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ABSTRACT. In this paper some Poincaré type inequalities are obtained for the maps of the
Heisenberg group target.
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1. INTRODUCTION AND PRELIMINARIES

Let H™ ([1]) denote a Heisenberg group which is a Lie group that has alggbraR?™*!,
with a non-abelian group law:

(1.1) (x1,y1,t1) - (22, Y2, t2) = (1 + X2, Y1 + Y2, t1 + to + 2(yoz1 — 2211)),

for everyu; = (z1,y1,t1),u2 = (x2,0,t2) € H™. The Lie algebra is generated by the left
invariant vector fields

0 0 0 0
1.2 X; = — + 2yi—, Y, = — — 2z,—, i =1,2,...,m,
(1.2) oz Yoy o ior ! m
and7T = %. For everyu; = (x1,y1,t1), us = (x2,y2,t2) € H™, the metricd(uy, us) in the
Heisenberg groupl™ is defined as ([2])

=

(1.3) d(ur,ug) = |ugui| = [((w2 — 1) + (42 — 1)) + (t2 — 11 + 2(z2y1 — 2192))°]

We see thaH™ possesses the nonlinear structure of group laws. It is one of the differences
betweenH™ and general Riemann manifolds.

LetQ2 C R" (n > 2) be a bounded and connected Lipschitz domain 2L€&tp < cc.

L. Capogna and Fang-Hua Linl[3] have provided the characterizations for the Sobolev space
Whr(Q, H™), proved the existence theorem for the minimizer, and established that all critical
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points for the energy are Lipschitz continuous in the 2-dimensional case. However, the higher
dimensional regularity problem is still open.

In this paper, we shall give some Poincaré type inequalities for the maps of the Heisenberg
group target. The statements of these results are similar to the ones in the classical case. How-
ever, since the metric possesses the nonlinear structure of the group law, we require the use of a
few techniques in the proofs for our Poincaré type inequalities.

Definition 1.1. Let2 < p < oo. A functionu = (z,t) : @ — H™ isin LP(Q2, H™) if for some
ho € €2, one has

(1.4) /(d(u(h),u(ho))pdh < 00.
Q
A functionu = (z,t) : @ — H™ is in the Sobolev spadé’'*(Q, H™) if u € LP(Q, H™) and
(1.5) E,q(u) = sup lim sup/ f(h)ey(h)dh < oo,
fEC(Q),0<f<1 €70 0

where

= [ (o) ity

€
E, o(u) is called thep-energy ofu on €.
Lemma 1.1. If u = (z,y,t) € W'?(Q,H™), then
(1.6) Vt=2(yVz —zVy) in L3(Q).
The maps satisfying (1].6) are called Legendrian maps.

Lemma1.2.If u = (2,t) = (z,y,t) € WH(Q, H™), then

Bya(w) =t [ V2P (0)ds
Q
Lemmg 1.1 and Lemnja 1.2 are due to L. Capogna and Fang-HualLin [3].
Lemma 1.3([4]). (C,—inequality) Letp > 0. Then for any; € R,
n p n
(Z Iai!> <G ) lail”,
=1 =1
whereC, =1if0 <p <landC, =n"tif p > 1.

Lemma 1.4([5])). (Poincaré Inequality in the classical case) k&be a bounded and connected
Lipschitz domain irR™. Letp > 1. Then there exists a constaritdepending only of, m and
p, such that for every functiom € W'?(Q2, R), we have

/ lu(x) — Ay [Pdz < C/ |Vul|Pdz,
Q Q
dz
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2. THE POINCARE TYPE INEQUALITIES FOR THE HEISENBERG GROUP TARGET

Theorem 2.1(Poincaré type inequality)Let 2 be a bounded and connected Lipschitz domain
in R™. Then there exists a constafitdepending only o2, n, m and p, such that for every
functionu = (z,y,t) = (2,t) € WP(Q, H™),

@) | @@ 2)7ds < CoByot) = Co [ V2P (@)dn
Here A, = (As, Ay, A) and Xy = o [, f(g)dg.
Proof. Obviously,\, € W?(Q, H™). From ), using thé’,—inequality, we have
(d(u(g), Au))”
= [I2(@) = A:J" + (@) = Ao+ 200(a) = M(9)))?]
22) <Gy llal@) = Al +1y(@) = Al + (@) = A+ 200n(a) — Nz(@)]E]

whereC,, depends om. By the Poincaré inequality in the classical case, noting that

2(Ay(q) = Ayz(q)) = 20 (y(q) — Ay) — 22y (2(q) — Aa),
we obtain

[ @ Ay
<G| [ (1o@) = AP+ 1) = I+ 1) = X+ 20000(0) = Aa(aDIF) ]

<o / Vel (g)dg + Co / Vy[P(q)dg + Cs / Vit 1 200 Vy — A, V)3 dg.
Q Q Q

By virtue of the Legendrian conditioxit = 2(yVx —xVy), using the Holder inequality, noting
that| Vz| < |Vz|and|Vy| < |Vz|, we have

/ (d(u(q), \))dg
Q
§C1/ |Vm|pdq—|—02/ VylP(q)
Q Q
+ (425 / IVy(z — As) = Va(y — \,)|2dg
Q
< 01/ |Vz|Pdg + 02/ |Vy|Pdg
Q Q

v 0u ([ 1Valtty = aftag+ [ 195l - Aliaq)
Q Q

< / Valdq + Cs / Vylrdg + Cs ( / Valrdg / \vmpdq)
Q Q Q Q

§C’1/|Va:|pdq+C2/|Vy|pdq+C’6 </ |Vx|pdq—i-/ |Vy|pdq>
Q Q Q Q
<c [ |v:Pla)da

Q

where(C', Cy, Cs, Cy, C5, Cs andC are dependent an, n, m andp. O
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Corollary 2.2. If u € W'?(B(hg,r), H™), then

2.3) /B () M)V < OB, 1) = O / V217 (q)dg.

B(ho,r)
Proof. Observe that

(d(u(q), A\a))” = [I2(a) = A:l* + (8(g) = A+ 200y(q) — Aya(q)))?]
< Gy [[2(@) = Mal? + ly(@) = A J? + 1) = N+ 2(0y(a) = Aya(@)]#]
HereC, depends om. By the Poincaré inequality in the classical case, noting that
2(Ay(q) — Ay2(9) = 20 (y(a) — Ay) — 2X(2(q) — Ao),

)
4

we deduce

[ o)y
By (ho)
=Cp U (Jz = Aal” + 1y = AP+ [t = A+ 2y — A\y2)|2)dg
By (ho)
<cur [ WaPtdg+Ct [ Oyl
By (ho) B (ho)

+ Cyr? / IVt +2(\.Vy — A\, V)| dg.
By (ho)

By virtue of the Legendrian conditiowt = 2(yVz — xVy), using Holder’s inequality, noting
that|Vz| < |Vz| and|Vy| < |Vz|, we can obtain

/ (d(ulq), M)
By (ho)
< Cyr? / \Vz[P(q)dg + Cor? / IVy[P(q)dq
By (ho) By (ho)
Oyt / o V@0 = X2) = Vala) (o) —\)|3dg
By (hg

< Cpr? / \Vz|P(q)dg + Cor? / VylP(q)dq
Br(hg) By (ho)

1
L O ( / Valrdg / |vy\qu)
Br(hO) Br(hO)

<crr [ VaP(ods
Q
where(C', Cy, C3, Cy andC depend o2, n, m andp. O
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