文章编号:0253-2409(2005)01-0083-06

# FCC 硫转移复合助剂的研究

### 陈良,施力

(华东理工大学石油加工研究所,上海 200237)

摘 要:以 Mg-Al 元素为基础 引入 Fe、稀土等元素,制备了一系列 FCQ 流化催化裂化)液体硫转移复合助剂,负 载于 FCC 平衡剂上,得待评价的催化剂。利用工业模拟装置考察了复合助剂降低 FCC 烟道气和 FCC 产品油总硫 质量分数的效果。结果表明,同时加入稀土、Fe 元素的复合助剂在烟道气和汽油中的降硫效果都较好,经热重仪分 析发现 稀土,Fe 元素的加入加强了复合助剂吸附氧并转化为结晶氧的能力,使 SO<sub>2</sub> 更易被氧化吸收,达到脱硫目 的。此复合助剂在烟道气中最高脱硫率可达85.7%,FCC 产品油的最高降硫量达到15.8%。通过酸性数据分析和 产品油分布对比实验,发现加入少量复合助剂,对 FCC 催化剂活性和选择性均无不良影响。

关键词:液体;脱硫;流化催化裂化;汽油

中图分类号:061 文献标识码:A

近年来,随着环境保护法规的日益严格和环保 意识的增强,如何控制催化裂化装置中 SO<sub>x</sub> 的排放, 已成为世界各大石油公司的研究热点之一。在我 国,面临着原油重质化和进口高硫原油的状况,SO<sub>x</sub> 排放造成的污染问题也越来越严重。减少 SO<sub>2</sub> 和控 制其排放量迫在眉睫,催化裂化过程中添加有效的 硫转移助剂被认为是控制 SO<sub>2</sub> 最经济,又行之有效 的途径。

通过使用固体催化裂化硫转移助剂既可以明显 降低 FCC 烟道气排出的 SO<sub>x</sub> 对大气的污染,又可将 烟道气中的 SO<sub>x</sub> 转化为 H<sub>2</sub>S,而制成硫磺。在镁铝 结晶石上引入 Ce 元素可明显提高助剂的氧化吸硫 能力,同时很多学者也研究了 Fe 元素的引入对脱硫 作用的影响,但对其机理的研究还很少报道。

随着催化裂化技术的发展,固体硫转移助剂逐 渐暴露出一些缺点,如对 FCC 催化剂有稀释作用, 固体剂制备工艺复杂(需要喷雾装置),成本较高, 为此,国内一些科研机构开始研究液体硫转移助剂。

本文以镁铝为基本元素,通过引入稀土、Fe 等 金属元素以提高氧化吸硫能力,并在 FCC 烟道气工 业模拟装置以及固定流化床上分别考察了液体助剂 载在 FCC 催化剂上后对烟道气脱硫和降低催化裂 化产品油总硫质量分数的效果,以期能制备出一种 既可以用于烟道气脱硫,又可以降低催化裂化产品 总硫质量分数的复合型液体助剂。 1 实验部分

1.1 载有复合助剂的 FCC 催化剂制备 FCC 平衡 剂由南京炼油厂提供,拟薄水铝石(Al<sub>2</sub>O<sub>3</sub>·H<sub>2</sub>O)由 长岭催化剂厂生产,工业 Ce<sub>2</sub>(CO<sub>3</sub>),由上海跃龙公 司生产,MgO,冰醋酸,硝酸铁等均为分析纯。

取一定量的氧化镁和碳酸铈(选择性加入)于 三口烧瓶中,加入定量的乙酸和去离子水(控制固 体物的质量分数为10%,溶液pH值为5.0~6.0), 搅拌,回流温度下反应至透明后,加入定量拟薄水铝 石和硝酸铁等,混合均匀,即得复合助剂样品。

将液体助剂用浸渍法浸在 FCC 催化剂上,于 120 ℃干燥后,在马福炉中700 ℃焙烧3h,得到待评 价的催化剂。

1.2 助剂烟道气脱硫效果的评价 反应器由外径 为 20 mm 的石英玻璃器制成。通过改变进入反应 器中的气氛组成和反应温度模拟 FCC 系统再生器 和反应器的环境,来检测制备的添加剂样品在设定 条件下的脱硫性能。

