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ABSTRACT

A simple linear theory of the circulation in a meridionally bounded equatorial ocean driven by density mixing
localized near the eastern boundary is used to model the subthermocline circulation of the equatorial oceans.
The mixing is modeled by a specified, spatially limited source term in the density equation. The theory is for
a steady circulation, and the model, which is continuously stratified, contains simple linear drag laws for frictional
dissipation and a similar, linear damping for density anomalies. The model employs Gill’s formulation of the
basic linear equations near the equator. The satisfaction of the condition of zero zonal flow at both bounding
meridians requires the determination of the amplitude of the Kelvin component (or its steady counterpart) by
an integral condition over the domain of the flow. When that condition is satisfied, the solution, for reasonable
settings of the parameters, naturally yields an alternating array of zonal currents localized within a deformation
radius of the equator. An essential condition for the appearance of this high vertical mode zonal structure is the
localization of the forcing to the eastern boundary and to a small vertical region at the top of the domain, which
is identified with the mixing occurring at the base of the equatorial thermocline.

1. Introduction

The discovery of alternating zonal currents at the
equator, first in the Indian Ocean by Luyten and Swallow
(1976) and their subsequent observation in both the Pa-
cific and the Atlantic (see, e.g., O’Neill and Luyten
1984; Firing 1987; and Ponte et al. 1990), poses an
extremely intriguing dynamical puzzle. The short ver-
tical scale of the observed jets, about 100–300 m, and
their moderate velocities (on the order of 20 cm s21 or
less) initially encouraged their identification as an equa-
torial wave response to forcing in the equatorial band
on long timescales (see, e.g., the discussion in O’Neil
and Luyten). Early theoretical attempts to explain the
deep jets as a forced wave response to surface input
(e.g., Wunsch 1977) were frustrated by the shallow an-
gle of descent of energy pathways at the low frequencies
required to obtain realistic vertical scales. In an ocean
of finite longitudinal extent it is difficult to so explain
the emergence of energy at great depths. Attempts have
also been made to explain the jets as a consequence of
time dependent forcing at the boundaries. Ponte (1989),
for example, specifies the structure of the zonal velocity
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at either an eastern or western equatorial boundary and
computes the interior structure. In such cases however,
the vertical structure of the solution, in particular, the
vertical wavenumber of the oscillating current, is com-
pletely specified as a boundary condition and this frus-
trates an attempt to explain the structure of the current
as a response to external forcing.

In this paper I present a model for the equatorial deep
jets which is fundamentally based on the linear, steady
equatorial model introduced by Gill (1980) and Ander-
son and Rowlands (1976; in particular see Gill 1982,
his section 11.4). Similar investigations of the steady
problem date to the pioneering work of McCreary
(1981) who attempted a linear steady model for the
Equatorial Undercurrent. More recently Wang et al.
(1994) described a model driven by a specified zonal
inflow within the equatorial region at the depth of the
observed deep jets. Although yielding plausible struc-
tures, there is no explanation for the mechanism that
produces this western boundary forcing.

The inclusion of both eastern and western boundaries
to the domain adds elements of particular subtlety. The
zonal velocity is forced to vanish at both boundaries in
this model and it is assumed, and verified post hoc, that
all solutions decay for increasing latitude so that the
domain of motion is limited. The model is driven by an
inhomogeneous forcing term in the equation for the den-
sity field and it is suggested that this represents the
effects of turbulent mixing which is observed to occur
at the base of the equatorial thermocline. There have
been several studies of the distribution of thermocline
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mixing in the upper equatorial ocean. One of the most
complete is the recent study of Sloyan et al. (2002,
manuscript submitted to J. Phys. Oceanogr.). This study
shows rather intense diapycnal velocities at and below
the base of the thermocline in the eastern boundary
region of the Pacific especially east of 958W. In the
theory to be presented that mixing enters as a forcing
term for the equatorial density field and is spatially lim-
ited.

It is particularly important to the theory that this forc-
ing be limited in its zonal extent and its vertical range.
The mixing exponentially decays away from both the
eastern boundary and the upper surface, taken here to
represent the base of the thermocline. It is important to
note that such a forcing does not impose the vertical
scale for the deep jets nor does it locally force the flow
except near the boundary.

