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1. INTRODUCTION

Let (H;(-,-)) be an inner product space over the real or complex numberie@ne of the
most important inequalities in inner product spaces with numerous applications, is the Schwarz
inequality

(1.1) e o)” < ll=*lyll*, zyeH

with equality iff x andy are linearly dependent.
In 1966, S. Kurepa [1] established the following refinement of the Schwarz inequality in inner
product spaces that generalises de Bruijn’s result for sequences of real and complex numbers

2.

Theorem 1.1.Let H be a real Hilbert space andi- the complexification off. Then for any
pair of vectorsu € H, z € H¢

1 _
(1.2) [z, a)|* < 3 lall® (=1 + ¢z, 2)[) < llall® (111"
In 1985, S.S. Dragomif [3, Theorem 2] obtained a different refinemeft gf (1.1), namely:
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2 S.S. RAGOMIR

Theorem 1.2.Let (H;(-,-)) be a real or complex inner product space and;,e € H with
|le|| = 1. Then we have the inequality

(1.3) vl = [{z,y) = (=, e) {e, )| + [{z, €) e, y)| = (2, y)] .

In the same papelr[3, Theorem 3], a further generalisation for orthonormal families has been
given (see alsa [4, Theorem 3]).

Theorem 1.3. Let {¢;},.,, be an orthonormal family in the Hilbert spadé. Then for any
r,ye H

(1.4) Izl lyll = |z, y) = D e enyd| + D e e) {ei v

i€l el

> (o) = 3 (@, e e y)| +

el

Z (z,€:) (ei, y)

i€l

> [z, )]
The inequality[(I.8) has also been obtained.in [4] as a particular case of the following result.
Theorem 1.4.Letx,y,a,b € H be such that
lall* < 2Re(z,a), [|b]* < 2Re(y,b).
Then we have:

(1.5) [ ly]| = (2Re {z,a) — HGH2)% (2Re (y,b) — HbHQ)%
+ (2, y) = (2,0) = (a,y) + (a,0)].

Another refinement of the Schwarz inequality for orthornormal vectors in inner product
spaces has been obtained by S.S. Dragomir and J. Sandor in [5, Theorem 5].

,,,,,

Then

2

x6) =l llyll = Kz, 9) = (ZKI,@HQZI@, ei>\2> -

and

L.7) 2l lyll — Re (z, y) = (Z \(x,€i>lzz \<y>6i>|2> - ZRe [(z, &) {ei,y)] = 0.

For some properties of superadditivity, monotonicity, strong superadditivity and strong mono-
tonicity of Schwarz’s inequality, seel[6]. Here we note only the following refinements of the
Schwarz inequality in its different variants for linear operators [6]:

a) Let H be a Hilbert space andi, B : H — H two selfadjoint linear operators with
A > B > 0, then we have the inequalities

(1.8) (Az,z)? (Ay,y)? — |(Az,y)| > (B, z)
and
(1.9) (Az,z) (Ay,y) — [(Az,y)* > (Bx,z) (By,y) — |(Bz,y)* > 0

foranyz,y € H.

N
[SIE

(By,y)? — [(Bz,y)| > 0
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b) LetA : H — H be abounded linear operator ai and let|| A|| = sup {||Az|| , ||z|| = 1}
the norm of A. Then one has the inequalities

(1.10) AN (gl = [z, 9)]) > || Az |Ay|| — [(Az, Ay)| > 0
and
(1.11) AN (12l lyl* = [z, »)|*) > [|Az|® |Ay||* — [(Az, Ay)[* > 0.

c) Let B : H — H be a linear operator with the property that there exists a constant
m > 0 such thatl| Bz|| > m ||z|| for anyxz € H. Then we have the inequalities

(1.12) IBz|[ | Byl = [{Bx, By)| = m?* (=]l [lyll — [{z, y)]) = 0
and
(1.13) 1Bz |* || Byll* = [(Bx, By)[* = m* (l«]* ly|* = |{z,9)[") = 0.

For other results related to Schwarz’s inequality in inner product spaces, see Chapter XX of
[8] and the references therein.