活性测试分为两个半循环,即氧化吸硫半循环 和氢气还原半循环。在氧化吸硫半循环阶段,首先 在 50 mL/min 的 N<sub>2</sub> 吹扫下 程序升温至 700 °C。然 后切换 O<sub>2</sub> 以 5 mL/min 流量通过催化剂床层,进行 预氧化吸附,时间保持 5 min(新鲜添加剂第一次老 化时需要)。然后通入以下混合气进行氧化吸硫: N<sub>2</sub>(55 mL/min)、O<sub>2</sub>(5 mL/min)、SO<sub>x</sub>(20 mL/min), 氧化吸附时间为 10 min,反应尾气由 30% H,O, 吸收

联系作者:施力,Tel 021-64252383 ;E-mail ;yyshi50@ citiz. net.

收稿日期:2004-03-07;修回日期:2004-09-30

作者简介:陈 良(1979-),上海嘉定人,男,硕士,化学工艺专业。

液连续吸收。

氧化吸硫半循环完成后,以 N<sub>2</sub> 50 mL/min 吹 扫 降温至 500 ℃,通入 15 mL/min 的氢气还原,时 间为 15 min,其尾气由 0.1 mol/L 的 KOH 溶液连续 吸收。

 $SO_2$  和  $H_2S$  的分析方法按化工部 HG1-1316-80 标准进行。

重复以上步骤 进行下一循环测试。 活性定义为: 脱硫活性( De-SO<sub>x</sub> ) =( 空白实验消耗的 NaOH 质量 – 混合催化剂消耗的 NaOH 质量 )/空白实验消耗的 NaOH 质量 ×100%

1.3 助剂降低催化裂化产品油总硫质量分数的评价 催化裂化产品油脱硫效果的评价在固定流化床 (FFB)上进行。

实验的原料油为一种典型的 RFCC 原料油(取 自南京炼油厂)。其原料油分析数据见表 1。

表 1 固定流化床(FFB)原料油性质

Table 1 Properties of FFB feed stock

| Density                               | Condensation    | Metal cont | tent $\times 10^{-6}$ | Primary | Elemer | nt analysi | s w / % |     | Distillat | ion $t \neq 0$ | 2   |
|---------------------------------------|-----------------|------------|-----------------------|---------|--------|------------|---------|-----|-----------|----------------|-----|
| $ ho$ /( g $\cdot$ cm <sup>-3</sup> ) | carbon $w / \%$ | Ni         | V                     | С       | Н      | S          | Ν       | IBP | 30%       | 50%            | 70% |
| 0.882                                 | 3.43            | 6.05       | 0.970                 | 86.5    | 12.9   | 0.190      | 0.190   | 191 | 402       | 455            | 518 |

催化剂装填量 150 g,进油量 50 g,进油时间 70 s 500 ℃反应。产品经三级水冷后合并,切割初 馏点~204 ℃为汽油,204 ℃~350 ℃为轻循环油 (LCO),剩余为重油(slurry oil)。待生剂经烧白后 的减重为焦炭产量,用归一化法定出气体产量。

2 结果与讨论

#### 2.1 FCC 烟道气脱硫

2.1.1 微调元素对 FCC 烟道气脱硫的影响 脱硫 实验在微反活性测试装置上进行。图1为负载不同 助剂的 FCC 催化剂在烟道气中的脱硫结果。从图1发 现 加入 Fe 元素效果最显著 脱硫率可达到 85.7%。