The forcing excites the steady equivalent of the whole
class of equatorial wave modes, the amplitudes of which
are determined by the forcing, the boundary conditions
on the zonal flow and the integral condition of mass
conservation. In particular, these conditions set the am-
plitudes of the steady equivalent Kelvin modes that are
seen to dominate the solution. A parameter range is
chosen that would allow the lowest few free Kelvin
waves to transit the basin but strongly thermally damps
the higher modes. In this case the steady response con-
sists of a sequence of equatorial zonal jets whose vertical
wavenumber depends of the ratio of the transit time to
the damping timescale. The longer the damping time
the smaller is the vertical wavelength of the zonal jet
response. For strong thermal damping the forced signal
would not exit the forcing region. For extremely weak
thermal damping the solution responds in a Sverdrup
type response in which the motion is limited to the depth
of the forcing. Deep jets occur over a range of thermal
damping coefficient intermediate to these two extremes.

Section 2 describes the formulation of the basic mod-
el. Section 3 outlines the analysis in terms of vertical
and meridional modes and describes the determination
of the solution in response to the boundary conditions.
Section 4 describes the integral condition and closes the
problem. In section 5, I present the principal results of
the calculation, and section 6 concludes with summary
and discussion of the results.

There is no question that the linearity of the proposed
model and the specification a priori of the density mix-
ing are the weakest points of the theory. It is offered
as a simple explanation for an intriguing and perplexing
phenomenon and, it is hoped, the basis for more com-
plete modeling.

2. Formulation

The model used in this study is, fundamentally, the
model first introduced by Gill and discussed at length
in his text (Gill 1982). The ocean model is centered at
the equator and is bounded at x 5 0 and x 5 L by

meridional walls. The fluid’s vertical domain is 2H ,
z , 0. The system of linearized momentum and density
equations, supplemented by the continuity equation is

Du 2 f y 5 2P (2.1a)x

Dy 1 fu 5 2P (2.1b)y

P 5 2bg (2.1c)z

u 1 y 1 w 5 0 (2.1d)x y z

2Db 2 wN /g 5 2Q, (2.1e)

where the operator D is defined as

]
D [ 1 k, (2.2)

]t

where k is both the Rayleigh friction drag inverse time-
scale as well as the scale for linear damping of density
anomalies and it is the latter that is most crucial for the
structure of the response. Here, N is the buoyancy fre-
quency while b is the ratio of the density anomaly to
the background density, and P is the pressure divided
by the background density in the Boussinesq approxi-
mation. The Coriolis parameter in the equatorial beta
plane approximation is f 5 by. We consider the region
unbounded in y but the solutions will be naturally lim-
ited to a finite region in y.

The function Q is the forcing in our model. Positive
Q represents a reduction in density; one might think of
it as representing the entrainment of lighter fluid from
the thermocline into the deeper ocean by mixing. It thus
represents a source of buoyancy and is meant to stand
in for mixing of the fluid by processes unresolved in
the model but present in observations of equatorial mix-
ing as described in the introduction. It will be limited
to a region near the eastern boundary and to a narrow
zone at the top of the fluid at z 5 0 which we identify
with the base of the equatorial thermocline. In the pre-
sent model the buoyancy frequency N will be taken to
be constant. This condition can be easily relaxed but it
is simpler to consider N constant and little is gained by
using more realistic buoyancy profiles. The simplicity
of the theory does not really justify such attempts at
detailed realism.

The appropriate boundary conditions for our model
are

u 5 0, x 5 0, L (2.3a)

w 5 0, z 5 0, 2H. (2.3b)

With constant buoyancy frequency, and with the
boundary conditions (2.3b) it is convenient to represent
the solution as a Fourier series in z, namely,

(u, y , P) 5 (u , y , gh ) cos(npz/H ) (2.4a)O n n n
n51

w 5 w sin(npz/H ). (2.4b)O n
n51
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Note that the sums for the horizontal velocity start
with n 5 1. The barotropic response (n 5 0) to pure
buoyancy forcing in this linear model is identically zero
as can be easily shown. After projecting (2.2) on the
appropriate Fourier functions, eliminating the density
between the density and hydrostatic equations and using
the continuity equation, the resulting equations for the
amplitudes are

