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ABSTRACT. In this paper we use integral calculus, complex variable techniques and some clas-
sical inequalities to establish rational identities and inequalities involving Fibonacci and Lucas
numbers.
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1. INTRODUCTION

The Fibonacci sequence is a source of many nice and interesting identities and inequalities. A
similar interpretation exists for Lucas numbers. Many of these identities have been documented
in an extensive list that appears in the work of Vajda [1], where they are proved by algebraic
means, even though combinatorial proofs of many of these interesting algebraic identities are
also given (see [2]). However, rational identities and inequalities involving Fibonacci and Lucas
numbers seldom have appeared (see [3]). In this paper, integral calculus, complex variable
techniques and some classical inequalities are used to obtain several rational Fibonacci and
Lucas identities and inequalities.

2. RATIONAL IDENTITIES

In what follows several rational identities are considered and proved by using results on
contour integrals. We begin with:
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2 JOSELUIS DiAZ-BARRERO

Theorem 2.1. Let F,, denote thex* Fibonacci number. That ig, = 0, F; = 1 and forn > 2,
F, =F,_1+ F,_>. Then, for all positive integers

" 14 F* - 1 (_1>n+1
2.1 r+k _
( ) kz:; Fr-i—k H Fr—i-k — Fr+j Fr+1Fr+2 .. FT’+n
J#k

holds, with0 < /¢ <n — 1.
Proof. To prove the preceding identity we consider the integral

1 1 td
2.2) = otz
. a(2) 2z

Y

T om

whereA, (z) = [[[_,(z — Fryj)-
Let v be the curve defined by = {2 € C : |z| < F,,;}. Evaluating the preceding integral

in the exterior of they contour, we obtain

n

1 142 1
_[ = —_— d —
" 2w ,Y{ z jl_[ (z — Fr+]~)} & ZRk’

=1 k=1
where
1+ 2¢ ¢ 1 1+ F 1
R, = lim = rt :
2= Frqp z ]11 (Z - Fr—f—j) FT’+k H (Fr-‘rk: - Fr—f—j)
J#k J#k
Then,l; becomes
"1+ F, & 1

Fr+k et (F’r—l—k - Fr—i—j)

Evaluating [(2.R) in the interior of the contour, we get

n

1 1+2¢ 1
L =— d
27 o . { z H (z — Fryy) } :

Jj=1

1 (="
An(o) Fr+1Fr+2" 'Fr—ﬁ—n‘

By Cauchy’s theorem on contour integrals we have that/;, = 0 and the proof is complete.
O

A similar identity also holds for Lucas numbers. It can be stated as:

Corollary 2.2. Let L,, denote thex’* Lucas number. That id,, = 2, L; = 1 and forn > 2,
L, =L, 1+ L, 5. Then, for all positive integers,

n

1+ L¢ 1 (_DnH
2.3 - Ttk IS S G
( ) ; Lr+k H Lr+k — LT+j Lr+1Lr+2 cee LT+n
j#k

holds, with0 < ¢ <n — 1.
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In particular (2.1) and (2] 3) can be used (see [3]) to obtain

Corollary 2.3. Forn > 2,

(F3+1)Fn+1Fn+2 + Fn(F3+1 + 1)Fn+2
(Fn—i-l _Fn)<Fn+2_Fn) (Fn_Fn+l)<Fn+2_Fn+1)
FoFoi(FR o +1)

+ = 1.
(Fn - Fn+2)(Fn+1 - Fn+2)
Corollary 2.4. Forn > 2,
Ln+1Ln+2 + Ln+2Ln
(Ln+1 - Ln)(Ln+2 - Ln) (Ln - Ln+1)(Ln+2 - Ln-i-l)
+ LnLnJrl -1

(Ln - Ln+2)(Ln+1 - Ln+2)
In the sequeF, andL,, denote thex’* Fibonacci and Lucas numbers, respectively.