Motivated by the results outlined above, it is the aim of this paper to explore other avenues
in obtaining new refinements of the celebrated Schwarz inequality. Applications for vector-
valued sequences and integrals in Hilbert spaces are mentioned. Refinements of the Heisenberg
inequality for vector-valued functions in Hilbert spaces are also given.

2. SOME NEW REFINEMENTS

The following result holds.

Theorem 2.1.Let (H;(-,-)) be an inner product space over the real or complex number field
Kandry,r, > 0. If z,y € H satisfy the property

(2.1) o =yl = ra = re = |llz]l = [yl
then we have the following refinement of Schwarz’s inequality
1
(2.2) 2l lyll = Re (z,9) > 5 (r; = 1) (= 0).
The constang is best possible in the sense that it cannot be replaced by any larger quantity.

Proof. From the first inequality i (2]1) we have

(2.3) |]1* + llyll* > 73 + 2 Re (z,y) .
Subtracting in[(2]3) the quanti®y||z|| ||y|| , we get

(2.4) ([l = lyl)* = 5 = 2 (||l lly| = Re (z,5)).
Since, by the second inequality [n (R.1) we have

(2.5) rt 2 (lall = llyll)’.

hence from[(2}4) andl (3.5) we deduce the desired inequlity (2.2).
To prove the sharpness of the const?m ), let us assume that there is a constant 0
such that

(2.6) ] lyll = Re (z,y) > C (153 =),
provided that: andy satisfy [2.1).
Lete € H with ||e|| = 1 and forry > r; > 0, define

To + 71

(2.7) T=—F—-c and y =

rn—re

2
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Then
|z =yl = r2 and |[|z]| = |[y[l] = r1,
showing that the condition (2.1) is fulfilled with equality.
If we replacer andy as defined in[(2]7) into the inequalify (R.6), then we get

r2 — p2

2 1 5 1 ZC(T’%—T‘%),

which implies that”' < %, and the theorem is completely proved. O
The following corollary holds.

Corollary 2.2. With the assumptions of Theorem|2.1, we have the inequality:

V2 %
(28 Il + llgll = 5= Nl + 9l > =y fr3 =2

Proof. We have, by[(Z2]2), that
(Nl + 1lylD* = =+ yl* = 2l ly| — Re (z,y)) = r3 —r; >0

which gives

2
@9) (el + 1) = o+ 1P+ (V3 =72
By making use of the elementary inequality
2(a+ 8% > (a+p)?, «f20;

we get
2 2
1
(2.10) o+ yl* + ( T%—T%) 23 <||x+y|’+\/7“§—r%) .
Utilising (2.9) and[(2.1)0), we deduce the desired inequdlity (2.8). O

If (H;(-,-)) is a Hilbert space ande;},_, is an orthornormal family inf, i.e., we recall
that (e;, e;) = 0;; for anyi, j € I, whereg,; is Kronecker’s delta, then we have the following
inequality which is well known in the literature &essel’s inequality

(2.11) > {a,e)|* < ||z||* foreachz € H.
iel
Here, the meaning of the sum is
>, e)]* = sup {Z [z, ¢;)|*, Fis afinite part of[} :
icl Fcl ier
The following result providing a refinement of the Bessel inequdlity (2.11) holds.

Theorem 2.3. Let (H;(-,-)) be a Hilbert space ande;},_, an orthornormal family inf. If
x € H, x #0,andry, r; > 0 are such that:

r— (z.e)e 27‘227‘12||IH—<Z|($7€i>|2> (=0),

i€l el
then we have the inequality

2 1 r2 —r?
(2.13) ]| = (Zux,em?) > - (2 0).
et 2 (s e e)?)?

(2.12)
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The constang is best possible.

Proof. Considery := > ., (z,¢;) ;. Obviously, sincel is a Hilbert spacey € H. We also

note that
2
lyll = Z(%ez‘)ei = Z(I,ez‘ﬁi = Z|<$7€z‘>’27
iel i€l iel
and thus[(2.7]2) is in facf (2.1) of Theorém|2.1.
Since

2]l lyll = Re (z, ) = ||z (Z [z, €i>!2> —Re <$ > (we) €i>

el el

=(Z|<x>ei>lz) ||x||—<2|<93,6i>l2> :

iel el
hence, by[(2]2), we deduce the desired repult {2.13).