Du 2 f y 5 2gh (2.5a)x

Dy 1 fu 5 2gh (2.5b)y

Dh 1 h(u 1 y ) 5 2E (2.5c)x y

02 npz
E(n) 5 Q sin dz. (2.5d)E 1 2np H

2H

In the above equations, the subscript n on each am-
plitude has been suppressed for typographic clarity. That
suppressed index is, of course, implicitly present and
used when reconstructing the total solution. The con-
stant h(n) is the equivalent depth for the nth mode and
is, for the case of constant N,

2 2N H
h(n) 5 (2.6)

2 2gn p

corresponding to gravity wave speeds

NH c(1)
1/2c 5 c(n) 5 [gh(n)] 5 5 . (2.7)

np n

Following Gill (1982) it is useful to introduce the
variables

q 5 gh/c 1 u, (2.8a)

r 5 gh/c 2 u, (2.8b)

in terms of which we obtain from (2.5 a,c)

Dq 1 cq 1 cy 2 f y 5 2cE /H, (2.9a)x y

Dr 2 cr 1 cy 1 f y 5 2cE /H. (2.9b)x y

These variables allow a convenient way to express the
projection of the forcing exciting the zonal velocity.

The equation for potential vorticity

D(z 2 fh/h) 1 by 5 Ef /h (2.10)

can be used with (2.5b) to obtain
2D(cq 1 fq) 1 (D y 2 cDy ) 2 bcy 5 2cEf /h,y x

(2.11)

while (2.5b) alone can be written as

(cq 1 fq) 1 (cr 2 fr) 5 22Dy.y y (2.12)

3. Analysis in meridional modes

For each vertical mode, the meridional structure of
the solution is most conveniently given in terms of a

series in Hermite eigenfunctions, functions defined, as
in Moore and Philander (1977), as

22j /2H (j)e yjc (j) 5 j 5 , (3.1)j 1/2 j 1/2 1/2(p 2 j!) (c/b)

where the Hj are the Hermite polynomials and the func-
tions in (3.1) are orthonormal over the infinite interval
2` # y # `. Note that the new meridional variable j
is the meridional distance scaled with the deformation
radius for the pertinent vertical mode.

Thus each variable is represented as a series in the
eigenfunctions cj:

(q, r, y , E ) 5 (q , r , E )c (j), (3.2)O j j j j
j50

where the amplitudes of the expansion (the j subscripted
variables) are functions of x alone and, were there time
dependence, functions also of time. However, in our
case they are functions only of longitude.

If (2.9), (2.10), and (2.11) are projected on the ei-
genfunctions cj the following equations result after us-
ing standard identities involving the Hermite functions.
The reader is referred to any standard handbook of math-
ematical functions (e.g., Abramowitz and Stegun 1970)
for the necessary identities. In the following, the lon-
gitude variable x has been scaled by L, the basin width,
so that now 0 # x # 1. In terms of this new variable
we obtain the following equations. [A similar develop-
ment can be found in Anderson and Rowlands (1976).]

For j . 0,

22] q L ]q Lj j1 2 q F(2 j 2 1) 1j2 1 2[ ]]x d ]x LS T

] L L L
5 2 2 1 ( j 2 1) Ej1 2[ ]]x L d hT S

L L
1/21 [ j( j 2 1)] E , (3.3)j22d hS

and for j $ 0

1/2j 1 2 d ] LSr 5 1 1 1 qj j121 2 5 1 2[ ]j 1 1 L( j 1 2) ]x LT

d LS1 E (3.4)j126L( j 1 2) h

while for j 5 0, the equation governing the important
lowest meridional mode for the q field is simply,

]q L Lo 1 q 5 2 E , (3.5)o o]x L hT

which yields the steady equivalent of the Kelvin wave.
In the above equations there are two important length

scales against which the basin width is measured. They
are
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k
d 5 , (3.6a)S b

c
L 5 . (3.6b)T k

The first is the Stommel boundary layer scale and we
will assume that it is very small with respect to L. The
second is the density decay scale and is the ratio of the
Kelvin wave speed to the inverse of the dissipation time
scale. Since c is a function of vertical mode number this
parameter varies as a function of vertical mode. As n
increases LT decreases inversely with n. Finally, the pa-
rameter F is the square of the ratio of the basin width
to the equatorial deformation radius,

2bL
F 5 , (3.6c)

c

and is also a function of n, increasing linearly with n.
We note that F 5 L2/(dsLT) and we recall to the reader
that the above equations hold separately for each vertical
mode with mode number n.