Theorem 2.5.1f n > 3, then we have

n n

1 LN\
Zyﬂ H(l—ﬁ) YL = Loy — 3.

i=1 j=1
i

Proof. First, we observe that the given statement can be written as

n n

71 n
3 #H(b%) +Y Li=L,»-3
) ¢ i=1

i=1 | 7 e
J#i

Since} " | L, = L,.» — 3, as can be easily established by mathematical induction, then it will
suffice to prove

(2.4) Z %H( —%) = 0.

We will argue by using residue techniques. We consider the monic complex polynéfmjak
[1,_,(z — Lx) and we evaluate the integral

1 z
= %7{14@‘12

over the interior and exterior domains limited hya circle centered at the origin and radius
Ln_;’_], |e,'y - {Z € (C : |Z’ < Ln+1} .
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Integrating in the region inside thecontour we have

1 z
:Li}

dz

I = —
Y om [ A(z)

= Z‘ZlRes {Azz

3

i=1 \ =1

"1 L\~
el
Sl IR v

Integrating in the region outside of thecontour we get

27?2ng dz=0.

Again, by Cauchy’s theorem on contour integrals we hiavel; = 0. This completes the proof
of (2.4). O

Note that|[(2.%#) can also be established by using routine algebra.

3. INEQUALITIES

Next, several inequalities are considered and proved with the aid of integral calculus and the
use of classical inequalities. First, we state and prove some nice inequalities involving circular
powers of Lucas numbers similar to those obtained for Fibonacci numbeérs in [4].

Theorem 3.1. Letn be a positive integer, then the following inequalities hold

(@) LEwer 4 Ll < Ll 4 Ly,
(b) Loti? = Ly < Lyis’ — Lits,

Proof. To prove part[(a) we consider the integral

Ln+1
I = / (ng+1 log L1 — L% log Ln) d.

SincelL, < L, ifn>1,thenforlL, < x < L,,; we have
Lylog L, < Ly log L, < L log Ly,
and/; > 0. On the other hand, evaluating the integral, we obtain

L1
I = / (L1108 Lus — L log L, ) da
T x Ln 1
[Ln+1 L ] n+

= (e thn) - (et k)
and (&) is proved. To provg|(b), we consider the integral

L7L+2
L= / (ng+2 log Lnsz — L2, log Ln+1> dz.
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Sincel, 1 < L,.s,thenforL, <z < L,,, we have
Ly q10g Ly < Ly olog Lo
and/; > 0. On the other hand, evaluatirlg, we get

Lpyo
I, = / (Li+2 log L2 — Li+1 log Ln+1) dx

- [L;EL+2 - L£+1}§:+2

= (Lhns = Lhw,) - (L - o).
This completes the proof. O
Corollary 3.2. Forn > 1, we have

Ly 4 Ly + Ly < L+ LY+ L
Proof. The statement immediately follows from the fact that
(Lke + Lot + L) — (LR + Ly + L, )
= (g v i) = (B + L)
+ | (g — L) — (Lot — Lim) |
and Theorerh 311. O
Theorem 3.3. Letn be a positive integer, then the following inequality
Lyt Ly Lty < Ly Lyt Ly

holds.

Proof. We will argue by using the weighted AM-GM-HM inequality (séé [5]). The proof will
be done in two steps. First, we will prove

< Ln + Ln+1 + Ln+2 Intlntitingz
3 )
In fact, settingey = L,,, vo = Ly 1, 3 = L, and

(3.1) LE L2 Lin,

wy = Ln+1
Ln + Ln+1 + Ln+2’
Wy = Ln+2
Ly, + Loy + Lygo’
L,
w3

B Ln + LnJrl + Ln+2
and applying the AM-GM inequality, we have

LLn+1/(Ln+Ln+1+Ln+2)LLn+2/(Ln+Ln+1+Ln+2)LLn/(Ln+Ln+1+Ln+2)
n

n+1 n+2
Ly Ly N Lpi1Llyyo LynyoLy,
Ln + Ln+1 + Ln+2 Ln + Ln+1 + Ln+2 Ln + LnJrl + Ln+2
or
LnLn Ln Ln Ln Ln Lyn+Lny1+Lnge
Lﬁn-ﬂ LijﬁzLﬁiz < ( +1 + Lpt1limyo + Lingo ) .