We will prove the sharpness of the constant for the case of one element, ke.{1},
ey = e € H, |le]| = 1. For this, assume that there exists a constant 0 such that
rs —ri
(2.14) el = |z, e)] = D - =—
|(z, )|
providedz € H\ {0} satisfies the condition
(2.15) lo = (z,e)ell = ra = =[] = [(z, )]

Assume that: = e + uf withe, f € H, |le|| = ||f|| = 1 ande L f. We wish to see if there
exists positive numbers, ;. such that

(2.16) |z = (@, e)ell = ra > ri = ||lz]| = [(z,e)].
Since (forA, u > 0)
|z — (z,e) el = p

[zl = [{z, )] = VA% + p? = A

hence, by[(2.16), we get= r, and
\/)\2+7’%—)\:7’1

N 415 = N+ 20y + 13

and

giving

from where we get

P Bk
27”1 ’
With these values fok andu, we have
2 2
o _ _n=n
z]] = Kz, e} =m1,  [{z,¢€)] o
and thus, from[(2.14), we deduce
2 .2
™ >D- Tiz_r;nla
2r1
giving D < % This proves the theorem. OJ
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The following corollary is obvious.

Corollary 2.4. Letz,y € H with (z,y) # 0 andry > r; > 0 such that

T,y
@17) stz = 222y > vl = o
> [Jzf lyll = [{z, »)| (= 0).
Then we have the following refinement of the Schwarz’s inequality:

(=) s (2 0.

(2.18) ] [yl = [(z, 9)| = (2, )]

DN | —

The constang is best possible.
The following lemma holds.

Lemma 2.5. Let(H; (-, -)) be an inner product space artl > 1. For =,y € H, the subsequent
statements are equivalent:

(i) The following refinement of the triangle inequality holds:
(2.19) 2/l + 1yl = Rz +yl;
(i) The following refinement of the Schwarz inequality holds:

1
(2.20) [yl = Re (2, 4) = 5 (R* = 1) e +yl”.

Proof. Taking the square i (2.19), we have
(2.21) 2|zl Iyl = (B2 = 1) [l]]” + 2B* Re (z,y) + (B* = 1) [ly]”.
Subtracting from both sides of (2/21) the quangitye (x, y) , we obtain
2(|l llyll = Re (z,9)) > (B> = 1) [||=[|* + 2 Re (z,y) + [ly|’]
= (R* = 1) |z + "
which is clearly equivalent t¢ (2.20). O

By the use of the above lemma, we may now state the following theorem concerning another
refinement of the Schwarz inequality.

Theorem 2.6. Let (H; (-,-)) be an inner product space over the real or complex number field
andR > 1,r > 0. If z,y € H are such that

(2.22) |zl + lyll) = [lz +yll = 7,

=
then we have the following refinement of the Schwarz inequality

1
(2.23) 2l lyll = Re (z,y9) > 5 (R* = 1) r*.
The constani is best possible in the sense that it cannot be replaced by a larger quantity.

Proof. The inequality[(2.28) follows easily from Lemrha .5. We need only prove thathe
best possible constant in (2]23).
Assume that there exista> 0 such that

(2.24) Iz [yl — Re (z,y) > C (R* = 1)
providedz, y, R andr satisfy [2.22).
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Considerr = 1, R > 1 and choose = 2fe, y = LEewith e € H, |le|| = 1. Then

]l + Nyl _
- —
and thus[(2.22) holds with equality on both sides.
From (2.24), for the above choices, we hadveR? — 1) > C (R? — 1), which shows that
C<s3. O

T+y=e, 1

Finally, the following result also holds.