To satisfy the condition of no zonal flow on x 5 0
and x 5 1, we must have

q 2 r 5 0, x 5 0, 1j j (3.7)

for each j.
The lowest order mode, qo corresponds to the equa-

torial Kelvin mode (in the time-dependent solution) but
note that to determine the j 5 0 contribution to the zonal
velocity ro must also be determined. The mode j 5 0
corresponds to a structure which is Gaussian in y.

We specify the forcing E(n) in a particularly simple
form. We note from (3.3), (3.4), and (3.5) that the forc-
ing is amplified by the very large factor L/h and given
its arbitrary nature we restrict the forcing to the lowest
meridional mode, that is, Gaussian in j:

L
E 5 B(x)c (j), (3.8)oh

that is, Ej 5 0, j ± 0.
The particular structure that is chosen for the forcing

Q is

2 2m nnp h 4n p[1 1 e (21) ]c (j ) npzn o n2a(12x)Q(x, y, z) 5 B e sin (3.9)Oo 2 2 2 2 2 2 1 2H L [m 1 (n 2 1) p ][m 1 (n 1 1) p ] Hn51

corresponding to a distribution of heating on the equator
concentrated near the upper surface and the eastern
boundary. On the equator this yields a heating with a
vertical and meridional structure decaying from the up-
per surface (the base of the thermocline) and decaying
from the eastern boundary; that is,

1/4 2a(12x) mz/HQ(x, o, z) 5 (J/p )e e sin(pz/H), (3.10)

where

h(1) p
J 5 B . (3.11)oL mH

The structure of the forcing is such that it decays
sharply away from the upper surface. The assumed sym-
metry of E with y (i.e., j) implies that only terms even
in j will be generated in the sums for q and r (and only
odd j for y).

We also take the mixing to decay away from the
eastern boundary so that it exponentially decays in a
distance L/a from the eastern boundary.

This form allows particularly simple analytical so-
lutions. For example, the solution of (3.5) is

2a(12x)B eo2x(L /L )Tq 5 Q e 2 , (3.12)o o (a 1 L /L )T

where Qo is an arbitrary constant. (Recall that it is also
a function of n.)

To satisfy the boundary conditions on x 5 0 and Lro

must be found but from (3.4) this will depend on higher
modes (in j) of q, so that ro will depend on the solution
q2. That solution follows from (3.3),

g (x21) g x2,1 2,2q 5 C e 1 C e2 2,1 2,2

1/2 2a(12x)L 2 B eo1 , (3.13)
d (a 2 g )(a 2 g )S 2,1 2,2

where the two constants

L
g 5 2j,k 2dS

1/22 2L d LSk2 (21) 1 + 4 F(2 j 2 1) 1 ,5 1 2 1 2 6[ ]2d L LS T

k 5 1, 2. (3.14)

The first root is always positive representing decay
away from the eastern boundary. When, as in our case,
dS/L K 1, this root is O(L/LT) for moderate j. This root
represents the thermal decay of signals from the eastern
boundary on the scale LT, which, we recall, depends on
mode number n. The second root is always negative,
decaying from the western boundary, and for dS/L K
1 is O(L/dS) and so is qualitatively similar to Stommel’s
mode of the western boundary layer. For very large j
both roots approach F 1/2 and correspond to baroclinic
boundary layers whose width is of the order of the de-
formation radius. Although boundary layer solutions are
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FIG. 1. A cross section in the y–z plane showing the distribution
of the function Q for the case m 5 10. The y variable is scaled with
the equatorial deformation radius corresponding to the lowest vertical
mode, while z is scaled with the total depth.

FIG. 3. A profile of the zonal velocity at the equator for the case
described by Fig. 1.

FIG. 2. A y–z cross section of the zonal velocity for the parameters
m 5 10, a 5 4, L/LT 5 0.2. The cross section is shown at x 5 0.5,
i.e., half way across the basin. The magnitudes of the flow are de-
termined by the arbitrary value chosen for the localized buoyancy
source.

FIG. 4. The isolines of the zonal velocity at z/H 5 20.7, in a
region of an eastward jet.

possible with this problem the possibility of changes in
scale for large n and j suggest use of the full solution
for all parameter values.

