文章编号:0253-2409(2005)02-0218-06

焙烧温度对含 Mg 助剂的铁基催化剂 F-T 合成反应性能的影响

孙玉川¹² 杨 骏² 唐 渝²,郝庆兰¹,田 磊¹ 张志新¹ 相宏伟¹ 李永旺¹ (1. 中国科学院山西煤炭化学研究所 煤转化国家重点实验室 山西 太原 030001 2. 暨南大学 化学系 广东 广州 510632)

摘 要:采用连续共沉淀和喷雾干燥技术相结合的方法制备了 Mg 助剂的 Fe/Cu/K/SiO₂ 催化剂,采用 N₂ 物理吸 附、XRD、MES 和 H₂ – TPR 等表征手段,考察了焙烧温度对催化剂比表面积、体相结构和还原性能的影响。结果表明 随着焙烧温度的升高,催化剂的比表面积降低,平均孔径增大,体相中 α – Fe₂O₃ 晶粒逐渐增大,催化剂变的越来越难还原,其结构更加稳定。在 H₂/CO(摩尔比)= 2.2、250 °C、2.0 MPa 和 2 000 h⁻¹于固定床反应器考察了焙烧温度对该催化剂 F – T 合成反应性能的影响,结果表明,随着焙烧温度的升高,催化剂的 F – T 合成反应活性降低,在运行过程中反应活性逐渐增加直至达到平稳,但达到平稳所需的诱导期越来越长,提高焙烧温度使烃产物分布向重质烃方向转移,有利于降低 CH₄ 的选择性,促进重质烃的生成。 关键词:F – T 合成, 铁基催化剂, Mg 助剂, 焙烧温度,喷雾干燥技术

中图分类号:TQ529.2 文献标识码:A

F-T合成可将煤、天然气和生物质等含炭资源 间接转化为液体燃料,是解决燃料短缺的重要途径 之一^[1]。F-T合成催化剂中,只有铁基和钴基催化 剂在工业上得到成功的应用。由于铁基催化剂具有 良好的 F-T合成活性和水煤气变换(WGS)活性, 而且廉价易得,更适合于煤基合成气的 F-T合成。 有关助剂对铁基催化剂 F-T合成反应性能影响的 研究很多,且大部分涉及 K 和 Cu 助剂的研究^[2~7], 而有关 Mg 助剂的研究相对较少。本文采用连续共 沉淀和喷雾干燥技术相结合的方法制备了微球状含 Mg 助剂的 Fe/Cu/K/SiO₂ 催化剂,研究了焙烧温度 对催化剂结构和还原性能的影响,同时在固定床反 应器上详细考察了焙烧温度对 F-T合成反应性能 的影响,为工业催化剂的开发提供科学基础。

1 实验部分

1.1 催化剂制备 将 Fe(NO₃)₃、Cu(NO₃)₂和 Mg(NO₃)₂的混合溶液与 Na₂CO₃溶液并流进行连 续共沉淀,沉淀用去离子水洗涤至无 NO₃⁻(棕色环 实验检验),过滤。所得滤饼加入一定量的钾水玻 璃后打浆 250 ℃喷雾干燥,得到微球状含 Mg 助剂 的铁基催化剂粉体,该粉体分别在 350 ℃、400 ℃、 450 ℃、500 ℃和 550 ℃于马弗炉中焙烧 5 h 获得不 同温度焙烧后的催化剂,分别标记为 M350、M400、 M450、M500 和 M550,该催化剂配方质量组成为 Fe/0.05Cu/0.06K/0.04Mg/0.20SiO₂。催化剂制备 详见文献 8]。