Theorem 2.7.Let (H; (-,-)) be an inner product space over the real or complex number field
Kandr € (0,1]. For z,y € H, the following statements are equivalent:

(i) We have the inequality
(2.25) izl = llylll < 7 llz—yll;
(i) We have the following refinement of the Schwarz inequality

(2.26) ol lyll — Re z,5) > 5 (1= %)l — yl]*
The constan% in ) is best possible.
Proof. Taking the square i (2.25), we have
e =2l flyll + ly1* < r* (l2]* = 2Re {z, ) + |yII)
which is clearly equivalent to
(L=7%) [ll=]* = 2Re (z,9) + lyl*] <2(ll]lly] - Re(z,y))

or with (2.26).

Now, assume thaft (2.26) holds with a constant 0, i.e.,
(2.27) Izl 1yl = Re (z,y) = E (1 =) la —yl*,
provided [2.2p) holds.

Definexr = “tte, y = Ste withe € H, |le|| = 1. Then

Nzl =Myl =7 lle—yl=1
showing that[(Z.25) holds with equality.
If we replacex andy in (2.27), then we geff (1 — %) < $ (1 —r?), implying thatE' <
2. O
3. DISCRETE INEQUALITIES

Assume thatK; (-, -)) is a Hilbert space over the real or complex number field. Assume also
thatp; > 0,7 € H with > .7, p; = 1 and define

C(K) = {x = (2;);en| i €K, i € N and Zpi llz]|* < oo} .

i=1

Itis well known that/;, (K) endowed with the inner produ¢t -) | defined by

(x, Y>p = Zpi (i, vi)
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1
00 2
2
[l = (Zmllxill )
=1
is a Hilbert space ovekK.

We may state the following discrete inequality improving the Cauchy-Bunyakovsky-Schwarz
classical result.

and generating the norm

Proposition 3.1. Let (K (-,-)) be a Hilbert space angh, > 0 (i € N) with >~° p; = 1.
Assume thak,y € éf) (K) andry, o > 0 satisfy the condition

(3.1) zi = yill = 12 =1 2> [||s]] — [[will]

for eachi € N. Then we have the following refinement of the Cauchy-Bunyakovsky-Schwarz
inequality

(o] o 1
(3.2) (Zpi Ha:iHQZpiHyiHQ) szRe riy) 2 5 (13 = 17) 2 0.
=1 =1

The constang is best possible.

Proof. From the condition[(3]1) we simply deduce

(3.3) dovillai—will® 203 2t 2 pi(llzll — llyil)®
i=1 i=1

0 3 00 3
2 2
(zp@- - ) . (zpiuyiu )
=1 =1

In terms of the nornjl-|| ,, the inequality[(3.8) may be written as

(3.4) I =yl =72 = 1 = I,
Utilising Theorerr' for the Hilbert spa((d2 ° >p> , we deduce the desired inequality
@B.2).

Forn =1 (p; = 1), the inequality[(3.R) reduces to (2.2) for which we have shown }fiat
the best possible constant. O

By the use of Corollary 2]2, we may state the following result as well.

Corollary 3.2. With the assumptions of Proposition|3.1, we have the inequality

V2 V2
(3.5) (sz ”371H2> + (sz HyzH2> Y Zpi s + will* | = > rs —ri.
=1 i=1 i=1
The following proposition also holds.

Proposition 3.3. Let (K (-,-)) be a Hilbert space angh; > 0 (i € N) with }"° p; = 1.
Assume that,y € £ (K) andR > 1, r > 0 satisfy the condition

1
(3.6) 7 Uil + llyill) 2l + gl = 7
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for eachi € N. Then we have the following refinement of the Schwarz inequality

(3.7) (Zpi [EAI Hyz||2> — > piRe(zi,4:) > 5 (R —1)r*
=1 =1

=1
The constang is best possible in the sense that it cannot be replaced by a larger quantity.
Proof. By (3.6) we deduce

sz (Nl + [lzll) ] (szllxﬁyzH) >

By the classical Mlnkowsky inequality for nonnegative numbers, we have

39) (Zpiuxiu?) +<Zpiuyiu?> > [Zpi<r|xi|\+|\yi\|>2] ,

and thus, by utilisin8) an.9), we may state in termi|gf the following inequality

(3.8)

1
(3.10) = (el +1iy1,) > I+, > r

Employing Theorer 2|6 for the Hilbert spagg(K) and the inequality (3.10), we deduce the
desired resulf (3]7).

