34.27
34.31
34.46
34.53

27.36
27.52
27.57
27.61
27.70
27.75

(c) Station 89
25
50
75

100
150
200

21.5
21.5
21.4
21.2
20.5

0.7

33.67
33.96
34.20
34.27
34.40
34.58

27.07
27.33
27.51
27.58
27.64
27.73

(d) Station 90
25
50
75

100
150
200

21.25
21.28
21.2
21.0
20.6
20.4

34.02
34.02
34.07
34.20
34.42
34.49

27.35
27.36
27.39
27.49
27.63
27.67

From Table 2 we estimated in the center of each tran-
sect at a depth of about 90 m:

2 2 24 22] u/]z 5 1.1 3 10 8C m ,
2 2 25 22] S /]z 5 23.0 3 10 psu m for transect D
2 2 24 22] u/]z 5 1.2 3 10 8C m ,
2 2 25 22] S /]z 5 23.9 3 10 psu m for transect E.

Finally, using given above (=u 3 =S)y values, the local
velocity estimates are yD 5 (1.6 6 0.8) cm s21 and yE

5 (0.3 6 0.2) cm s21 applying the method relative to
Eq. (26) and yD 5 (6.6 6 4.0) cm s21 yE 5 (1.5 6 1.0)
cm s21 from Eq. (28). The main source of errors is
uncertainty regarding the exact streamtube location, and
the tracer spatial gradients. Further, all these concerns
can be repeated for (26) and (28), which actually have
rather large errors. This difficulty may, to some extent,
be overcome by averaging the field variables over tran-
sects, as in (33). However, this procedure at least par-
tially softens the gradient values, a fundamental diffi-
culty also common to other hydrological estimates (Fig.
6).

Applying the algebraic viewpoint (9), formula (33)
may be said to be a mere consequence of (26) and (28),
and therefore the observed scattering of y estimates from
(26), (28), and (33) needs some discussion. One expla-

nation involves the smallness of ]2u/]z2, the u(z) profile
being nearly linear, and this ultimately gives a large
value yD ø 6.6 cm s21. In this context, a definite prac-
tical advantage is guaranteed by using (33) because of
the nonsmallness of its denominator over a rather broad
range of circumstances: indeed it becomes small only
in a few cases, when both u(z) and S(z) are nearly linear
at the same time.

We also applied Needler’s formula (21) by fitting the
potential density from Table 2 with

A K
3 2r 5 z 1 z 1 Byz 1 Cz 1 Dy 1 F.

6 2

This procedure gives the average northward velocity
component: yD 5 1.1 6 0.5 cm s21 for transect D and
yE 5 0.8 6 0.7 cm s21 for transect E. In this case also
these estimates appear to be very sensitive, especially
for transect E, to uncertainties over r data.

Finally, to validate our computations, we took u–S
data for transect D and calculated the velocity differ-
ence, ;4 cm s21, between the bottom and our more
superficial depths using the thermal wind equation. Due
to the complex structure of the density field with steep
spatial gradients, this is probably underestimated. So,
considering the value of 8 cm s21 from Budillon et al.
(2002) in station 88 near the bottom, at a depth of ;500
m, the northward velocity at our more superficial depths
is ;4 cm s21, or even less, which matches the majority
of our estimates, with the sole exception of that based
on (28), the one discussed above.

8. Discussion

In this work Ertel’s classical vorticity theorem is used
for a class of potential vorticities relative to various
materially conserved scalar quantities, also in the re-
alistic case that a mild friction has to be considered. In
the central part of our work chemically inert tracers and
their potential vorticities are examined: we assume that
the tracer time evolution is known, as is often the case
in practice, and then try to identify the resulting velocity
field.

Specifically, we investigate the question of the ab-
solute velocity determination in a steady case relative
to a streamtube, using the alongstream rate of change
of some particular potential vorticity field. Our method
can be seen as a generalization of Needler’s (1985) clas-
sical arguments. A flow of well determined density field
is then critically analyzed: in particular we infer the
velocity field for nonhorizontal motions and recover
Needler’s formula related to a potential vorticity P ø2fN

2gP for inclined flows. Indeed, the time rate ofPr

change of this P quantity is proportional to the ver-2fN

tical velocity component of the flow. Therefore, we
show that DP /Dt 5 0 for horizontal flows in hydro-2fN

static approximation. Further, we show how this prop-
erty holds also for any tracer potential vorticity Px,
associated with a materially conserved quantity x.
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FIG. 5. Vertical sections of potential density (kg m23) relative to (a)
transects D and (b) transect F observed in the Ross Sea (Antarctica).
More details are in Budillon et al. (2002).