1.2 反应器系统和产物收集 催化剂评价采用固 定床反应器,详细实验流程见文献91。将不同温 度焙烧的微球状催化剂压片,破碎,筛分后,取 20 目~40 目催化剂 5mL 装填至反应器中。然后用 合成气置换反应器系统。合成气经过脱硫、脱氧、脱 羰和脱水等系统净化后 经质量流量计计量进入反 应器。催化剂先用 H₂/CO(摩尔比)=2.2 的合成 气在 250 ℃、0.25 MPa、1000 h⁻¹还原 15 h 还原过程 中定时检测尾气中的 CO。体积分数来判断催化剂 的还原程度。还原完毕将反应器系统降至150℃, 再缓慢调至 2.0 MPa ,2 000 h⁻¹ ,然后程序升温至 250 ℃ ,开始 F – T 合成反应。不同温度焙烧的催化 剂均在此反应条件下稳定运行约 230 h。反应达稳 定状态,取24h为物料平衡周期,期间尾气保证 3次以上的分析 整个实验过程总物料及碳、氧和氢 平衡保持在 98% 左右。F-T 合成反应有气相、液 相和固相三种反应产物。气相产物经湿式流量计计 量排空 固相产物在热阱(135℃)中收集 液相产物 在冷阱(0℃)中收集。

1.3 产物分析方法 油相、蜡相、水相和尾气均用 气相色谱离线分析。尾气中的 CO₂ 采用外标法 ,硅 胶柱分析 ,TCD 检测。H₂、N₂、CH₄ 和 CO 采用 13X

收稿日期:2004-10-09;修回日期:2005-01-26

基金项目:国家自然科学基金(20590360);国家高技术研究发展计划(863项目 2001AA523010)。

联系作者:相宏伟, Tel: (0351) 4124899, E-mail: hwxiang@sxicc.ac.cn.

作者简介:孙玉川(1979-),男,河南唐河人,硕士研究生,无机化学专业。

分子筛柱进行分离,TCD 检测。 $C_1 \sim C_8$ 烃采用改性 Al₂O₃ 玻璃柱分析,FID 检测。气相产物的分析数据 采用甲烷关联的校正归一法进行处理。液相产物采 用 DB – 1 石英毛细管柱(60 m × 0.25 mm)分析,FID 检测。蜡相产物采用 UV⁺ –(HT)不锈钢毛细管柱 (30 m × 0.53 mm)分析,FID 检测。详细分析方法见 文献 10]。

2 结果和讨论

2.1 催化剂的织构特征 表1列出了不同温度焙烧后催化剂的织构特征。图1给出了不同温度焙烧后催化剂的孔分布曲线。由表1可知,随焙烧温度的升高,催化剂的比表面积呈下降趋势,由350℃焙烧的216.1 m²/g 下降到550℃焙烧的97.4 m²/g。由表1和图1可见,在350℃和400℃焙烧的催化剂,其孔分布曲线在3.5 nm 附近有一肩峰,随着焙烧温度的升高,这一肩峰逐渐减小并消失。催化剂的微孔塌陷,导致催化剂的比表面积下降,孔体积逐渐减小,孔径逐渐向大孔方向偏移。

表 1 不同温度焙烧后催化剂的织构特征

 Table 1
 Textural properties of the catalysts calcined at different temperatures

Catalyst	BET	Pore volume	Average pore				
	A /($\rm m^2 \cdot g^{-1}$)	$v / (\text{ cm}^3 \cdot \text{g}^{-1})$	diameter d / nm				
M350	216.1	0.26	4.6				
M400	200.4	0.25	4.9				
M450	170.7	0.24	5.3				
M500	148.8	0.22	5.7				
M550	97.4	0.18	7.0				

Figure 1 Pore size distribution of the catalysts calcined at different temperatures

2.2 催化剂的体相结构 不同温度焙烧后催化剂 的 XRD、MES 谱图见图 2 和图 3。由 MES 谱图确定 的物相及其含量与 MES 参数见表 2。由图 2 可知, 随着焙烧温度的升高,催化剂的 XRD 衍射峰强度逐 渐增加;焙烧温度较低时,催化剂的 XRD 谱图呈现 两个大而宽的衍射区,没有明显的 $\alpha - Fe_2O_3$ 特征 峰,焙烧温度较高时,催化剂的 XRD 谱图在 20 值为 24.3°、33.3°、35.8°、40.9°、49.6°、54.2°、57.6°、 64.1°时有比较强的衍射峰,峰形较尖锐。以上结果 表明随着焙烧温度的升高,催化剂中的 $\alpha - Fe_2O_3$ 晶 粒逐渐增大,晶形渐趋完美。