Ln + Ln+1 + Ln+2

J. Inequal. Pure and Appl. Math4(5) Art. 83, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 JOSELUIS DiAZ-BARRERO

Inequality [3.1) will be established if we prove that
<LnLn+1 + Lny1Lnyo + Lol > Entlniithng - <Ln + L1+ Lo > Entlniiting
Ly+ Ly + Lyio 3
or, equivalently,
LoLyy1+ Lyy1Lyio+ LyyoLy, - Ly+ Ly + Lo
Lo+ Ly + Lo 3 '

That is,
L+ L2+ L5y > LyLoi1 + Lo Lngs + Luja Ly
The last inequality immediately follows by adding up the inequalities
L2+ L%, > 2L, Ly,
L)+ L2y >2Ln 1Ly,
L2 5+ L2 >2L, 5L,

and the result is proved.
Finally, we will prove

Ln Ln Ln Ln+Lpt1+Lnio
(3.2) ( + §1+ +2)

L n+1 7 Lnt2
< LEapfnipliese

In fact, setting
1 = Ly, 2= Lnpy1, 3= Lpyo,
wy = Ly /(Lp + Lypt1 + Lng2),
Wy = Lypy1/(Ln + Lpy1 + L), and
w3 = Lyyo/(Ln + Lnt1 + L)

and using the GM-HM inequality, we have

Ly+ Lpy1+ Lyga ( 3 )_1
3 Ly + Lygi+ Lyyo

1

1 + 1 + 1
Lp+Lnt1+Lnyo Ln+Lypy1+Lnyo Ln+Lypy1+Lnyo

L /(L +Ln+1+Ln+2) Ln+1/(Ln+Ln+1+Ln+2) n+2/(Ln+Ln+1+Ln+2)
< Lln/(n LE L

n+2
Hence,
Ln + Ln 1 + Ln+2 IntLnt1tints n n
( 3 ) < Lot L L
and [3.2) is proved. This completes the proof of the theorem. O

Stronger inequalities for second order recurrence sequences, generalizing the ones given in
[4] have been obtained by Stanicalin [6].
Finally, we state and prove an inequality involving Fibonacci and Lucas numbers.

Theorem 3.4. Letn be a positive integer, then the following inequality

_n+1 _n+tl
n F n B S
Z k+2 H k’+1 k+1
= n —
1 F2k+2 Tl + 1 iy k+1 Lk+1

holds.
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Proof. From the AM-GM inequality, namely,
1 n n 1
- > ", where >0, k=1,2,...
nzxk_Hl‘ka T ) ) T

k=1 k=1
and taking into account that for gll> 2,0 < L' < F; ', we get

I n+1
(3.3) / / / sz drodas . .. daga
L;l Lgl L- 1

n+1 f 2

F2_1 F3 n+1
Z /_1 /_1 / dl’ng3 de‘n+1.
2 3

n+1
Evaluating the preceding integrals (3.3) becomes

n+1

(3.4) Z(F;l - L?) T (F[—11 B LZ—11)(F[2 L )(Fe+11 LZ—‘:I) (Fnﬁl L;Jlrl)

2 n+1 7l n+4l _ n+l
n H(F n _Lf n >

(n+ 1
or, equivalently,
n+1 n+1 n+1
oIpntl _n+l _n+l
[[FE - v > —H(Fé T )
(=2 =2 ( - 1) (=2

Settingk = ¢ — 1 in the preceding inequality, taking into account tli@t+ L, = 2F,
F, L, = F,, and after simplification, we obtain

n n *LH —ztl
Z Fk+2 n"t H k+1 — Ly,
— F2k+2 G F b — Lk
and the proof is completed. O
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