Since, forp = 1, n = 1, (3.9) is reduced td (2.23) for which we have shown thist the best
constant, we conclude th us the best constant |. 7) as well. O

Finally, we may state and prove the following result incorporated in

Proposition 3.4. Let (K; (-,-)) be a Hilbert space ang; > 0 (i € N) with >>° p;, = 1.
Assume that,y € ¢ (K) andr € (0, 1] such that

(3.11) llzill = [lgalll <7 llx; — yill foreachi € N,
holds true. Then we have the following refinement of the Schwarz inequality

o o 1 o0

(3.12) (sz ||$z||QZPz||yz||2> szRe i, Yi) 5 1—7”2)2]%“%—%“2'
i=1 =1 =1

The constant is best possible ifj (3.] il..2).

Proof. From (3.11) we have

[sz lezall = llil) ] <

Utilising the following elementary result

1 1 1
o] 2 o) 2 o] 2
2 2 2
(ZpiniH ) - (Zpi Al > < (Zpi(H%H = lwill) > ,
i=1 i=1 i=1

we may state that

Zpl (E——l ]

[, — | lly-
Now, by making use of Theorejn 2.7, we deduce the desired ineqyality (3.12) and the fact that
% is the best possible constant. We omit the details. O
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4. INTEGRAL INEQUALITIES

Assume that{ K; (-, -)) is a Hilbert space over the real or complex number figldIf p :
la,b] € R — [0,00) is a Lebesgue integrable function Wiyijp(t) dt = 1, then we may
consider the spacg’ ([a, ] ; K) of all functionsf : [a,b] — K, that are Bochner measurable

and f;p ) |If ®))? dt < oo. Itis known thatZ? ([a, b] ; ) endowed with the inner product
(,-), defined by

(fa), = [ o0 (@90t

b ]
i, = ([ oo a)
is a Hilbert space oveK.

Now we may state and prove the first refinement of the Cauchy-Bunyakovsky-Schwarz inte-
gral inequality.

and generating the norm

Proposition 4.1. Assume thaf, g € L/% ([a,b]; K) andry, r; > 0 satisfy the condition

(4.1) 1F (&) =g @Ol = =r 2 [I[f @I = [lg @]

fora.e.t € [a,b]. Then we have the inequality

@ ([owirora [ ol <t>||2dt)§

b
1
- [ O 0.5 ®)de = 5 (3~ 12) (2 0).
The constani is best possible irj (4.2).
Proof. Integrating [(4.]L), we get

(4.3) (/:p@)(Hf(t)_g<t>||>2dt)5

1
2

b
Sz (/ o) (IF (0 - Hg(t)H>2dt>
Utilising the obvious fact

1
2

b
(4.4) [/ p (&) (ILF @I = ||g(t)||)2dt}

(/abp(t) I/ (t)IIth)% _ (/ab,o(t) " (t)||2dt)é| |

we can state the following inequality in terms of th¢ , norm:

>

(4.5) 1 =gll, > 72> 1> |71, — ol |

Employing Theorel for the Hilbert spab%([a, b]; K) , we deduce the desired inequality
@.2).
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To prove the sharpness ¢fin (4.9), we choose = 0,b = 1, f(t) = 1,¢ € [0,1] and
ft)=z,9(t)=y,t€ab],z ye K. Then[4.2) becomes

1
] lyll ~ Re (z,9) > 5 (75~ +?)

provided
o =yl = ra = e = |[lz]l = [yl

which, by Theorel has the quant%tyas the best possible constant. O
The following corollary holds.

Corollary 4.2. With the assumptions of Propositipn}4.1, we have the inequality

wo ([ o <t>|12dt)% +([ ol (t)Hthf
—g(/abpaw(t) o (1)) dt) > Y2 -

The following two refinements of the Cauchy-Bunyakovsky-Schwarz (CBS) integral inequal-
ity also hold.

Proposition 4.3.1f f,g € L? ([a,b]; K) and R > 1,7 > 0 satisfy the condition

(4.7) %(Hf(t)H +lg@®D 2 1f @) +g @l =

fora.e.t € [a,b], then we have the inequality

4.8) ( / o) 17 () dt / o) g <zf>||2dt)é

—/ p(H)Re (f (1), g () dt >

The constani is best possible i} (4.8).

