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ABSTRACT. Let§ andv be the Chebyshev functions. We dengigz) = ¢(z) — 6(x) and

p(x) =(z)/0(x). We study subadditive and Landau-type propertied fgr, andq,. We show
that p is subadditive and submultiplicative. Finally, we consider the prime counting function
7(z) and show that (z)7(y) < m(xy) for all z,y > v/53.
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1. INTRODUCTION

Throughout this papep, will always denote a prime number. We will also use the following
notations (most of them classic):

e p, = then! prime (in increasing order);
e 7(x) = the number of prime numbers that do not excegd
e O(x) = > logp (the Chebyshev theta function);

p<z
e (z) = > logp (the Chebyshev psi function);
pF<z
© Uo(x) = v(x) ~0(z) = 3 logp;
7=

o Yu(r) = > logp;
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One of the most studied problems in number theory is the Hardy-Littlewood conjecture [2],
which states that

m(z) +n(y) > n(z+y) forallintegersz,y > 2.

It is not known at this moment whether this statement is true or false. However, its particular
caser(2z) < 2w (x), also known as Landau’s inequality, was proved by E. Landau [5] for big
enoughz. Later, J. B. Rosser and L. Schoenfeld [7] managed to prove this inequality for all
T > 2.

We ask whether other functions related to prime numbers have similar properties. Namely,
we will answer such questions for the functions = 6 — ¢, andp = ¢ /6. Since we did
not manage to find bibliographic references for the mentioned propertiésaiwd ), we will
supply proofs for these cases as well.

Note that, sincejy(z) ~ +/z, the answers to our questions for the functibnseem to
be affirmative. Such an approach, however, would only give us the required inequalities for
"large enough” (but unspecified) values:ofThis would prevent us from currently using these
inequalities for specified values of the variables. On the other hand, using suitable inequalities,
we will prove in Section R that)»(2z) < v»(2z) for all z,y > 25. This is an example of
how inequalities with specified "starting points" will enrich the information obtained from the
asymptotic equivalences.

Onthe other hand, the asymptotic behaviout ahd:> does not even suggest an "asymptotic"
answer to the questions posed, so we will have to use another approach in order to deal with
this case.

For the functionp, the multiplicative point of view seems to be more significant, so we
will also study some multiplicative properties pfas well. We will then consider the prime
counting functionr from this point of view and prove the inequalitfx)r(y) < m(xy) for all
z,y > V/53.

We will try as a general principle to prove the required properties for values greater than a
specified margin, and then use computer checking in order to lower that margin as much as
possible. To this end, we will make use of some already known inequalities that we list below:

o 11: |0(x) — 2| < 0.006788—2 for all = > 10544111 (see[1]),

logx

o 12: |(x) — x| < 0.25— for all x > 3594641 (see[[1]),

log?
e |3 x) > 0.998684+/x for all z > 121 (see[8]),

Lo
o 14: 9hy(x) < 1.4262\/x for all x > 1 (seel[6]),
o I5: m(r) < " forallz > 60184 (seel[1]),
x) >

logx
o 16: 7( bg% for all x > 5393 (seel[1]).

We will also use some inequalities derived from the above ones. Our approach will be based
on the following ideas: If a sharp inequality inis valid for x greater than a large valud, if
we want to use that inequality for, say/z, the inequality we derive will only be valid (without
further arguments) far larger thand/3. It is likely that M3 is a very large number, sometimes
being out of reach for computer checking of various relations. One way of dealing with this
problem is to weaken a little bit the initial sharp inequality, and try to balance this loss by
a smaller "starting point". This approach might lead us to inequalities which better fit the
particular problems we are facing.

We will apply this kind of treatment to inequaliti€s andl2. We will use some of the derived
inequalities in the proofs of the properties in the next section. The good "balance" between the
strength of an inequality and its "starting point" changes from problem to problem, and we

iy
iy
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picked the most suitable inequalities for our purposes from a list that we obtained by gradually
weakening the mentioned inequalities. We will supply this list in the Appendix along with the
way we obtained them; some of these inequalities might also be useful in other applications.