One can see now the crux of the problem. Using the
condition that uj 5 0 on x 5 0 and L for each j sepa-
rately, we can for j 5 0 determine C2,1 and C2,2 in terms
of Bo and Qo. However, to satisfy the condition that u2

5 0 at x 5 0 and x 5 1, since q2 ± 0, requires that
that we determine r2. This in turn requires [see (3.4)]
the existence of a q4, and so on. All even j modes will
thus be excited whose homogeneous solutions will be
of the form for j . 2,

g (x21) g xj,1 j,2q 5 C e 1 C e ,j j,1 j,2 (3.15)

and with the use of the boundary conditions, each set
of constants, Cj,1 and Cj,2, are determined in terms of
previously determined constants for smaller j each of
which ultimately will depend on the two constants Qo

and Bo. In the appendix we list the table of the coef-
ficients Cj,1 and Cj,2 in recursive form. Once these co-
efficients are determined the solutions for rj can be con-
structed as well. Although Bo is considered an externally
imposed factor, the amplitude of the Kelvin-like solu-
tion, Qo must be determined. A convenient way to do
so is to employ the integral condition described in the
next section.
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FIG. 5. The horizontal velocity for the case in Fig. 2: (a) at z/H 5 20.7, (b) at z/H 5 20.3,
and (c) isolines of the meridional velocity in the vicinity of the western boundary at the same
z/H (note the expanded scale in x).
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FIG. 5. (Continued )

4. The integral condition and the determination
of Qo

If (2.5c) is integrated over the entire domain of the
problem and the boundary conditions are imposed, we
obtain the integral condition,

1 ` 1 `

D dx dj(h) 5 2 dx djE, (4.1)E E E E
0 2` 0 2`

or in terms of q and r,
1 `

dx dj(q 1 r )c (j)O E E j j j
j 0 2`

2aL (1 2 e )
3/2 1/45 22 p B , (4.2)oL aT

where we have used (3.8), that is, that the imposed
heating due to mixing is proportional to the first Hermite
function. Using standard results from integral tables
(e.g., Gradshteyn and Ryzhik 2000) we obtain, as the
condition,

1 j!
dx(q 1 r )O E j j j 1/2(2 j!) ( j/2)!jeven 0

L
2a5 22 B (1 2 e ). (4.3)oLT

With the aid of the coefficients given in the appendix,
one can obtain a rather complicated formula for Qo. The
sum on the left-hand side is first evaluated with Qo 5
1 and Bo 5 0 using the recursion relations of the ap-

pendix. Call that SumQ. The sum is then recalculated
with Qo 5 0 to obtain SumB. It then follows that

2a2SumB 2 2L /L B (1 2 e )/aT oQ 5 , (4.4)o SumQ

and this must be done separately for each n. When Qo

has been so determined the solution is complete and q,
r, and y can easily be obtained.

5. Results

For the calculations presented below the coefficient Q
has been chosen in the form given by (3.9). The amplitude
Bo is, of course, arbitrary in this linear problem and so
the form of the solution is independent of its value. We
frankly choose a value of Bo to obtain currents in the range
of those observed. We choose Bo to yield of value of J
5 6 3 1029 s21 corresponding to a maximum value of Q
of this order near the eastern boundary. Were this heating
balanced entirely by vertical motion (diapycnal velocity
in this model), it would give rise to a value of w on the
order of 1022–1023 cm s21, which is in the range of dia-
pycnal velocity estimated by Sloyan et al. (2002, manu-
script submitted to J. Phys. Oceanogr.).

Figure 2 shows a contour plot in the y–z plane of the
zonal velocity for the case where m 5 10 and a 5 4
(parameters used in Fig. 1). The cross section is shown
at a location half way across the basin; that is, at x 5
0.5. The thermal decay length LT has been chosen to be
5 times the basin width. The parameter F has been cho-
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FIG. 6. As in Fig. 2 for a 5 8: (a) y–z cross section and (b) profile
at the equator. FIG. 7. The cross section of the zonal velocity for the same pa-

rameter settings as Fig. 2 except for L/LT 5 0.5: (a) cross section
and (b) profile.

sen to be 100 so we have an equatorial region whose
longitudinal extent is 10 equatorial deformation radii.
This yields a very narrow Stommel boundary layer
width dS/L 5 0.002 and in the figures that follow the
flow in that region will not be shown although it is part
of the overall solution as calculated; that is, no boundary
layer approximation has been made. The solution is rep-
resented using 40 vertical modes as well as 40 Hermite
functions in latitude. By altering the number of modes
maintained we have checked that this number is more
than sufficient to properly represent the solution.