图 2 不同温度焙烧后催化剂的 XRD 谱图

Figure 2 XRD patterns of the catalysts calcined at different temperatures

(1) α - Fe₂O₃ ;(2) M350 ;(3) M400 ;(4) M450 ; (5) M500 ;(6) M550

图 3 不同温度焙烧后催化剂的 MES 谱图

Figure 3 Mössbauer spectra of the catalysts calcined at different temperatures

(1) M350 ;(2) M400 ;(3) M450 ;(4) M500 ;(5) M550

由图 3 可知, 焙烧温度低于 500 ℃,催化剂的 MES 谱图均有超顺磁态的二线谱组成。焙烧温度 高于 500 ℃的催化剂,其 MES 谱图上有超顺磁态的

表 2 不同温度焙烧后催化剂的 MES 参数

Table 2 Mössbauer spectra parameters of the

catalysts calcined at different temperatures

		Mössbauer parameters							
Catalyst	Phases	IS	QS	Hhf	Area				
		u /(mm · s ⁻¹) u /(mm \cdot s ⁻¹)	(kOe)	w / %				
M350	Fe^{3} (I) 0.33	0.59	-	36.6				
	Fe^{3+} (]]) 0.31	1.01	-	63.4				
M400	Fe ³⁺ (I) 0.34	0.62	-	48.7				
	Fe^{3} (]]) 0.32	1.09	-	51.3				
M450	Fe ³⁺ (I) 0.33	0.61	-	57.2				
	${\rm Fe}^{3}$ (${\rm I\!I}$) 0.32	1.14	-	42.8				
M500	Fe ³⁺ (I) 0.33	0.60	-	66.4				
	Fe^{3} (]]) 0.32	1.23	-	33.6				
M550	$\alpha - Fe_2O$	₃ 0.38	-0.14	496	17.6				
	Fe ³⁺ (I) 0.33	0.51	-	29.1				
	Fe ³⁺ (]]) 0.32	0.94	-	53.3				

I --- spm in bulk ; II --- spm in surface

二线谱和一条磁分裂的六线谱组成。表 2 的拟合参数显示, 焙烧温度低于 500 °C 的催化剂全部以超顺磁态的 Fe³⁺形式存在,而焙烧温度高于 500 °C 的催化剂中, α – Fe₂O₃ 一部分以大于 13.5nm 的大晶粒存在, 另一部分以小于 13.5nm 的超顺磁态 Fe³⁺形式存在^[11]。超顺磁态的二线谱又可以拟合成两套二线谱,其中具有较高的四极裂矩的二线谱代表处于晶粒表面的 Fe³⁺, 而具有较低四极裂矩的二线谱代表处于晶粒体相内的 Fe^{3+[12]}。由表 2 可知, 焙烧温度低于 500 °C 的催化剂, 随着焙烧温度的提高, 位于体相的 Fe³⁺质量分数越来越高, 而位于表面的 Fe³⁺质量分数越来越低, 此结果表明 随着焙烧温度的提高, 催化剂中 α – Fe₂O₃ 晶粒逐渐增大^[13,14]。以上由 XRD 和 MES 所得结果与催化剂的 BET 表面 积有很好的一致关系。