在原位热重仪上考察了助剂在有氧和无氧条件



图 1 载有不同助剂的 FCC 催化剂在烟道气中的脱硫效果

Figure 1  $DeSO_x$  activity comparison of different

additives in gas

S201—Mg-Al(1: 1); S301—Ce/Mg-Al(1: 1); S401—Ce/Mg-Al-Fe(2: 1.5: 0.5); S402—Ce/Mg-Al-Fe(2: 1.8: 0.2) 下的氧化吸硫情况,样品在反应器中加热到 700 ℃ 时,预氧化 10 min 后,进行两个条件的实验(1)在 N<sub>2</sub>保护下只通 SO<sub>2</sub> 气体(图 2)(2)在 N<sub>2</sub>保护下, 同时通入 SO<sub>2</sub>和 O<sub>2</sub>(图 3)。



legends : see Figure 1

图 2 表明在预氧化阶段 3 种样品因吸附氧后 均有少量增重,在通入 SO<sub>2</sub> 后开始增重较快,后趋于 平缓。预氧化后直接通入 SO<sub>2</sub>,在反应器中仍残留 未吹尽的氧气,但经过一段时间后,SO<sub>2</sub> 的吸附速率 明显减慢,这是由于氧气被逐渐耗尽的缘故。

图 3 表示在预氧化后同时通入 SO<sub>2</sub> 和 O<sub>2</sub> 的样 品增重情况。有气相氧存在时 *S*301 捕集 SO<sub>2</sub> 的能 力增强 ,其增重大约是 S201 的两倍。而后者相对于 不通入氧气时的增重也明显提高 ,表明氧气在吸附





Figure 3 Oxidation sulphur-adsorptionTG curves of  $DeSO_x$  additives( oxygen existence )

(1) S201;(2) S301;(3) S402 legends : see Figure 1  $SO_2$  时起了重要作用。

据报道<sup>[1]</sup>,尖晶石中的晶格氧和表面吸附氧均 参与吸硫反应。在无氧气时,尖晶石中的晶格氧同 SO<sub>2</sub>发生反应,但很快被耗尽。而有氧气时,含铈尖 晶石中的铈吸附氧,形成表面吸附氧,一方面直接与 吸附的 SO<sub>2</sub>发生反应,另一方面向晶格内转移。铈 在晶格内输送晶格氧的能力很强<sup>[2]</sup>,所转移的晶格 氧及时补充了与 SO<sub>2</sub>反应而消耗的晶格氧,明显提 高了氧化吸硫活性。因此在 FCC 烟道气脱硫中,样 品 S301 的脱硫效果优于 S201。

从图 2 和图 3 发现,经预氧化后 Ce/Mg-Al-Fe (2:1.8:0.2)氧化吸硫增重高于 Ce/Mg-Al(1: 1),这相对于未经氧化时的情况更为明显。文献 [3]报道,在 Mg-Al-Fe 材料中存在如下的平衡式:



图 4 Ce/Mg-Al-Fe(2:2-x:x)四元助剂系列 XRD 谱图 Figure 4 XRD spectra of Ce/Mg-Al-Fe(2:2-x:x) additives series

2 θ /(°)

70

x (1)0.1;(2)0.2;(3)0.3;(4)0.4;(5)0.5;(6)1.6 •-MgAl<sub>2</sub>O<sub>4</sub>; \*-MgFe<sub>2</sub>O<sub>4</sub>;  $\blacktriangle$ -CeO<sub>2</sub> x --mol amount of Fe element

同时还考察了元素铁的引入对含 Ce 镁铝尖晶 石比表面积、孔容和孔径分布的影响(见表 2),结果 显示铁的引入引起镁铝尖晶石内部结构的变化,

#### 表 2 不同助剂样品的比表面积、孔体积和平均孔径

 Table 2
 Surface area pore volume and pore diameter of samples

| Sample              | $A/(m^2 \cdot g^{-1})$ | ) v/( cm <sup>3</sup> · g <sup>-1</sup> ) | d / nm |
|---------------------|------------------------|-------------------------------------------|--------|
| S301( Ce/Mg-Al )    | 298.32                 | $0.903 3 \times 10^{-2}$                  | 12.111 |
| S402( Ce/Mg-Al-Fe ) | 163.88                 | $0.4480 \times 10^{-2}$                   | 10.938 |