For steady currents, if the potential temperature u and
salinity S can be considered as tracers, we also obtain
an absolute velocity determination that essentially in-
volves only first and second-order space derivatives of
u and S. This formulation allows one to account for
friction and other forces acting on a fluid.

In the final part of the paper (section 6) it has been
assumed that heat and salt are conserved in the sea,
while momentum (vorticity) may be not conserved. It
is well known that, unlike direct velocity observations,
coarse-grained potential temperature and salinity fields
are less contaminated by smaller-scale energetic eddies
and internal waves. In strongly stratified marine layers
the vertical momentum transport is much more efficient
than that of heat and salt, the corresponding virtual (tur-

bulent) Prandtl and Schmidt numbers typically being of
the order of 10 (Jacobsen 1930; Taylor 1931; see also
Turner 1973). We thus analyze the potential vorticities
ratio Pu /PS ; (]u/]z)/(]S/]z) for cases in which r is
not easily determined. Again we find that

D Pu 5 01 2Dt PS

for horizontal flows. We thus obtain a formulation of
steady water absolute velocity, which is later applied to
a rather superficial current in the Ross Sea. This for-
mulation seems appropriate in marine currents that are
stratified both in salinity and temperature, with pro-
nounced baroclinic turning of horizontal velocity with
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FIG. 6. Hodograph of pseudovector U 5 (]u/]z 3 50 m, ]S/]z 3 50 m) for stations (a) 87, (b) 88, (c) 89, and (d) 90. Solid arrow
corresponds to a depth of 150 m, dashed arrow to 115 m, small dashed arrow to 75 m, and dashed–small-dashed arrow to 50 m.

depth. In certain circumstances our approach may serve
as a useful supplementary procedure to the existing
methods of steady current absolute velocity determi-
nation, including the well-known beta-spiral method
first proposed by Stommel and Schott (1977) and ap-
plied, for example, by Olbers et al. (1985) to the North
Atlantic.

One further observation may be of some importance:
for three main examples discussed, namely {r,
PrP }, {r, x, Px}, and {u, S, Pu /PS}, for steady2fN

horizontal motions (in hydrostatic approximation) the
property of DP/Dt 5 0 is obtained, which implies these
three types of potential vorticities are constant for this
sort of motion. This statement appears to be comple-
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mentary to our other results, which hold for essentially
inclined fluid motions.

In synthesis we applied our formulas to various cases,
both analytically and computationally, and actually dis-
covered the profound difficulties associated with the
method. Indeed, the streamtubes are usually difficult to
identify, the flows are not steady, the data are of good
quality only near the station, and so on. Therefore, fi-
nally we have to discuss the applicability of our ideas
to realistic cases. There are several demands that ex-
perimental data have to fulfill in order to apply our
method of absolute velocity determination successfully.
These include quasi-steadiness and strong baroclinicity
of the flow, its pronounced inclination to the horizon
evident in the measured hydrological characteristics, as
well as the existence of a comparatively dense obser-
vational network, with sufficiently small horizontal
spacing between the stations for which CTD casts are
available. Within these limitations, the method enables
one to obtain a spectrum of the absolute velocity esti-
mates, sometimes affected by substantial experimental
errors, which should in any case be checked using direct
current meter measurements. Similar considerations can
also be applied to other estimates obtained, namely of
the ratio of vertical and horizontal velocities, and in the
search for the hydrologic no-motion level.
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APPENDIX A

A Special Case of Needler’s Formula

Below we discuss a special case of Needler’s formula
(21) in which it allows an exact absolute velocity re-
construction through its own approximation. Calling S
5 logr, formula (21) reads as

]S
gk · =S 3 = f1 2]z ]S

u 5 · =S 3 = f .1 2[ ]]z2] S ]S
2= f · =S 3 = f

21 2 1 2]z ]z
(A1)

As an example we take f 5 f 0 and

S 5 Az 1 C («x, y) cosqz 1 C («x, y) sinqz, (A2)1 2

where C1 and C2 are arbitrary functions, A is constant.
The alongstream coordinate x is labelled by the param-
eter «, and q 5 p/d, where d is the characteristic depth
scale. From (A2) it follows that ]2 S/]z2 5 Azq2 2 q2

S, and hence

2] S ]S
2= f · =S 3 = f0 021 2 1 2]z ]z

]S
2 25 f Aq k · =S 3 = f0 01 2]z

since k [ =z. Dividing both numerator and denominator
of (A1) by k · = S 3 =(] S/]z) ± 0 one has

g ]S
u 5 =S 3 = , (A3)

2 1 2[ ]f Aq ]z0

which is a divergence-free velocity that satisfies the ba-
sic equations (5) for a 5 S and b 5 f 0 ] S/]z under
approximation of incompressible fluid.