2.3 催化剂的 $H_2 - TPR$ 图 4 给出了不同温度焙 烧的催化剂的 $H_2 - TPR$ 谱图。由图 4 可知,不同温 度焙烧的催化剂 $H_2 - TPR$ 谱图主要有四个峰组成, 第一个峰可归于 CuO 和 $\alpha - Fe_2O_3$ 固溶体还原为 Cu 和 Fe_3O_4 ;第二个峰是 $\alpha - Fe_2O_3$ 远原为 Fe_3O_4 , 由于 Cu 助剂的作用使得与 CuO 相互作用比较强的 $\alpha - Fe_2O_3$ 的还原峰向低温方向偏移^[15];第三个峰 对应于 Fe_3O_4 还原为 $\alpha - Fe$;第四个可能是铁镁氧 化物固溶体的还原峰^[2]。随着焙烧温度的升高,第 一、第二还原峰逐渐向高温方向偏移,这是因为随着 焙烧温度的升高,催化剂的 $\alpha - Fe_2O_3$ 晶粒逐渐增 大,使得催化剂主物相 α – Fe₂O₃ 越来越难以还原, 这一结果与催化剂的 BET、XRD 和 MES 结果一致。 同时随焙烧温度的升高,Cu 向催化剂表面偏析,Cu 助剂 还原作用减弱, α – Fe₂O₃ 相从 CuO 与 α – Fe₂O₃固溶体中离析的量也会增加,因此随着焙 烧温度的升高,第一个峰的峰温越来越高,而第二个 峰的峰面积越来越大。由图 4 可知,对应于 Fe₃O₄ 还原为 α – Fe 的还原峰受焙烧温度的影响并不大。 随着焙烧温度的升高,第四个还原峰逐渐向高温方 向偏移,并且其峰面积逐渐增大。这是由于焙烧温 度升高可能促使 Fe 和 Mg 生成比较难以还原的铁 镁氧化物固溶体,并且随着焙烧温度升高,生成固溶 体的量越来越多,其结构越来越稳定。

图 4 不同温度焙烧催化剂的 H₂ – TPR 谱图 Figure 4 H₂ – TPR patterns of the catalysts calcined at different temperatures

(1) M350; (2) M400; (3) M450; (4) M500; (5) M550

2.4 催化剂的活性 图 5 给出了不同温度焙烧的 催化剂在 H_2 /CO(摩尔比)= 2.2,250 °C,2.0 MPa 和 2 000 h⁻¹ 230 h 的运转过程中的 F – T 合成活性 及其变化趋势。由图 5 可知 相同反应条件,焙烧温 度对催化剂的反应活性有很大影响。催化剂的初活 性均较低,CO 转化率分别为 74.09%、64.30%、 57.06%、50.16% 和 46.19%。催化剂的活性随着 焙烧温度的升高而逐渐下降,400 °C 和 450 °C 焙烧 的催化剂在反应运行稳定后,催化剂的活性相差不 大。每个催化剂均经历一定的诱导期,在运行过程 中反应活性逐渐增加直至达到平稳,但随着焙烧温 度的升高达到活性平稳所需的诱导期越来越长。五 个催化剂的诱导期分别为 48 h、96 h、120 h、155 h 和 190 h。由于随着焙烧温度升高,催化剂的比表面积 逐渐降低, α – Fe₂O₃ 晶粒增大,使得催化剂越来越

图 5 不同温度焙烧后催化剂的 F - T 反应活性和稳定性

Figure 5 CO conversion and stability of the catalysts after calcination at different temperatures

reaction conditions : $\rm H_2/CO~=~2.2$ (mol ratio) ,

GHSV = $2\ 000\ h^{-1}$, $p = 2.0\ MPa$, $t = 250\ C$

(1) M350; (2) M400; (3) M450; (4) M500; (5) M550

难以还原,造成其还原后能够提供的活性位逐渐减 少,反应活性降低,随反应时间的延长,催化剂进一 步发生还原,催化剂的反应活性逐渐升高直至平稳。 2.5 产物选择性

2.5.1 烃产物分布 不同温度焙烧的催化剂在不 同反应时间内产物选择性见表 3。由表 3 可知,提 高焙烧温度,可明显降低甲烷的选择性。350 ℃焙 烧的催化剂,甲烷选择性为 9% 左右,而 550 ℃焙烧 的催化剂,甲烷的选择性维持在 4.5% 左右。重质 烃 C_{19+} 选择性随着焙烧温度的升高而增大。350 ℃ 焙烧的催化剂 C_{19+} 的选择性步 28% 左右,550 ℃焙 烧的催化剂 C_{19+} 的选择性步 28% 左右。结烧 温度低于 500 ℃ 的催化剂,总有效烃($C_2^{=} - C_4^{=} + C_{5+}$)的选择性随着焙烧温度的升高而增加,由 79% 增加到 87% 左右。焙烧温度高于 500 ℃的催化剂,