这种复合氧化物存在着氧空位,使它对  $O_2$  具有 很强的解离吸附能力,吸附氧后形成活泼的晶格氧, 具备了把  $SO_2$  氧化为  $SO_3$  的条件,表现出对  $SO_2$  有 很高的氧化吸附性。

但是从图 1 样品 S401 和 S402 的脱硫结果来 看 铁元素加入到一定量后使助剂的脱硫率下降 甚 至比未加铁元素的样品 S301 脱硫率更低。作者制 备了一系列不同铁质量分数的助剂(10% Ce/Mg-Al-Fe(2:2-x:x),其中x代表Fe元素的摩尔量), 并对其做了 XRD 图谱分析 ,结果见图 4。从图 4 可 以看出 ,当 x = 0.1~0.5 及 x = 1.6 时均未出现单 独的 MgO 或 Fe<sub>2</sub>O<sub>3</sub> 的特征峰,而是形成了 Mg-Al-Fe-O 固溶体 治  $x \leq 0.5$  时 出现的峰属于 MgAl<sub>2</sub>O<sub>4</sub> 和 CeO<sub>2</sub> 的特征峰,同时也能检测到 MgFe<sub>2</sub>O<sub>4</sub> 峰的 存在 随着 x 的增大 ,MgFe, O<sub>4</sub> 峰位置向 20 角偏大 的方向移动(42.5°~43.5°),在20为44.0°~45.0° 内两峰有一定的重叠 治 x = 1.6 时 出现了尖锐的  $MgFe_{2}O_{4}$  尖晶石特征峰,此时  $MgAl_{2}O_{4}$  特征峰变得 微弱。由此可见 在一定范围内 随铁质量分数的增 加 产物结构发生晶格畸变 表现为镁铝尖晶石的峰 强度明显增加 导致活性的增加 但当铁质量分数超 过某一极限后 ,MgAl<sub>2</sub>O<sub>4</sub> 特征峰变弱。这是加铁元 素的样品 S401 的脱硫率比未加铁元素的样品 S301 脱硫率降低的原因。

 $M_{gAl_{2}O_{4}}$ 和  $M_{gFe_{2}O_{4}}$ 尖晶石共同存在 "堵塞"了原 来的部分大孔 ,导致比表面积和孔容减少。但这并 未影响铁的引入使其脱硫活性的提高。

2.1.2 Fe 元素对助剂再生性能的影响 选择加载 助剂 S301、S402 各 0.8%的 FCC 催化剂考察其还原 再生情况。结果见表 3。

表 3 助剂的还原性能比较

Table 3 Reduction activity comparison of additives

| S ] .    | Number of | circulation | Average of sulfur  |  |  |
|----------|-----------|-------------|--------------------|--|--|
| Sample - | 1         | 2           | reduction activity |  |  |
| S301     | 47.6%     | 21.0%       | 44.1%              |  |  |
| S402     | 85.7%     | 53.6%       | 62.5%              |  |  |

从表 3 可以看出,助剂 S301 在反应再生循环中 活性下降较快,经一次再生后,脱硫活性就不到原来 活性的一半,而助剂 S402 加入 Fe 元素后,活性下降 速度减缓,因为铁具有良好的还原性能。

 2.1.3 助剂加入量对脱硫率的影响 表 4 列出 了不同质量分数的四元助剂 S402 有效成分对脱 硫率的影响。由表 4 可看出,助剂的质量分数为 0.2%~1.2%时,随着助剂质量分数的增加,脱硫 率增加,但是助剂质量分数的增加,会稀释 FCC 催 化剂本身,从而影响催化剂的活性和选择性,因此, 本文加入的最大助剂质量分数为1.2%。

表 4 加入助剂的质量分数对脱硫率的影响

Table 4 Influention on DeSO<sub>x</sub> activity of additives content

| Additives content $w / \%$ | $DeSO_x$ activity $w / \%$ |
|----------------------------|----------------------------|
| 0.2                        | 30.8                       |
| 0.4                        | 45.5                       |
| 0.6                        | 70.8                       |
| 0.8                        | 85.7                       |
| 1.0                        | 87.1                       |
| 1.2                        | 90.3                       |