2. SUBADDITIVE AND LANDAU-TYPE PROPERTIES

When we discuss for a given function such properties as subadditivity, we may ask if the
property holds for all possible values of the variables, or, if the answer to this first type of prob-
lem turns out to be negative, we may ask if the properties hold "asymptotically”, i.e., for values
of the variable which are greater than a given valligspecified, if possible, or unspecified, if
we do not have a choice).

Let us start with

Proposition 2.1. Let f be one of the functiong « or ¢, k > 2. There is na\/ > 0 such that
flx+y) > f(x)+ f(y)forall z,y > M or f(x+vy) < f(z)+ f(y) forall z,y > M.

Proof. For f = ¢ or f = %, k > 2, since betweeri2n)! and(2n)! + n there are no prime
powers, we havg (x +y) < f(x) + f(y) forallz = (2n)! — 1 and4 < y < n + 2, so the first
statement is true.

If, on the other hand, we consider an integer- 2 and a prime power (of the suitable
exponently > z!, thenf(z +vy —1) > f(z) + f(y — 1). Since we may take as large as we
please, the second statement follows.

For f = 6, we consider in the above primes instead of prime powers. O

We may still ask if the considered functions have Landau-type properties (foif plbssible,
or at least for large enougt).
We first show tha# and fail to have such a property:

Proposition 2.2. Let f bed or ¢). There is naV/ > 0 such thatf(2z) > 2f(z) for all z > M
or f(2z) < 2f(x)forall x > M.

Proof. Suppose, for instance, tha2x) > 26(z) for all = greater than a certait/. Ingham [3]
proved that
U(x) - 1

and lim inf < —Z

I U(x) — 1
im su -
P 2 z—oco xl/2logloglogax — 2’

r—oo  T1/%logloglog
so the expressiof(xz) — = changes sign infinitely many times. Usigdz) — 6(z) = Oy/x
in the above relations, we find thétr) — = also changes sign infinitely many times. We can
therefore finda > M such that)(a) > a. Leta = 6(a) — a > 0. Our hypothesis leads to
0(2"a) > 2"0(a) for all n € N*. We obtain

>

2"a 2"a
2"a=2"(0(a) —a) < 8(2"a) —2"a < 1.3 =1.3
« (6(a) — ) (2%a) “ log(2"a) loga +nlog?2’
the last inequality being due to (4]17). We derive that
1.3a
foralln > 2.

o< —m—
loga + nlog?2
Taking limits whenn — oo, we obtain the contradiction < 0.
Consequently, there is n such that)(2z) < 26(x) for all x > M.
In order to prove that the inequalitf2z) > 260(x) cannot hold for all: greater than a value
M, we repeat the above reasoning dox A such that/(a) < a.
As shown above, the expressiofr)—x also changes sign infinitely many times. Inequalities
14 and ) givgy(z) — x| < 2.7 = for all z > 1. Therefore, we may repeat the above

| . log
reasoning to prove our claims for. O
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Let us now turn to the functionsg,, £ > 2. We will show that these functions have Landau-
type properties fox: greater than a certain value (that we will actually specify in the kase2).

Since inequality4 is not sharp enough for the results we want to establish, we will first prove
a few inequalities for),.

Taking into account the relation

tali) = (o) B(2) = (V) + (YD) + -+ + 0(3), with k= |

log x
log 2

we may write foreveryn =1,k — 1

We use inequalities (4.27) ar{d (4.30) to derive

8
0(vz) < Vr (1 + 1—2) for all z > 11950849 and
og” x

WW<IG+$i

As mentioned above, we would like to use sharper inequalities from the given table, or even the
one of Dusart, but the derived inequalities would then only be valid (without further argument)
for very large values af, so they Would be out of reach for computer checking.