Table 3	Hydrocarbon	selectivity an	d activity of	of the	catalysts	calcined	at	different	temperatures
---------	-------------	----------------	---------------	--------	-----------	----------	----	-----------	--------------

Catalyst M350		M4	M400		M450		M500		M550	
Time on stream t / h	86	230	86	230	86	230	86	230	86	230
CO conversion $x / \%$	78.77	77.77	73.64	73.14	71.71	71.46	59.17	67.19	54.78	61.50
$CO + H_2$ conversion $x / \%$	48.86	44.43	46.98	46.59	39.84	43.97	37.34	44.75	32.68	34.93
(H ₂ /CO)TG *	6.81	7.10	6.03	5.89	5.82	5.30	4.41	4.94	4.45	4.91
HC distribution s/%										
CH_4	10.96	8.64	8.56	7.11	6.37	5.95	5.37	5.30	4.45	4.81
$C_2 - C_4$	20.95	22.93	19.72	19.41	20.51	20.28	19.15	19.68	19.37	20.18
$C_2^{=} - C_4^{=}$	11.01	13.41	10.34	10.93	10.84	11.98	10.19	11.70	10.38	11.93
C ₅ – C ₁₁	22.82	25.09	23.05	24.07	24.15	26.08	23.57	23.24	23.62	25.31
$C_{12} - C_{18}$	15.90	16.21	20.47	21.69	17.81	19.85	20.87	21.30	19.38	17.54
C _{19 +}	29.37	27.13	28.20	27.72	31.16	27.84	31.04	30.48	33.18	32.16
$C_2^{=} - C_4^{=} + C_{5+}$	79.10	81.84	82.06	84.41	83.96	85.75	86.30	87.72	87.76	86.94

* denotes the molar ratio of H_2/CO (mol ratio) in tail gas

表 4	不同温度焙烧的催化剂有机含氧化物的选择性

Table 4 Oxygenates selectivities of the catalysts calcined at different temperatures

Catalyst	M350		M400		M450		M500		M550	
Time on stream t/h	86	230	86	230	86	230	86	230	86	230
Oxygenates selectivity										
in water phase										
Acid w/%	3.12	3.02	3.25	3.09	3.40	3.43	3.32	3.69	3.39	3.69
Alcohol $w \neq \%$	15.90	16.05	18.60	17.44	16.66	15.63	15.77	17.16	17.89	16.42
Aldehyde $w / \%$	0.60	0.72	0.77	1.49	0.61	0.65	1.32	0.63	1.31	0.70
Ketone w/%	0.87	0.82	0.55	0.64	0.42	0.35	0.40	0.34	0.47	0.33
Ester $w \neq \%$	0.11	0.09	0.08	0.09	0.06	0.04	0.15	0.04	0.05	0.04
Oxygenates in oil phase $w / \%$	18.90	18.90	18.45	19.85	19.80	18.81	19.51	19.47	17.66	21.12

总有效烃的选择性变化不大,维持在 87% 左右。其 他烃的选择性变化不明显。以上结果表明,提高焙 烧温度,可以降低甲烷的选择性,增加重质烃和总有 效烃的选择性。由于反应是在积分反应器中进行, 反应器出口的 H₂/CO(摩尔比)对产物的选择性有 很大的影响。在催化剂床层后部较高的 H₂/CO(摩 尔比)反应,不利于烃链增长,反而在较低的 H₂/CO (摩尔比)反应,有利于烃链增长。由表 3 可知,尾 气中 H₂/CO(摩尔比)的比率随着焙烧温度的升高 而逐渐减小。这一结果与重质烃的选择性有很好的 一致关系。