In Fig. 2 we see stacked jets, clearly reminiscent of the
figures shown in the observational papers referenced in
section 1. The horizontal scale of the currents is of the
order of the deformation radius but in fact is somewhat
smaller than the first deformation radius (one unit in the
current scaling), reflecting the contribution made by higher
vertical modes to the solution. Figure 3 shows the profile

of the zonal velocity versus depth at the equator for the
calculation, which was shown in the previous figure. Six
jets are shown, three to the east and three to the west.
Isolines of the zonal velocity in the x, y plane are shown
in Fig. 4 at the level z/H 5 20.7 in the region of an
eastward jet. There is a smooth deceleration of the flow
as the eastern boundary is approached where u 5 0, and,
consistent with the often noted observational fact, there is
no sign of a recirculation to close the flow. Instead, as
shown in Fig. 5, the flow closes in the vertical plane
eastward flow at one level (e.g., z/H 5 20.7) is perfectly
compensated by the reverse flow in the opposite direction
at deeper levels. Figure 5c shows the meridional velocity
near the western boundary (note the stretched coordinate).
The meridional velocity is induced by the local conver-
gence of the zonal velocity and we note that it is limited
to within a deformation radius of the equator. This simi-
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FIG. 8. The velocity profile at the equator for L/LT 5 0.01. Note the absence of deep jets.

larly is true near the eastern boundary. The flow, driven
by the localized buoyancy forcing is confined to the equa-
torial band.

As the buoyancy forcing is increasingly limited to the
eastern boundary the wavelength in the vertical of the
zonal jets decreases. Figure 6 shows the zonal velocity
in the case where the exponential decay factor, a, has
been increased from 4 to 8. The number of jets has
nearly doubled although the jet strength is now weaker.
Similar calculations with increasing the vertical decay
factor of the forcing will also increase the vertical wave-
number of the jets, although those results are not shown
for the sake of brevity.

The solution depends significantly on the parameter
L/LT(1), that is, on the ratio of the basin width to the
thermal decay scale of the lowest Kelvin mode. In Fig.
2 that ratio is 0.2. For a basin 12 000 km wide and a
value of c(1) of 240 cm s21, this yields a value of k of
O(4 3 1028)s21 or a dissipation damping time of about
290 days. If that parameter is increased, that is, if the
thermal dissipation is significantly increased the number
of jets decreases as the higher modes of the solution
become more strongly damped. Figure 7 shows the zon-
al velocity when the damping scale is 2.5 times shorter

than that shown in Fig. 2. Only the lowest mode survives
and there are only two jets. Even stronger damping
would eliminate those. For lower damping, that is, for
smaller values of L/LT(1), the number of jets increases.
However, should L/LT(1) become very small the jet
structure is also eliminated. In this limit information at
each z propagates directly westward and there is no
penetration. For example we note from (3.5) that in this
limit qo (n) will propagate unchanged outside the forcing
region and therefore will maintain the z structure of the
forcing for all x. An example is shown in Fig. 8 in the
extreme limit L/LT(1) 5 0.01. Thus, for moderately
small L/LT(1) the lowest modes propagate directly
across the basin without setting the deep ocean in mo-
tion, the very high vertical modes are trapped to the
region of the forcing and it is the modes of intermediate
n which are evident in the deep ocean.

It is a naturally fragile part of this linear theory that
the number of equatorial jets does depend on the damp-
ing rate about which we can only express great uncer-
tainty. However, the observed ability of equatorial
Kelvin and Rossby waves to easily transit the ocean
basins leads one to suspect that a moderately small but
O(1) value of L/LT(1) would be plausible.
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6. Discussion and summary

The simple, steady linear theory presented here de-
scribes the equatorial deep jets as the response to a
steady, spatially localized buoyancy forcing, which we
suggest is due to mixing at the base of the thermocline,
a mixing that has been observed. An attractive feature
of the forcing is that the jets appear below the level of
the imposed forcing. This distinguishes the present the-
ory from earlier work (e.g., Ponte 1989; Wang et al.
1994) in which boundary forcing is required at the depth
of the deep jets themselves. The localization of the forc-
ing actually enhances the oscillatory character of the
response. The steady forcing due to turbulent mixing at
the base of the equatorial thermocline is a permanent
feature of the dynamics and the steady response yields
deep jets for a range of thermal damping which is plau-
sibly oceanographically appropriate.