Fora = 4,m + 1 we will use [4.3P) to obtain

(f><f<1+

Therefore, for all: > 11950849 and allm < [log 2/ log 2] — 1 we may write
() 8 1 ( 31.5 ) N | ( 4a? )
<14+ ——+— —
VT log?z Y& log® x ; y/xo—2 log® x

N 1 (1+4(m+1)2) <log:v )
—m.
2m+2/xm_1 10g2$ 1Og2

1 (1+ 4a? )
/a2 log? x

are monotonically decreasing, and— 8/ log” = is monotonically decreasing also. As far as

1 4(m+1)?\ (logx
2m+2 1+ 2 -m
Y gm—1 log” x log 2

is concerned, ifn > 4 it is decreasing for > 2¢2™. Therefore, the expression on the right
hand side of the above inequality is in its turn monotonically decreasing for 2¢*™. Let
us write [2.1) form = 11. The value of the right hand side at= 168210000 is less than
1.09999905 < 1.1. Thereforeg(x) < 1.1y/z for all > 223230000. Computer checking now
gives

) forall x > 11697083.

) forall z > 1.
log? z

For all integers: > 3 the functions

X —

(2.2) Uo(z) < 1.1z forall z > 2890319.61.
Now, using this inequality, further computer checking gives:
(2.3) Po(z) < 1.2/ forall z > 80489.724,
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(2.4) Po(z) < 1.3y/x  forall x > 2481.97, and

(2.5) Po(z) < 1.4y/z  forall x > 374.6354.

Let us note that if we tried to prove inequalify (2.2) using the inequatity:) < 1.001102,/z +
3/, valid for allz > 0 (see[8]), we would have faced a larger amount of computer checking.
We can now prove

Theorem 2.3.1,(22) < 2i)9(z) for all x > 25.

Proof. Using 13 and ), we may for alk > 1240.985 write 15 (22) < 1.3v2z < 2 -
0.998684+/x < 2¢5(x). Computer checking for the remaining values completes the prddf.

Remark 2.4. For every integek > 3 there existd\/; > 0 such that
Vp(27) < 2Yp(x)  forall z > M,.

Proof. Sinceyy(z) = 0(¥/x) + 0( */x) + -+ + 0(/x), t = [logz/log?2], using ) we
derive inequalities of the type /= < ¢y (x) < f/x foranya < 1,5 > 1 and anyz greater
than a certain valué/, (for which we do not have a general formula, but which might be
actually computed for specific values bfa and 3). Now, if we choosex and 5 such that
B2 < a, the proof is similar to that of Theorem 2.3. 0

Let us now turn to the functiop(x) = ¢ (z)/6(x). This function is subadditive:
Proposition 2.5. p(z + y) < p(z) + p(y) forall z,y > 2
Proof. Letz,y > 2. According tol3,14 and [4.1}),

0.998684+/t 1.43+/t
+ —13\/_ <p(t) <1+ —\{; forallt > e'* > 3.67.
t<1+@) t<1_1o'gt>
Therefore,
1.43
plr +y) <1+

1.3 '
Vit (1- o)

Since the functior that mapg to % is monotonically decreasing far> ¢'-* and
h(5) < 1.49 < 2, if x +y > 5 we obtain

1.43

1.3
VT (1 gty
0.998684 0.998684
x(l+@) y(l—l— 1o§gy>
< p(x) + p(y)-
If 4+ y < 5, thenz,y € [2,3). Therefore,
2log?2 + log 3
p(z+y) Tog 2 1+ Toe 3 p(x) + p(y),
and the proof is complete. O

plr+y) <1+
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3. SUBMULTIPLICATIVITY -TYPE PROPERTIES
Let us start with
Proposition 3.1. p(zy) < p(x) + p(y) for all z,y > 2.
Proof. Letz,y > 2. Usingl4 and [4.1}), we derive that

1.43
play) <1+ 1.23228 )
V=Y (1 - lég(ry)>
The function 143
h(t) = 123
logt

being monotonically decreasing for> e!2%22® = 3.4... and taking att = 11 the value
2.94--- < 3, we may write forzy > 11

1.43 2.95
1+ <14+ — <2< p(x) + p(y).
vag(1-) © v

Therefore, our claim is true fary > 11.
Since the largest value of(t) for ¢t € [2,11) is p(9) = 1.4--- < 2, we obtainp(zy) <
p(x) + p(y) for zy < 11 as well. O

A more meaningful property gf seems to be submultiplicativity:
Proposition 3.2. p(zy) < p(x)p(y) forall z,y > 4.