2.2 催化裂化产品油脱硫

2.2.1 微调元素对催化裂化产品油脱硫的影响 载有硫转移复合助剂的 FCC 催化剂对降低催化裂 化产品油总硫质量分数的考察在固定流化床上进 行。液体产品硫的质量分数分析利用 WK-ZB 微库 仑分析仪进行。

#### 表 5 载有不同助剂催化剂时 FCC 产品油脱硫活性的比较

| Table 5 Desulphurization activity comparison of different additives in FCC Tie. | <ul> <li>Desulphurization activity comparison of different additives in</li> </ul> | FCC Yield |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|

| C + 1 +      | Sample                   | Amount of sulfur   | Desulphurization |
|--------------|--------------------------|--------------------|------------------|
| Catalyst     | constitution             | $(\times 10^{-6})$ | w / %            |
| FCC catalyst | FCC catalyst from Nanjin | 760                | -                |
| S201         | Mg: $Al = 1$ : 1         | 750                | 1.3              |
| S301         | Ce/Mg-Al                 | 780                | -                |
| S401         | Ce/Mg-Al-Fe(2: 1.5: 0.5) | 640                | 15.8             |
| S402         | Ce/Mg-Al-Fe(2: 1.8: 0.2) | 670                | 11.8             |

表 6 酸性数据

Table 6 Acidities measured by pyridine-IR

| Sample       | TL    | TB    | TL + TB | SL    | SB   | SL + SB |
|--------------|-------|-------|---------|-------|------|---------|
| FCC catalyst | 28.72 | 20.79 | 49.51   | 10.07 | 3.96 | 14.03   |
| S402         | 29.47 | 20.54 | 50.01   | 10.08 | 3.87 | 13.96   |

TL-total lewis acid ,TB-total bronsted acid ,SL-strong lewis acid ,SB-strong bronsted acid

催化裂化汽油中的硫化物以噻吩和苯并噻吩类 硫化物为主,约占硫化物总质量分数的80.0%以 上,其中约一半分布在FCC汽油的重馏分中<sup>[45]</sup>。

有关噻吩的酸催化分解反应机理一般认为噻吩 分解与氢转移有关<sup>[67]</sup>。噻吩首先被吸附在 B 酸中 心上,通过 B 酸中心与噻吩之间缓慢的氢转移发生 碳硫键断裂,生成类似硫醇类的中间体;或 H<sup>+</sup>加到 噻吩环的  $\alpha$  位上,生成  $\beta$  位正碳离子物种,再经与 噻吩之间进一步氢转移生成具有硫醚性质的物种, 当高于 380 ℃时,该物种分解(包括热分解和酸催化分解)为H<sub>2</sub>S。

研制具有氢转移活性高的活性组分是开发脱硫 FCC 催化剂的关键。目前研究氢转移方法是在催化 裂化过程中加入一定量脱硫助剂,这些助剂主要是 用稀土(Ce等)、铜、锌、铝等改性分子筛<sup>[8]</sup>,本文研 制的助剂也含有同类元素。

从表 5 发现,在固定床的实验评价中,FCC产品 油的硫质量分数在加入助剂以后并未明显降低,可 能是助剂中 Ce ,Fe 等的质量分数较低 ,或是使用过 程中添加量较低的缘故。

但从浸渍助剂 S402 的 FCC 催化剂与空白剂的 酸性数据(表6)可以看出 加入助剂后,催化剂的酸 分布无显著变化,B 酸略有减少,L 酸略有增加。说 明助剂的加入对催化裂化活性无不良影响。

2.2.2 复合助剂对裂化产品油分布的影响 加入助剂 S402 所得裂化产品分布见表7 表中转化率为三次平行实验的平均值。"轻质油"是指汽油加柴油的收率", 总液收"则是"轻质油"再加上液化气的收率。

| 表 7 | 裂化产                                      | 品分     | 布 | 比较   |
|-----|------------------------------------------|--------|---|------|
| ~ ~ | ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | HH / J |   | 2012 |