2.5.2 有机含氧化物选择性 不同温度焙烧后催 化剂有机含氧化物的选择性见表 4。由表 4 可知, 水相中有机含氧化物主要由醇和酸组成,其余的为 酮、醛、酯等;油相中约含 19% 的有机含氧化物,随 焙烧温度的升高,各有机含氧化物的选择性均变化 不大,说明焙烧温度对 Mg 助剂的铁基催化剂有机 含氧化物的生成影响不大。

3 结 语

(1)喷雾干燥的含 M_g 助剂 $Fe/Cu/K/SiO_2$ 催 化剂随着焙烧温度的升高 ,其 BET 表面积和孔体积 下降 ,平均孔径增大 ,体相中的 $\alpha - Fe_2O_3$ 晶粒逐渐 增大 ,催化剂变的越来越难还原。

(2)催化剂在固定床反应器上的 F-T 合成反 应评价表明 随着焙烧温度的升高,催化剂的 F-T 合成反应活性降低,在运行中反应活性逐渐增加直 至达到平稳,但达到平稳所需的诱导期越来越长。

(3)提高焙烧温度可以有效地降低 CH₄ 的选择性,促使经产物向重质烃方向偏移,但焙烧温度对水相、油相中有机含氧化物的选择性影响不明显。

参考文献:

- [1] 相宏伟 唐宏青 李永旺. 煤化工工艺评述与展望: IV 煤间接液化技术[J]. 燃料化学学报, 2001, 29(4):289-298.
 (XING Hong wei, TANG Hong qing, LI Yong wang. Perspectives on R&D in coal chemical industry: IV Synthesis of fuel from coal via Fischer Tropsch reaction [J]. Journal of Fuel Chemistry and Technology, 2001, 29(4):289-298.)
- [2] PUTANOV P, BOSKOVIC G, GUCZI L, et al. Promoter effect of Cu, Co, and K on Fe/MgO in CO hydrogenation[J]. J Mole Catal, 1992, 71(1):81-92.
- [3] LI Sen zi, LI An wu, IGLESIA E, et al. Effect of Zn, Cu, and K promoters on the structure and on the reduction, Carburization, and catalytic behavior of iron - based Fischer - Tropsch synthesis catalysts J]. Catal Lett, 2001, 77(4):197 -205.
- [4] BUKUR D B, SIVARAJ C. Supported iron catalysts for slurry phase Fischer Tropsch synthesis[J]. Appl Catal: A, 2002, 231(1-2):201-214.
- [5] WESNER D A, COENEN F P, BONZEL H P. Influence of potassium on carbon monoxide hydrogenation over iron : a surface analytical study J. Langmuir, 1985, 1(4):478-487.
- [6] 王 洪,郝庆兰,刘福霞,等.助剂Cu、K对F-T合成铁基催化剂作用的表征研究[J].燃料化学学报,2005,33(1): 89-95.

(WANG Hong, HAO Qing – lan, LIU Fu – xia, *et al*. Effects of Cu and K promoter on Fe – based catalysts for Fischer – Tropsch synthesis[J]. *Journal of Fuel Chemistry and Technology*, 2005, **33**(1):89–95.)