Proof. Inequality13 and direct computation far < 121 show thaty(x) > 0.635/z for all
x > 16. Usingl4 and [4.17), we derive
0.635 1.43

(3.1) 1+ 1.23228 <ple) <1+ 1.23228)
\/5(1 + 'logz ) \/5(1 - 'logz )

The function
0.635

<1 I 1.23228>

log z

r— 14+

is monotonically increasing, while
1.43
(1 _ 1.23228>
log z
is monotonically decreasing. We derive
0.4396
Vv

Therefore, we obtain for alt, y > 16

2.6
<p(zr) <14+ — forallz > 16.

(3.2) 1+ NG

2.6 0.4396 0.4396
plry) <1+ \/_x_y < <1 + 7) (1 + W) < p(x)p(y).

Now letx < 16 ory < 16. Symmetry allows us to only consider the case 16. If zy > 2482

andy > 1241, we use[(2.4) and (4.13) to get
1.3

0.3
VY (1  log(zy)

= p(ay).
)
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Let us consider the functions

0.998684 1.3
f(x):—o3 and g(xz) =1+ -
(1+22) V2 (1~ i)
f is monotonically increasing, whilgis monotonically decreasing. Therefore,
f(1241) 0.958
plx)ply) = ply) =2 1+ > 1+ —
(@)p(y) = p(y) NG 7
2482 1
1+—095321+g<\/§>21+ ’ -
! RIS )
1.3
> 1+ . > p(xy)
V=Y <1 N 10g(xy)>
Computer checking for the remaining cases completes the proof. O

Remark 3.3.

@) If 7,y € [2,4), p(2)p(y) = 1 < p(zy).
(b) p(2)p(x) > p(2x) for all x > 25.
(©) p(3)p(z) > p(3z) for all = > 23/3.

Let us finish by investigating a similar property fofz). Ishikawa[4] proved that(z+y) <
m(x)7m(y) for all integerse, y > 5. We prove here

Theorem 3.4.For all z,y > V53, 7(x)7(y) < m(xy).
Proof. We weaken5 by means of computer checking to

T
——  forallz > 5.
(@) < logz —1.12 £25

Weakening als®6, we obtain
Xz

> -

(@) > g 0145
We derive that for, y > e>12+v3.09 — 48 38845 . ..
(logz — 2.12)(logy — 2.12) > 3.095 = 3.24 — 0.145,

forall z > 17.

SO
logz +logy — 0.145 < (logz — 1.12)(logy — 1.12).

Consequently,

< L Y < LY <

~ logx —1.12logy — 1.12 = logzy — 0.145 —

Now, if z < 48.38845... ory < 48.38845..., the symmetry of the required relation allows

us to only consider the case< 48.38845. ... We will consider the cases€ [p,,p,.1),n =

1, 15. Computation shows that for these valuesiate have

nlogpn+1 + 0.12p,

Pn— N

Therefore, fory > 5™ = 97.4... we have the inequalityp, — n)logy > nlogp, i1 +

1.12p,, — n, otherwise written ag,, (logy — 1.12) > n(log p,.+1 +logy — 1). Using this relation

andl6 we derive fory > 97.5 andxy > 5393

< ny < Pnly < LY

~ logy —1.12 7 logppy1 +logy — 1 ~ log(zy) — 1

m(z)m(y) m(zy).

1+ < 4.579.

m(z)m(y) < w(wy).
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Computer checking for the remaining cases completes the proof. O

Remark 3.5. In fact, computer checking shows that fory > 0 we only have three "small
regions wherer(zy) < 7(z)m(y):

e x €[5 7),y€(7,37/5),xy < 3T,

o x € [7,37/5),y € [5,7), zy < 37, and

e r,y€[7,11), zy < 53.