A fundamental feature of the solution is the Kelvin
wave-like response, that is, that part of the solution rep-
resented by the function qo. The amplitude of that re-
sponse is coupled to response of higher meridional
modes by the integral condition of section 4, a condition
that we have found necessary to complete the solution.
The integral condition appears necessary to express the
mass conservation condition at each level in the equa-

torial basin and is reminiscent of the dependence of the
solution for the midlatitude problem in the treatment by
Edwards and Pedlosky (1995) where a similar integral
condition is required to complete the solution.

The model presented here has some grave deficien-
cies. The linear nature of the dynamics and thermody-
namics might be plausibly accepted but the external and
arbitrary specification of the forcing is a intrinsic weak-
ness. It would be much more pleasing if a model which
contained both the nonadiabatic dynamics of the ther-
mocline and the deep jets could be analyzed that ex-
posed the naturally occurring mixing in the model as
the driving mechanism for the deep jets. Such a model,
nonlinear by its nature is, of course, far beyond the scope
of the present analysis which might best be considered
as a hypothesis of the ‘‘if . . . then’’ type. That is, if such
mixing providing a buoyancy source is reasonable, then
one would expect to see the deep jet response as pre-
dicted by the present model.
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APPENDIX

Table of Coefficients Cj,1 and Cj,2

It is helpful to define the following function:

1/2j d LSf ( j, k) 5 1 1 g 1 , k 5 1, 2 (A.1)j,k1 2 1 2[ ]j 2 1 L LT

in terms of which we can determine the Cj,1 and Cj,2 as

1 a 1 2L /d 1 L /LS T2a1g2,1(1 2 e ) 1[ ]2L /L g a 1 L /L (a 2 g )(a 2 g )T 2,2 T 2,1 2,2Q (e 2 e )oC 5 2 B , (A.2a)2,1 og 2g g 2g2,2 2,1 2,2 2,1f (1 2 e ) f (1 2 e )2,1 2,1

1 a 1 2L /d 1 L /LS T2a 2g2,1(e 2 e ) 1[ ]2g 2L /L a 1 L /L (a 2 g )(a 2 g )2,1 T T 2,1 2,2Q (1 2 e )oC 5 2 B , (A.2b)2,2 og 2g g 2g2,2 2,1 2,2 2,1f (1 2 e ) f (1 2 e )2,2 2,2

g 2g g g 1/2 2a1g4,2 2,1 2,2 4,2 4,2C (1 2 e ) C (e 2 e ) B 2 L /d (1 2 e )2,1 2,2 o SC 5 1 1 (A.2c)4,1 2g 1g 2g 1g 2g 1g4,1 2,1 4,1 2,1 4,1 2,1f (1 2 e ) f (1 2 e ) f (1 2 e )(a 2 g )(a 2 g )4,1 4,1 4,1 2,1 2,2

2g 2g g 2g 1/2 2a 2g2,1 4,1 2,2 4,1 4,1C (e 2 e ) C (1 2 e ) B 2 L /d (e 2 e )2,1 2,2 o SC 5 1 1 (A.2d)4,2 g 2g g 2g g 2g4,2 4,1 4,2 4,1 4,2 4,1f (1 2 e ) f (1 2 e ) f (1 2 e )(a 2 g )(a 2 g )4,2 4,2 4,2 2,1 2,2

for j . 4:
g 2g g gj12,2 j,1 j,2 j12,2C (1 2 e ) 1 C (e 2 e )j,1 j,2C 5 (A.3a)j12,1 g 2gj12,2 j12,1f (1 2 e )j12,1

2g 2g g 2gj,1 j12,1 j,2 j12,1C (e 2 e ) 1 C (1 2 e )j,1 j,2C 5 . (A.3b)j12,2 g 2gj12,2 j12,1f (1 2 e )j12,2
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