Table 7 Comparison of FCC product distributions in FFB unit

|                          | Catalyst             | FCC catalyst | S402   |
|--------------------------|----------------------|--------------|--------|
|                          | gas                  | 4.56         | 4.52   |
|                          | LPG                  | 16.98        | 16.75  |
|                          | gasoline             | 43.10        | 42.87  |
| Product $w / \%$         | Diesel oil           | 21.14        | 21.45  |
|                          | residual oil         | 7.55         | 7.88   |
|                          | coke                 | 6.67         | 6.71   |
|                          | aggregation          | 100.00       | 100.00 |
|                          | light distillate oil | 64.24        | 64.32  |
| Liquid yield $w$         | /%                   | 81.22        | 82.07  |
| Conversion rate $x / \%$ |                      | 92.77        | 92.30  |

由表 7 可知,加复合助剂与纯 FCC 催化剂实验 比较,产品分布基本相同,说明在 FCC 催化裂化时, 加入少量的复合助剂,对产品分布无明显影响。

### 3 结 语

(1)以 Mg-Al 元素为基础的液体硫转移复合助 剂在引入 Ce,Fe 等元素之后,可以明显提高烟道气 中的脱硫效果,其中样品 S402 的脱硫效果可以达到 85.7%。从原位热重仪实验发现氧参与了氧化吸附 SO<sub>2</sub> 的反应,而 Ce,Fe 元素的引入,增加了吸附氧的 能力以及促进了结晶氧在晶体内的转移,从而大大 提高了脱硫助剂的脱硫效果。同时,Fe 元素也是良 好的还原剂,它的加入也有助于提高复合助剂的还 原性能。

(2)从固定流化床评价结果分析,助剂的加入 对于降低 FCC 产品油中的总硫质量分数起到了一 定的作用,但是由于有效组分 Fe 元素在整个待评催 化剂中的质量分数过低,增加的效果并不是很明显, 还有待于进一步考察。从对空白平衡剂和浸渍助剂 的平衡剂酸性数据发现,助剂的加入对催化裂化活 性无不良影响。从裂化产品油分布比较实验,可以 看出在 FCC 催化裂化条件下,加入少量的复合助 剂,对产品分布也无明显影响。

#### 参考文献:

[1] 朱仁发 戴 亚 李承烈. 脱硫助剂氧化吸硫原位还原研究[J]. 安徽师范大学学报(自然科学类),1999,22(4)342-344.

(ZHU Ren-fa ,DAI Ya ,LI Cheng-lie. In situ-TG study on oxidization sulfur-absorption of de-SO<sub>x</sub> additive[J]. Journal of Anhui Normal University (Natural Science Edition), 1999, 22(4) 342-344.)

- [2] 米纳切夫 X M, 安托申 Γ B, 等. 稀土在催化剂中的应用[M]. 北京 科学出版社, 1987. 38. (MHHAQEB X M, AHTOMHH Γ B, *et al*. The application in the catalyst of tombarthite[M]. Beijing :Science Press, 1987. 38.)
- [3] 陈银飞,刘华彦. MgFe 氧化物催化氧化吸附 SO<sub>2</sub>的研究 J]. 宁夏大学学报(自然科学版),2001,22(2):178-180.
   (CHEN Yin-fei, LIU Hua-yan. Study on the MgFe complex oxides for SO<sub>2</sub> catalytic oxidative adsorption[J]. Journal of Ningxia University(Natural Science Edition), 2001,22(2):178-180.)
- [4] 凌凤香 姚银堂,马 波,等. 气相色谱-原子发射光谱联用技术测定柴油中硫化物[J]. 燃料化学学报,2001,29(6): 535-539.

(LING Feng-xiang, YAO Yin-tang, MA Bo, et al. Study of slufur compounds in diesel oil by GC-atomic emission detection[J]. Journal of Fuel Chemistry and Technology, 2001, 29(6) 535-539.)