- [7] YANG Yong, XIANG Hong Wei, LI Yong Wang, et al. Effect of potassium promoter on precipitated iron manganese catalyst for Fischer – Tropsch synthesis [J]. Appl Catal: A, 2004, 266(2):181–194.
- [8] 李永旺,吴宝山 相宏伟,等. 一种微球状费托合成催化剂的制备方法[P]. 中国专利,申请号 01120416.8 2001.
 (LI Yong wang, WU Bao shan, XIANG Hong wei, *et al*. The preparation of a micrometer scale spherical Fischer Tropsch catalys[[P]]. China patent application No.01120416.8, 2001.)
- [9] JI Yuan Yuan, XIANG Hong Wei, LI Yong Wang, et al. Effect of reaction conditions on the product distribution during Fischer - Tropsch synthesis over an industrial Fe - Mn catalys[J]. Appl Catal : A, 2001, 214(1):77 - 86.
- [10] BAI Liang, XIANG Hong Wei, LI Yong Wang, et al. Slurry phase Fischer Tropsch synthesis over manganese promoted iron ultrafine particle catalys [J]. Fuel, 2002, 81(11-12):1577 – 1581.
- [11] KÜNDING W, BÖMMEL H, CONSTABARIS G, *et al*. Some properties of supported small α Fe₂O₃ particles determined with the Mössbauer effect spectroscopy J. *Phys Rev*, 1966, **142**: 327 332.
- [12] 杨 勇. Fe Mn 催化剂的制备、表征及其 F T 合成反应性能研究[D]. 太原:中国科学院山西煤炭化学研究所,

2004.9 - 33.

(YANG Yong, Preparation, characterization and Fischer – Tropsch performance of iron – manganese catalys [D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2004.9 – 33.)

- [13] JIN Ya ming, DATYE A K. Phase transformations in iron Fischer Tropsch catalysts during temperature programmed reduction[J]. J Catal, 2000, 196 (1):8 – 17.
- [14] 杨 勇 相宏伟 李永旺 等. 焙烧温度对 Fe Mn 催化剂结构和 F T 合成性能影响[J]. 燃料化学学报 2004 **32**(6): 717 – 722.

(YANG Yong, XIANG Hong - wei, LI Yong - wang, et al. Effect of calcination temperature on the structure and Fischer

- Tropsch performance of Fe - Mn catalys [J]. Journal of Fuel Chemistry and Technology, 2004, 32(6):717-722.)

[15] DLAMINI H, MOTJOPE T, JOORST G, et al. Changes in physico – chemical properties of iron – based Fischer – Tropsch catalyst induced by SiO₂ addition[J]. Catal Lett, 2002, 78(1-4):201-207.

Effect of calcination temperature on magnesium promoted iron – based catalyst for Fischer – Tropsch synthesis

SUN Yu – chuan^{1 2} , YANG Jun² , TANG Yu² , HAO Qing – lan¹ , TIAN Lei¹ ,

ZHANG Zhi - xin¹, XIANG Hong - wei¹, LI Yong - wang¹

(1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;
 2. Department of Chemistry, Jinan University, Guangzhou 510632, China)

Abstract : Magnesium – promoted Fe/Cu/K/SiO₂ catalyst for Fischer – Tropsch synthesis (FTS) was prepared using spray – dried technology. The structures of the catalysts after calcination at different temperatures were characterized by means of N₂ physisorption , X – ray diffraction (XRD), Mössbauer spectroscopy (MES), and H₂ temperature – programmed reduction (TPR). It showed that increasing calcination temperature decreased the BET surface area and increased the average pore diameter and the size of α – Fe₂O₃ crystallite for the catalysts after calcination was tested in a fixed bed reactor under the conditions of 250 °C , 2.0 MPa and 2 000 h⁻¹. With the increase of the calcination temperature , the initial activity of the catalyst decreased , and the activity gradually approached to a stable value with time on stream , depending on the induction period which prolonged with increasing calcination temperature. Additionally , the increase of the calcination temperature also favored the Grammation of heavy hydrocarbons and declined the CH₄ selectivity.

Key words : Fischer – Tropsch synthesis ; iron – based catalyst ; magnesium promoter ; calcination temperature ; spray – dried technology

Corresponding author : XIANG Hong – wei, Tel : (0351) 4124899, E – mail : hwxiang@ sxicc. ac. cn.

Author introduction : SUN Yu - chuan (1979 -), male , Master student , major in inorganic chemistry.

Foundation item: National Natural Science Foundation of China (20590360); National High Technology Research and Development Program of China (Program 863, 2001AA523010).