To be more specific, in (A2) we set C2 5 0 and C1(«x,
y) 5 ayc(«x). Here c(«x) describes possible weak de-
pendence of S on x in the case of « K 1 and the pa-
rameter a specifies the cross-stream density gradient.
This flow mimics a marine front within the channel 2D
# y # D, with half-width D satisfying aD K 1, the
latter reflects the smallness of the cross-front density
gradients. For the hydrostatic stability of the flow it
should be ] S/]z 5 A 2 cayq sinqz , 0 at any point
or in any case caD , | A | q21 [ | A | dp21.

The velocity x component, based on (A3), is

2 2 2gca gc k a
u 5 sinqz 2 y. (A4)

qf f A0 0

The first right-hand term in (A4) is merely the thermal
wind, as follows from (A3) and the thermal wind re-
lation f 0(]u/]z) 5 2g(] S/]y). The second term inter-
estingly shows the barotropic velocity contribution,
which is predicted by Needler’s formula (21), an ex-
ample of a flow with uniform horizontal velocity shear

2 2]u gc a
5 . (A5)

]y f A0

For a numerical estimate we adopt d 5 1000 m, a21 5
300 km, D 5 30 km, c 5 1, g 5 9.81 m s22, f 0 5
1.41 3 1024 s21, and set N 2 5 2g(] S/]z) 5 2gA equal
to 1025 s22, which specifies the constant A. For these
parameter values, the above hydrostatic stability crite-
rion is always satisfied, the amplitude of the thermal
wind component in (A4) becomes 7.4 cm s21, and the
horizontal velocity shear (A5) is equal to 7.6 3 1027

s21, which at z 5 6D gives the barotropic velocity 2.3
cm s21, that is about 30% of the maximum baroclinic
velocity contribution.

It can be shown that the solution (A2), (A3) satisfies
the Bernoulli theorem for a steady flow, taken in the
geostrophic approximation of ‘‘planetary scale’’ mo-
tions (Pedlosky 1987, section 6.20) consistent with for-
mula (21). This analytical solution may be of interest
as a particular model of outcropping isopycnal surfaces
in the thermocline ventilation theory (cf. Luyten et al.
1983).
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FIG. B1. Hydrologic properties relative to transect A [(a) salinity, (b) temperature] and relative to transects (c) C, and (d) F (temperature)
observed by Baringer and Price (1997a,b) off Gibraltar.

APPENDIX B

Field Data off Gibraltar

The Baringer and Price field data (1997a,b), relative
to their transects A, C, and F (Fig. B1) downstream
from the strait of Gibraltar, are now discussed in more
detail. In Table 1 we estimate the main physical quan-
tities of this outflow, denoting as ‘‘central region’’ the
one characterized by the highest velocities, and with S
. 36.4 psu, as computed by Baringer and Price
(1997a,b). We use (26)–(27) since S is better defined
than u, and this implies smaller uncertainties.

We also computed the local estimate of u, as ex-
pressed in the last member of equations (26) and (28).
These estimates have the considerable advantage that
they can be computed using more ‘‘local’’ hydrologic

data, but in so doing it is difficult to avoid large errors.
Similar considerations can be repeated for F/r, which
we estimate as (tB 1 tI)/hr using the Baringer and Price
(1997) notations, tB and tI being viscous stresses on
the sea bottom and current interface, respectively. The
curl of the frictional force is approximated here by

F9 1 F
= 3 ø k 3

r h r

and is directed in a nearly horizontal cross-stream di-
rection. All this ultimately means that the inviscid part
of the velocity is (0.5–0.2) m s21 and the viscous com-
ponent is 2(0.05–0.10) m s21 with errors of 20%–100%,
largely due to angle uncertainties (see Table 1); all this
is in agreement with the experimental dataset.

In addition, the steady velocity component due to salt



DECEMBER 2002 3577K U R G A N S K Y E T A L .

and temperature diffusive effects, characterized by the
vertical turbulent diffusivity coefficient k, can interest-
ingly be determined from (12) by | u* | 5 kH/(=u 3
=S)y; see other notations in section 7. From (36) it now
follows that the ratio of this additional and main along-
stream component is merely | u* | / | u | 5 kN 2/ fu2,
which is less than 1% if k ; 10 cm2 s21.

In synthesis we see that the best estimates can be
obtained using the most precisely defined set of data
and ‘‘nonlocal’’ equations. On the other hand, if Pu and
PS do not vary significantly between two transects, large
experimental errors can prevent (26) and (28) being used
in practice. Note however that our knowledge of the
experimental dataset is only partial and all these esti-
mates must be considered only a demonstration of gen-
eral applicability of our relations. A more accurate es-
timate requires a detailed knowledge of the original da-
taset, as shown in section 7 for currents in the Ross Sea.
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