- [5] 凌凤香,王少军,姚银堂,等. FCC 汽油 GS 中硫化物的分布特点 J]. 燃料化学学报,2003,31(2):174-176.
   (LING Feng-xiang, WANG Shao-jun, YAO Ying-tang, et al. Characterization of sulfur compounds in GS FCC gasoline[J]. Journal of Fuel Chemistry and Technology, 2003,31(2):174-176.)
- [6] 路 勇,何鸣元.氢转移反应与催化裂化汽油质量[J].炼油设计,1999,29(6)5-11.
   (LU Yong HE Ming-yuan. Effect of hydrogen transfer reaction on quality of FCC gasoline[J]. Petroleum Refinery Engineering, 1999,29(6)5-11.)
- [7] GARCIA C L, LERCHER J A. Adsoropton and surface reactions of thiophene on ZSM-5 zeolites[J]. J Phs Chem, 1992,

96(26) 2669.

[8] 山红红,李春义,赵 辉,等. 噻吩在 USY 沸石上的裂化脱硫反应机理探索[J]. 燃料化学学报,2001,29(6):481-485.

(SHAN Hong-hong ,LI Chun-yi ,CHAO Hui , et al . Discussions on the mechanism of thiophene cracking over a USY zeolite [J]. Journal of Fuel Chemistry and Technology , 2001 , 29(6) 481 – 485. )

#### Study on complex desulphurization additives for FCC

CHEN Liang, SHI Li

(East China University of Science and Technology, Petroleum Research Center, Shanghai 200237, China)

**Abstract** : Environmental concerns have resulted in legislation which places limits on the sulfur content of gasoline. However , the major source of sulfur in the gasoline pool is fluidized catalytic cracking (FCC) naphtha which usually contributes 90% of the total in China. Most economic solutions would be to use an FCC catalyst additive which could reduce the sulfur content in the FCC naphtha in situ in the cracker itself. Here a group of additives have been studied. Based on support materials as alumina and magnesium oxide , cerium and iron were added by co-gel method. The additives were blended to  $8000 \times 10^{-6}$  with a reference FCC-catalyst. By TG analysis , it was revealed that the additive with cerium and iron would strengthen the absorption of oxygen and turn it into the oxygen in the lattice and thus make SO<sub>2</sub> easier to be oxidized and absorbed. The results show that the extent of sulfur removal of the additive with iron for the FCC flue gas can reach up to 85.7% in a simulating device while that the reduction of sulfur for the FCC product will reach 15.8% on the base of FCC-catalyst in fixed fluidizing bed (FFB) unit. It has also been shown that the additive has no effect on the catalyst activity and the FCC product distributions.

Key words : liquid ; desulphurization ; FCC ; gasoline

**Corresponding author** : SHI Li ,Tel 021-64252383 E-mail yyshi50@ citiz. net. **Author introduction** : CHEN Liang (1979-), male , Master , speciality of chemical technology.

## 《燃料化学学报》参考文献著录格式

(1) <期刊文章 >[ 序号 ]作者(只列3人 其余用'等")) 文章题名[ J] 刊名 出版年卷(期) 起止页码

例:刘建忠,曹欣玉,周俊虎,等. 煤粉锅炉 NO,排放的特性及控制的研究[J],燃料化学学报,2002,30(1) 6-10.

(LIU Jian-zhong CAO Xin-yu, ZHOU Jun-hu, *et al.* Characteristics of  $NO_x$  emission and removal for coal-fired utility boiler [J]. *Journal of Fuel Chemistry and Technology*, 2002, **30**(1), 6-10.)

(2) < 专著(书籍)、论文集 >[序号]作者.书或文集名[M或C]版本(第1版不注)、出版地:出版者,出版年。起止页 码

(3) < 学位论文、报告 >[ 序号 ]作者.论文或报告题名[ D 或 R ] 保存地点:保存单位 , 年份

(4) < 专利 > [ 序号 ]发明人. 专利题名[ P]. 专利国别: 专利号, 出版日期

(5) < 电子文献 >[ 序号 ]主要责任者. 电子文献题名[ 电子文献及载体类型标识 ]. 电子文献的出处或可获得地址,发表或更新日期/引用日期(任选).