(z)m(y) holds for all positive integers, y with the fol-

Remark 3.6. The relationr(zy) > 7
=T,x=T,y=5andx =y ="1.

lowing three exceptions: = 5,y
4. APPENDIX: USEFUL INEQUALITIES
Proposition 4.1.

Y forall z > 10443773

(4.1) |0(x) — x| <0.007
log =
Proof. According tol1, relation {4.1) holds for alt > 10544111, but it may also be valid for
some smaller values af
Let us consider the functions

a(z) =z + 0.00710593 —0(z) and B(z) =1 — 0.00710? ().
Relation [(4.1) is then equivalent to
4.2) alz) >0
and
(4.3) B(x) <0.

Since the function: + 0.007z/ log « is monotonically increasing far > 1, the only oppor-
tunities fora to decrease are the prime numbers, and its local minima have the shape
Therefore, relatior{ (4}2) holds far > 2 if and only if it holds forp. (). Consequently, i, is

the greatest prime for which (4.2) fail§, (#.2) will be valid for alk> p,, ;.

As far asi is concerned, the function— 0.007x/ log x being in its turn monotonically increas-
ing for z > 1, the only reasons fo# to decrease are also the occurrences of prime numbers.
Since, according t&2, § eventually settles to negative values, the last positive value of

log pn,
Prst — 0007282051 g,
Pn+1

will show that relation[(4.3) is valid for alt > p, ;.
Performing the computer checking as suggested by the above considerations, we obtain the
claim of the proposition. O

Let us note that for the particular valuesoin the above proof, the result of Schoenfeld
0(z) < z for all z < 10" [9] allows us to only consider the inequalities involving the function

8.
Similar reasoning and computation lead us to the inequalitiefs (4.4) 4 (4.32) below:

(4.4) 0(x) — 2| < 0.008——— forall z > 10358041;
log x

(4.5) 0(x) — x| < 0.009—— forallz > 6695617;
log x
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(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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0(2) — 2| < 0.0110;
0(2) — 2| < 0‘0210;
16() — 2| < 0'0310;
10(x) — 2| < 0.0410;
10(2) — 2| < 0.0510;5
0(z) — 2| < 0.110;
0(2) — 2| < 0'210;
0(z) — 2| < 0.31();
0(z) — 2| < 0.410;
10(2) — 2| < 0.510;3
o) = ol < o

6(x) — | < 1.23227674;

0(z) — 2| < 03—
log” x

0(x) — 2| < 0.4—
log” x

0(z) — 2| < 05—
log” x

0(x) — 2| < 0.6——
log” x

0(z) — x| < 0.7—
log” x

J. Inequal. Pure and Appl. Mat}9(1) (2008), Art. 12, 10 pp.

for all > 5880037;

for all x > 1099247

for all x > 467867;

for all x > 302969:;

for all z > 175829;

for all x > 32297,

for all z > 5407;

forall x > 1973;

for all z > 809;

for all x > 563;

forall x > 41;

X
forall x > 1;

og T

for all z > 1091021;

for all x > 467629;

for all z > 303283;

for all x > 175837;

for all x > 88807;

http://jipam.vu.edu.au/
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T

(4.23) 0(x) — 2| < 0.8— forall x > 70111,
log” x
(4.24) 0(z) — 2] < 0.9—— forallz > 32363;
log” x
(4.25) 0(z) — x| < —— forall z > 32299;
log” x
(4.26) 0(z) — x| < 1.5—— forallz > 11779;
log® x
(4.27) 0(z) — | <2——— forallz > 3457;
log” x
(4.28) 0(x) — 2] < 2.5———  forallz > 1429;
log” x
(4.29) 0(x) — 2| <3——— forall z > 569;
log” x
(4.30) 0(z) — x| <35—— forallz > 227;
log” x
(4.31) 0(z) — 2| <39—— forallz > 59;
log” x
(4.32) 0(z) — x| <4—— forallz > 1.
log” x
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