(R2 — 1) r2.

N —

The proof follows by Theoren 2.6 and we omit the details.
Proposition 4.4.1f f, g € Lf) ([a,b]; K) and( € (0, 1] satisfy the condition
(4.9) HLF @O =Tllg O < Cllf (1) =g @]

fora.e.t € [a,b], then we have the inequality

(4.10) (/abp(t) 1LF (@)1 at /abp(t) lg (t)||2dt)§

_/ p()Re(f(1),g(t)dt >

The constani is best possible iff (4.10).

b
(1-¢ )/ p ()11 (1) — g (B)]2dt.

l\')l»—t

The proof follows by Theorein 2.7 and we omit the details.
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5. REFINEMENTS OF HEISENBERG |NEQUALITY

It is well known that if (H; (-, -)) is a real or complex Hilbert space ayid [a,0] C R —H
is anabsolutely continuous vector-valuéghction, thenf is differentiable almost everywhere
on[a, b], the derivativef’ : [a,b] — H is Bochner integrable ofa, b] and

(5.1) Ft) = /t F(s)ds foranyte[a,b].

The following theorem provides a version of the Heisenberg inequalities in the general setting
of Hilbert spaces.

Theorem 5.1.Lety : [a,b] — H be an absolutely continuous function with the property that
blle 0)|> = alle (a)|” . Then we have the inequality:

(5.2) <AHW@MWQQS4AZW¢@Wﬁ-AW¢@W%w

The constant is best possible in the sense that it cannot be replaced by any smaller constant.
Proof. Integrating by parts, we have successively

b b b
63 [ le@Fa=rle0F| - [t (e @)

bl B~ alle @I - [ 5 (000 @) d

b
- _/ t[{' (1), 0 () + (e (), ¢ (1)) dt
:_2/ tRe (¢ (1), ¢ (1)) dt
:2/ Re (¢ (t),(—t) @ (1)) dt.

If we apply the Cauchy-Bunyakovsky-Schwarz integral inequality

forg(t) =¢'(t), h(t) = —tp(t),t € [a,b], then we deduce the desired inequality |4.5).

The fact that! is the best constant if (4.5) follows from the fact that in the (CBS) inequality,
the case of equality holds iff(¢) = Ak (t) for a.e.t € [a, b] and\ a given scalar ifK. We omit
the details. O

For details on the classical Heisenberg inequality, see, for instance, [7].
Utilising Propositiorj 4.]1, we can state the following refinement of the Heisenberg inequality
obtained above irj (5.2):

Proposition 5.2. Assume thap : [a,b] — H is as in the hypothesis of Theorpm|5.1. In addition,
if there existr,, 1 > 0 so that

1" (t) + to ()] = r2 =1 = [[[&" (O = 12l | ()]
fora.e.t € [a,b], then we have the inequality

([ere@ia [1eara) -3 [leoraz50-06-mEo.
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The proof follows by Proposition 4.1 on choosifigt) = ¢’ (¢), g (t) = —te () andp (t) =
At € la,b].
b—a’ ’

On utilising Propositiof 4]3 for the same choicesfo§ andp, we may state the following
results as well:

Proposition 5.3. Assume thap : [a, b] — H is as in the hypothesis of Theorgm|5.1. In addition,
if there existkR > 1 andr > 0 so that

]‘ / /
7 U @O+ 1t e O = () = te @)l = 7
fora.e.t € [a,b], then we have the inequality

([ erewia [ |dQ 2 [ eora

(t)

1 2 2

> (b—a) (R~ 1)r* (2 0).
Finally, we can state

Proposition 5.4. Lety : [a,b] — H be as in the hypothesis of Theorer 5.1. In addition, if there
exists¢ € (0, 1] so that

" @I = Tt e Ol < Clig" (£) + e (@)

fora.e.t € [a,b], then we have the inequality

1
>

b
0= [0+ o).
This follows by Propositioh 4]4 and we omit the details.
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